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АНОТАЦIЯ

Абизов О. C. Узагальнений пiдхiд Гиббса у теорiї нуклеацiї. – Квалiфiка-

цiйна наукова праця на правах рукопису.

Дисертацiя на здобуття наукового ступеня доктора фiзико-математичних

наук за спецiальнiстю 01.04.02 «Теоретична фiзика» (104 – Фiзика та астроно-

мiя). – Iнститут теоретичної фiзики iм. О. I. Ахiєзера, Нацiональний науковий

центр “Харкiвський фiзико-технiчний iнститут” НАН України, Харкiв, 2021.

При iнтерпретацiї експериментальних результатiв з динамiки фазових

переходiв першого порядку, починаючи з метастабiльних початкових станiв, досi

застосовується переважно класична теорiя нуклеацiї що трактує вiдповiдний

процес з точки зору формування та зростання кластерiв. Також часто припуска-

ється, що об’ємнi властивостi кластерiв дуже схожi з властивостями макрофаз.

Це або подiбнi припущення, що лежать в основi класичного пiдходу, пiдтриму-

ються (принаймнi, якщо аналiзуються процеси формування конденсованих фаз)

результатами класичної теорiї Гiббса гетерогенних систем, яка застосовується

до процесiв формування критичного кластера. Розглядаючи кластери як дрiбнi

частинки з властивостями нової макроскопiчної фази, вважається, що процес

росту i розчинення кластера вiдбувається в основному за рахунок додавання

або випромiнювання окремих одиниць (атомiв, молекул). Як друге додатко-

ве термодинамiчне припущення передбачається, що в першому наближеннi

мiжфазна енергiя критичних кластерiв дорiвнює вiдповiдному значенню для

рiвноважного спiвiснування обох фаз з плоскою границею. Альтернативна

континуальна концепцiя опису термодинамiки гетерогенних систем, розроблена

ван дер Ваальсом, вперше була застосована до аналiзу процесiв нуклеацiї-

росту Хiлертом, Каном i Хiллiардом, як i прийшли, зокрема, до висновку, що

параметри об’ємного стану критичних кластерiв можуть значно вiдрiзнятися вiд

вiдповiдних значень макрофаз що передбачаються у теорiї Гiббса. Крiм того,
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згаданi автори також розробили альтернативу теоретичному опису нуклеацiї –

модель спiнодального розпаду. Загальновизнано (маючи в основi класичний

аналiз Гiббса), що модель нуклеацiї-росту описує формування фаз, починаючи з

метастабiльних початкових станiв, тодi як модель спiнодального розпаду описує

термодинамiчно нестiйкi стани. Як наслiдок, виникає проблема, як один режим

(нуклеацiя-рост) переходить в альтернативний (спiнодальний розпад), якщо стан

фази навколишнього середовища безперервно змiнюється вiд метастабiльних

до нестабiльних станiв, тобто поблизу класичної спiнодальної кривої. Класи-

чний пiдхiд Гiббса тут передбачає певну сингулярну поведiнку, яка, однак,

не пiдтверджується описом Кана–Хiллiарда, статистико-механiчним аналiзом

моделi, та експериментом. Це протирiччя в прогнозах двох усталених теорiй

вирiшується за допомогою узагальнення класичного термодинамiчного методу

Гiббса. Результати такого узагальнення представленi у дисертацiйнiй роботi для

гомогенної (роздiли 1-4, 9, 10) та гетерогенної (роздiли 6-8) нуклеацiї нової фази

на прикладi бiнарного регулярного розчину (роздiли 1-4, 6, 8), рiдини ван дер

Ваальса (роздiли 5, 7), рiдкої ртутi при адсорбуваннi протонного пучка (роздiл

9) та створення пори у розтягнутому розплавi дiопсиду (роздiл 10).

1. У першому роздiлi узагальнений метод Гiббса розвинений для нуклеацiї

нової фази у простiй моделi регулярного бiнарного розчину. Шлях еволюцiї

кластера за розмiром та складом визначається методом найшвидшого спуску

на гiперповерхнi термодинамiчного потенцiалу з урахуванням термодинамiчних

та кiнетичних факторiв. Вiдповiдно до цього аналiзу змiна розмiру та складу

кластерiв нової фази якiсно вiдрiзняються порiвняно з класичною картиною.

Показано, що нуклеацiя, тобто перша стадiя формування кластера, починаючи

з метастабiльних початкових станiв, виявляє властивостi, що нагадують спiн-

одальний розпад: спочатку розмiр кластера залишається майже постiйним, а

його склад змiнюється, хоча наявнiсть активацiйного бар’єра вiдрiзняє процес

нуклеацiї вiд справжнього спiнодального розпаду. Крiм того, показано, що утво-
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рення фаз як у метастабiльних, так i нестабiльних початкових станах поблизу

класичної спiнодалi, може протiкати через проходження хребта термодинамiчно-

го потенцiалу, тобто через деякий активацiйний бар’єр, незважаючи на те, що

для нестабiльних початкових станiв значення роботи формування критичного

кластера, що вiдповiдає сiдлової точцi термодинамiчного потенцiалу, дорiвнює

нулю. Таким чином, показано, що концепцiя нуклеацiї – в модифiкованiй формi

порiвняно з класичною картиною – може також бути придатною для аналiзу

процесу утворення нової фази у нестабiльному початковому станi, тобто, на

вiдмiну вiд класичного пiдходу Гiббса, узагальнений метод Гiббса дає опис

формування нової фази як для бiнодальної, так i для спiнодальної дiлянок

фазової дiаграми. Основним результатом, що має практичне значення, є те,

що робота утворення кластера критичного розмiру в узагальненому методi

Гiббса менша, нiж у класичний теорiї нуклеацiї у капiлярному наближеннi, i

зменшується до нуля на спiнодалi.

2. У другому роздiлi основнi особливостi спiнодального розпаду, з одного

боку, та нуклеацiї, з iншого, та перехiд мiж обома механiзмами аналiзуються

в рамках термодинамiчної кластерної моделi на основi узагальненого методу

Гiббса у моделi регулярного бiнарного розчину. При цьому кластери нової фази

можуть змiнюватися з часом як за розмiрами, так i за своїми iнтенсивними

параметрами стану, наприклад, густиною або складом. Аналiзується також

вплив змiни параметрiв стану навколишнього середовища на еволюцiю кластера.

Наслiдки такої змiни мають важливе значення як для аналiзу фазоутворення в

обмежених (нанорозмiрних) системах, так i для розумiння еволюцiї ансамблiв

кластерiв у великих (необмежених) системах. Показано, що процеси нуклеацiї,

починаючи з термодинамiчно метастабiльних початкових станiв, протiкають

якiсно значною мiрою аналогiчно процесу утворення нової фази за механi-

змом спiнодального розпаду