Department of Intensive Vacuum-Plasma Technologies

Світлина

In the 60s of the XX century, the laboratory of "Activated vacuum-diffusion saturation" was established to solve the problem of protecting refractory metals and alloys used for the manufacture of the parts for rocket engineering from oxidizing environments at high temperatures. As a result of research, the technology for two-stage deposition of heat-resistant coatings on the parts of space engineering, in particular, combustion chambers of uncooled low-thrust jet engines made of niobium and its alloys, was developed. At the moment, this technology is used at the enterprises of Ukraine and Russia. A number of technologies for protective coating deposition on the cemented carbide products, steels, molybdenum heating elements and carbon materials was developed.

The department consists of 2 laboratories, which include 4 Doctors of Sciences and 5 PhDs.

The results of work have been published in more than 1000 publications, including 50 monographs. Click here to see a more detailed list.

Main directions of work:

– development of the technological processes for producing protective hardening coatings to increase the service life of equipment pieces for TPP, NPP, space technologies and engineering industry;

– improvement of the coating deposition methods and surface modification through the use of combined technological processes and extension of the parameter value range ensuring implementation of the process.

– development of protective coatings for structural materials, refractory metals and alloys, carbon materials by the method of vacuum-activated diffusion saturation;

– development of protective coatings for steel products used in engineering industry of Ukraine, heat-resistant coatings for niobium and its alloys using one-stage technology, complex protective coatings for the products made of carbon materials.

Major achievements:

– it was found that the ratio of the lattice parameters determined in the experiment to the lattice parameter of the most refractory metal in high-entropy alloys (HEA) reflects the level of elastic modulus in relation to the theoretically possible one with the given set of elements both in the cast HEAs and in cthe oatings based on them. The influence of the content of high-entropy oxide phase in the coating on the hardness and elastic modulus was determined. It is shown that, in optimal proportion, the hardness of the coating is in the range of 23-27 GPa. Annealing of high-entropy oxide coatings at the temperature of 1373 K for 300 minutes reduces the hardness of the coatings from 24 to 17 GPa and leads to the insignificant increase in the structural parameters. Oxide coatings have the friction coefficient of ~ 0.05;

– TiAlSiYN coatings deposited at Ub = – 200 V have high hardness H = 49.5 GPa due to the texture formation with the axis [111] perpendicular to the growth plane. The peculiarity of wear for the tool with nanostructured superhard TiAlSiYN coating is the start of chipping of the cutting edge at the value of h3 ~ 0.2 mm. Mechanical tests when cutting hardened steel (HRC = 64) with cubic boron nitride (PcBN) tool having the nanolayered protective coating (TiAlSiY) N/CrN showed a significant (1.6 times) decrease in its wear;

– a unique method for obtaining multipurpose protective coatings (heat-resistant up to 2000°С, wear-resistant, antifriction, etc.) on structural materials (steel, refractory alloys, carbon materials) under simultaneous synergistic action of the gas phase, liquid medium and SHS (self-propagating high-temperature synthesis ) was developed;

– for the first time in the world practice, multilayer nitride coatings based on high-entropy Ti-Zr-Nb-Ta-Hf alloys and nitrides of group VI transition metals were obtained. It is shown that at the negative bias potential (Us) of less than  150 V applied to the substrate during deposition, in multilayer coatings with the layer thickness of about 50 nm, it is possible to achieve a two-phase state with the predominant crystallite orientation, which leads to high hardness (up to 44 GPa) and, at the same time, high adhesion strength (critical load up to 125 N), as well as low wear (both with the Al2O3 counterbody and steel);

– the theory of temperature-anomalous diffusion (TAD) under the influence of external periodic fields was developed. TAD regions were determined depending on the amplitude and frequency of the applied fields. The degree of diffusion enhancement is calculated under various conditions. It is shown that using the fields in a calculated narrow range of amplitudes and frequencies, it is possible to accelerate diffusion processes by many orders of magnitude without increasing the temperature of the material;

– for the first time, a thermodynamic consideration for the corrosion-resistant coating formation on the refractory materials (Nb, Ta and their alloys) was carried out under one-stage saturation in a multicomponent filling with the formation of corrosion-resistant borosilicides W, Mo and Hf. This makes it possible to apply heat-resistant coatings on Nb etc. without preliminary application of the pure metal sub-layers, which are then converted into heat-resistant silicides;

– a new technology for coating application by the method of electron-beam cluster deposition using the nanoscale clusters, which are formed in a supersonic flow of the carrier gas at the interaction with the primary vapor flow was developed and tested. The achieved rates for the deposition of coatings from ВХ2К and Zr2 alloy on Е–125 zirconium are from 1 to 10 μm/min. The heat resistance of the coatings was investigated in the temperature range of 800 – 1100°С. The penetration depth of О2 into Zr does not exceed several micrometers for 1 hour of testing at 1100°С;

– jointly with the Institute of Mechanical Engineering Problems named after A.N. Podgorny NASU, a new concept of erosion protection for ultra-long blades of NPP powerful steam turbines was developed and agreed with JSC "Turboatom". The concept is based on the combination of active and passive methods of protection, which provide, along with the traditional method of hardening the leading edges with HFC, the application of nanostructured protective coating and formation of working processes in the flow path, which increase the erosion resistance of the blades;

– the new technology for multipurpose complex coating deposition under the conditions of exposure to a gaseous activator, liquid media and SHS process simultaneously on the products of complex configuration, including those with the internal hidden cavities, made of metals, their alloys and carbon-carbon materials. Coatings can be applied, in particular, to combustion chambers of rocket engines, GTE blades, spherical fuel elements for high-temperature reactors, graphite plates and to the inner surfaces of NPP steam pipelines etc.;

– the theory of particle diffusion and transport in spatially periodic structures with low dissipation was built. For the first time, analytical expressions were obtained for the particle flux, effective temperature and correlation time. These expressions can be widely used when setting up, conducting and analyzing experiments in a wide class of physical systems. These are surface and volume diffusion of defects, plasticity of materials, anomalous penetration of defects during irradiation, Josephson contacts, etc. The obtained theoretical results open up new possibilities for creating the promising technologies in the field of solid state physics;

– the technology for hardening cold heading tools made of X12M steel by applying titanium-silicon-nitrogen ion-plasma coatings to the surface was developed and put into operation. The coatings are used by the Kharkiv Hardware Plant as a finishing operation for the manufacture of tools, which reduce the cost of their manufacture per ton of products by two or three times;

– a batch of serial combustion chambers for uncooled low-thrust jet engines made of niobium was produced in the amount of 20 pieces, which will be used in Ukraine and Italy. High results were obtained on the heat resistance of full-scale combustion chambers made of Рб5В2МЦ-М niobium alloy for the uncooled low-thrust liquid apogee engine РД840;

– thick 100 – 200 μm nitride coatings were developed to harden the surfaces of the elements for aviation parts, and in the future, turbine blades. Two methods of high-speed and deep nitriding of steels (in particular, punches) having no analogues in their characteristics were developed. Superhard multilayer nitride coatings were developed and are used for hardening the surface of carbide cutting tools. These cotings are superior or comparable in resistance to foreign TiAlSiN, but are not susceptible to brittle fracture. This allows import substitution for new or re-sharpened tools. The developed technologies made it possible to create a complex "nitriding + multilayer coating" method for hardening the surfaces of machine parts made of low-, medium- and high-alloy steels;

– the technology for application of the coating with the thickness of ~ 250 μm, as well as of tantalum distancing bulges with the height of ~ 1.75 mm, was developed to form a sealed corrosion-resistant cladding under irradiation with high-energy electrons in the aqueous medium. The claddings on tungsten plates of 66 × 66 mm in size and 3, 4, 6 and 10 mm thick are the neutron-forming elements of the NSC KIPT Neutron Source target;

– the technology for drip-free coating deposition using arc plasma was developed and tested. The deposition rate of nitride coatings is 10 – 17 μm/h. This technology is competitive with magnetrons and separators.

Department structure

– Laboratory of activated vacuum diffusion saturation.

At the moment, the main activity of the laboratory is the development of protective coatings for steel products used in engineering industry in Ukraine, heat-resistant coatings for niobium and its alloys using the one-stage technology, complex protective coatings on the products made of carbon materials.

– Laboratory for the research and development of intensive ion-plasma technologies.

The main directions of work for the laboratory are the gas-phase, atomic-ion and vacuum-arc coating deposition, as well as the arc discharge plasma nitriding and development of drip-free coating deposition technology.

Publications

1.В.И. Змий, С.Г. Руденький. Реакционно-активированная диффузия и вакуумные покрытия. Монография. Харьков: ННЦ ХФТИ. 2010, 158 с.
2.Sergii Rudenkyj, Victor Zmij. Multipurpose Vacuum-diffusion Protective Coatings on Metallic and Carbon Base Materials. LAP Lambert Academic Publishing. 2017, 152 p.
3.И.И. Аксёнов, Д.С. Аксёнов, А.А. Андреев, В.А. Белоус, О.В. Соболь. Вакуумно-дуговые покрытия. Технологии, материалы, структура, свойства. Монография. Харьков: ННЦ ХФТИ. 2015, 379 с.
4.A.G. Guglya, I.G. Marchenko. Ion-Assisted Deposition. Comprehensive Guide for Nanocoatings Technology, Volume 1: Deposition and Mechanism. Nova Science Publishers, Inc., New York. 2015, 443 p.
5.V.I. Zmij, S.G. Rudenkiy. Research of a Vacuum Diffusion Boron Silification Process for Constructional Materials. Physical Surface Engineering. 2013, v. 10, No. 1, p. 18 – 21.
6.В.И. Змий, С.Г. Руденький, Н.Ф. Карцев, В.В. Кунченко, Ю.В. Кунченко, Е.В. Тимофеева. Комплексные эрозионно-стойкие газодиффузионные покрытия на сталях. Порошковая металлургия. 2013, №11/12, с. 67 – 73.
7.V.I. Zmij, S.G. Rudenkyj, A.G. Shepelev. Complex Protective Coating for Graphite and Carbon-Carbon Composite Materials. Materials Sciences and Applications. 2015, v. 6, c. 879 – 888.
8.В.И. Змий, С.Г. Руденький, В.В. Кунченко, Е.В. Тимофеева, Ю.В. Кунченко, Р.В. Ажажа. Жаростойкие комплексные покрытия на углеродных матеріалах. Вопросы атомной науки и техники. Серия «Физика радиационных повреждений и радиационное материаловедение». 2014, №2(90), с. 158 – 161.
9.В.И. Змий, С.Г. Руденький, Е.В. Тимофеева, А.А. Корнеев, В.В. Кунченко, Ю.В. Кунченко, Т.П. Рыжова, М.Ю. Бредихин. Комплексные жаростойкие покрытия для лопаток газотурбинных двигателей. Порошковая металлургия. 2015, №7/8, с. 151 – 156.
10.В.И. Змий, В.Н. Воеводин, С.Г. Руденький. Высокотемпературные жаростойкие покрытия для защиты тугоплавких металлов. Порошковая металлургия. 2017, №3/4, с. 100 – 117.
11.В.И. Коваленко, В.Г. Маринин. Исследование разрушения легированных титановых сплавов при воздействии кавтации. Восточно-Европейский журнал передовых технологий. 2015, №6/11(78), с. 4 – 8.
12.И.В. Сердюк, А.А. Андреев, В.Ф. Горбань, О.В. Соболь, В.А. Столбовой. Исследование свойств вакуумно-дуговых нитридных покрытий на основе высокоэнтропийных сплавов. Физическая инженерия поверхности. 2015, т. 13, №1, с. 77 – 83.
13.O.V. Sobol, A.A. Andreev, V.F. Gorban, A.A. Meylekhov, Н.О. Postelnyk, V.A. Stolbovoy. Structural Engineering of the Vacuum Arc ZrN/CrN Multilayer Coatings. Journal of Nano- and Electronic Physics. 2016, v. 8, No. 1, 01042(5 p).
14.В.Ф. Горбань, А.А. Андреев, Г.Н. Картмазов, А.М. Чикрыжов, М.В. Карпец, А.В. Доломанов, А.А. Островерх, Е.В. Канцыр. Получение и механические свойства высокоэнтропийного карбида на основе многокомпонентного сплава TiZrHfVNbTа. Сверхтвёрдые материалы. 2017, №3, с. 24 – 31.
15.O.V. Sobol', A.A. Andreev, T.V. Bochulia, V.A. Stolbovoy, V.F. Gorban, A.V. Yanchev, A.A. Meylekhov. Structure and Physics Mechanical Properties of Multiperiod Vacuum-arc Coatings on the Basis of Two-layer System TiNx/ZrNx. Journal of Nano- and Electronic Physics. 2017, v. 9, No. 1, 01032(6 p).
16.В.О. Столбовий. Вплив товщини шарів MoNх/CrNy у багатошаровому покриті і азотування на структурні і механічні характеристики. Journal of Nano- and Electronic Physics. 2017, v. 9, No. 5, 05038(4 p).
17.В.И. Павленко, И.И. Mарченко. Компьютерное моделирование профилей имплантированных ионов Al+ в наноструктурную пленку Cu. Вопросы атомной науки и техники. Серия «Физика радиационных повреждений и радиационное материаловедение». 2017, №4(110), с. 32 – 38.
18.V. Safonov, K. Miroshnichenko, A. Zykova, V. Zavaleyev, J. Walkowicz, R. Rogowska. Effect of Substrate Bias Voltage Parameters on Surface Properties of ta-C Coatings. Problems of Atomic Science and Technology. Series «Plasma Physics». 2017, No. 1(107), p. 199 – 202.
19.В.І. Коваленко, Л.І. Мартиненко, В.Г. Маринін. Стійкість вакуумно-дугових нітрид-ніобієвих покривів при дії абразиву та кавітації. Фізико-хімічна механіка матеріалів. 2017, в. 6, с. 99 – 103.
20.В.М. Береснев, О.В. Соболь, А.А. Андреев, В.Ф. Горбань, С.А. Клименко, С.В. Литовченко, Д.В. Ковтеба, А.А. Мейлехов, А.А. Постельник, У.С. Немченко, В.Ю. Новиков, Б.А. Мазилин. Формирование сверхтвердого состояния вакуумно-дугового высокоэнтропийного покрытия TiZrHfNbTaYN. Сверхтвёрдые материалы. 2018, №2, c. 37 – 46.
21.A.A. Andreev, O.V. Sobol', R.P. Mygushchenko, V.F. Gorban', V.A. Stolbovoy, A.A. Meylekhov, V.V. Subbotina, D.V. Kovteba, A.V. Zvyagolsky, A.E. Vuets. Changes in the Structural State and Properties of Vacuum-arc Coatings Based on the High-entropy Alloy TiZrHfNbTa Under the Influence of Pressure and Bias Potential at Deposition. Problems of Atomic Science and Technology. Series «Physics of Radiation Effect and Radiation Materials Science». 2018, No. 5(117), р. 109 – 115.
22.V.I. Pavlenko, I.G. Marchenko. Computer Simulation of the Profiles of Defection for Low Temperature Irradiation of the Nanostrcturured Film Nb with Ti+ Ions. Problems of Atomic Science and Technology. Series «Physics of Radiation Effect and Radiation Materials Science». 2018, No. 2(114), p. 3 – 7.
23.V.S. Voitsenya, V.I. Kovalenko, V.G. Marinin, L.I. Martynenko, S.I. Solodovchenko. Erosion of Superficial Layers of Metallic Materials at Microshock Ladening. Problems of Atomic Science and Technology. Series «Physics of Radiation Effect and Radiation Materials Science». 2018, No. 5(117), p. 21 – 23.
24.V.A. Belous, G.I. Ischenko, M.G. Ischenko, V.S. Kovalenko, V.G. Marinin, L.I. Martynenko. Research of Erosion of Superficial Layer of Shoulder-blade Steel of 15kh11MV at Microimpact Influence. Problems of Atomic Science and Technology. Series «Physics of Radiation Effect and Radiation Materials Science». 2018, No. 2(114), p. 119 – 124.
25.В.М. Береснев, О.В. Соболь, А.Д. Погребняк, С.В. Литовченко, С.А. Клименко, В.А. Столбовой, П.А. Сребнюк, А.С. Манохин, М.Г. Ковалёва, В.Ю. Новиков, А.А. Мейлехов, У.С. Немченко, А.Е. Бармин, П.В. Турбин. Структура и механические свойства вакуумно-дуговых покрытий системы TiAlSiY, oсаждённых в азотной атмосфере. Физика и химия обработки материалов. 2017, №2, с. 34 – 43.
26.I.G. Marchenko, I.I. Marchenko, A.V. Zhiglo. Temperature-abnormal Diffusivity in Underdamped Space-periodic Systems Driven by External Time-periodic Force. Physical Review E. 2018, v. 97, Iss. 1, 15 p.
27.I.V. Serdyuk, V.F. Gorban', V.N. Voyevodin, A.A. Andreev. Influence of Deposition Conditions on the Physico-mechanical Properties of Nitride Coatings Obtained from High-entropy Alloys. Materials of the 5th International Research and Practice Conference «Nanotechnology and Nanomaterials» (NANO-2017). Chernivtsi, Ukraine, August 23 – 26, 2017, р. 448 – 449.
28.И.В. Сердюк, В.Ф. Горбань, А.А. Андреев. Влияние условий осаждения на физико-механические свойства нитридных покрытий, полученных из высокоэнтропийных сплавов. Материалы докладов 4-й Международной конференции «Высокочистые материалы: получение, применения, свойства». Харьков, Украина, 12 – 15 сентября, 2017, с. 50.
29.Г.Н. Картмазов, В.И. Коваленко, В.Г. Маринин, Л.И. Мартыненко. Влияние малых добавок иттрия на стойкость никеля при кавитации. Материалы докладов 4-й Международной конференции «Высокочистые материалы: получение, применения, свойства». Харьков, Украина, 12 – 15 сентября, 2017, с. 31.
30.И.Г. Марченко, И.И. Марченко, В.И. Ткаченко. Компьютерное моделирование процессов температурно-аномальной диффузии в пространственно-периодичских потенциалах. Труды научно-технической конференции с медународ-ным участием «Компьютерное моделирование в наукоемких технологиях». Харьков, Украина, 22 – 25 мая, 2018, с. 200 – 203.
31.I.V. Tymofieieva, V.I. Zmij, S.G. Rudenkiy. Production and Analysis of Multi-component Heat-resistant Coating for Gas Turbine Engine Blades. Abstract, The XX International Scientific Conference of Young Scientists and Specialists (AYSS-2016). Dubna, Russia, March 14 – 18, 2016.
32.В.І. Змій, Г.М. Картмазов, С.Г. Руденький. Спосіб дифузійного насичення поверхонь виробів. Патент України №98074. 10.04.2012.
33.В.І. Змій, Г.М. Картмазов, С.Г. Руденький. Пристрій для дифузійного насичення поверхонь виробів у вакуумі. Патент України №98087. 10.04.2012.
34.А.О. Андреєв, В.А. Александров, О.С. Жиров, О.В. Соболь, В.О. Столбовий, С.В. Шепель, С.М. Шевченко. Спосіб хіміко-термічної обробки сталевих виробів. Патент України на корисну модель №117008. 12.06.2017.
35.А.О. Андреєв, В.М. Павленко, Ю.О. Сисоєв. Технологія машинобудування. Основи отримання вакуумно-дугових покриттів. Підручник. Харків: Національний аерокосмічний унтіверситет ім. М.Є. Жуковського «Харьковский авиационный институт». 2018, 288 с.
36.V.I. Zmii, S.G. Ruden'kii, N.F. Kartsev, V.V. Kunchenko, Yu.V. Kunchenko, E.V. Timofeeva. Multifunctional Erosion-Resistant Gas-Diffusion Coatings on Steels. Powder Metallurgy and Metal Ceramics. 2014, v. 52, Iss. 11–12, p. 663–668.
37.С.Г. Руденький. Физико-химические основы активированного вакуумного метода формирования многофункциональных покрытий на металлических и углеродных материалах. Докторская диссертация по специальности 01.04.07.
38.И.В. Сердюк. Структура и физико-механические свойства вакуумно-дуговых нитридных покрытий на основе высокоэнтропийных сплавов Тi-V-Zг-Nb-Нf и Тi-V-Zг-Nb-Нf-Та. Кандидатская диссертация. 2016.

Employees

RUDENKIY SERGEY GEORGIEVICH

RUDENKIY SERGEY GEORGIEVICH

Head of the department

Doctor of Technical Sciences by the specialty 01.04.07 – "Solid State Physics"

Senior Researcher

Phone. +38(057) 335-67-82

Phone. +38(050) 633-04-59

e-mail: rudenkiy.s.g@gmail.com

Research interests:

production of protective coatings for the products made of steels, refractory metals and their alloys, carbon materials by the method of vacuum activated diffusion saturation.

STOLBOVOY VYACHESLAV ALEXANDROVICH

STOLBOVOY VYACHESLAV ALEXANDROVICH

Head of the laboratory "Development and research of intensive ion-plasma technologies"

PhD in Technical Sciences by the specialty 01.04.07 – "Solid State Physics"

Phone. +38(063) 573-18-96

e-mail: stolbovoy@kipt.kharkov.ua, stolbovojvo1981@nas.gov.ua

Research interests:

development of the technologies to increase the service life of machine parts and tools; vacuum-arc multilayer and nano-structural coatings; nitriding of steels in the gas plasma of arc discharge.

ZMIY VIKTOR IVANOVICH

ZMIY VIKTOR IVANOVICH

Leading Researcher

D.Sci. in Technical Sciences by the specialty 11.16.01 – "Metallurgy and heat treatment of metals"

Professor

Medal “For Valiant Labor in Commemoration of the 100th Anniversary of the Birth of V.I. Lenin" 04/15/1970

Medal "For Valiant Labor in the Great Patriotic War of 1941-1945" 04/16/1997

Medal "60 Years of Victory in the Great Patriotic War 1941-1945" 02/21/2005

Phone. +38(057) 335-66-82

e-mail: zmij@kipt.kharkov.ua

Research interests:

development of protective coatings for aerospace engineering.

ANDREEV ANATOLIY AFANASIEVICH

ANDREEV ANATOLIY AFANASIEVICH

Leading Researcher

D.Sci. in Technical Sciences by the specialty 01.04.07 – "Solid State Physics"

Senior Researcher

Laureate of the USSR State Prize, October 27, 1986

Certificate of Honor from NSC KIPT

Phone. +38(067) 575-63-06, +38(066) 023-84-41

e-mail: aandreev@kipt.kharkov.ua

Research interests:

vacuum-arc equipment and technologies; nitriding of steels.

KUNCHENKO VICTOR VLADIMIROVICH

KUNCHENKO VICTOR VLADIMIROVICH

Senior Researcher

PhD in Technical Sciences by the specialty 01.04.07 – "Solid State Physics"

Senior Researcher

Phone. +38(099) 320-86-35

Research interests:

radiation materials science; physical and mechanical, structural properties of protective and hardening coatings.

MARININ VLADIMIR GRIGORIEVICH

MARININ VLADIMIR GRIGORIEVICH

Senior Researcher

PhD in Physics and Mathematics by the specialty 01.04.07 – "Physics"

Docent

Phone. +38(057) 335-63-98

e-mail: marinin@kipt.kharkov.ua

Research interests:

development and investigation of vacuum-arc coatings for the protection of materials under micro-shock loads.

SAFONOV VLADIMIR IOSIFOVICH

Senior Researcher

PhD in Technical Sciences by the specialty 01.04.07 – "Solid State Physics"

Phone. +38(057) 335-67-82

e-mail: safonov600@gmail.com

Research interests:

investigation of vacuum arc coatings.

SERDYUK IRINA VITALIEVNA

SERDYUK IRINA VITALIEVNA

Senior Researcher

PhD in Technical Sciences by the specialty 01.04.07 – "Solid State Physics"

Phone. +38(057) 335-68-31

e-mail: iraserduk@kipt.kharkov.ua

Research interests:

development and investigation of the vacuum-arc coatings based on high-entropy alloys.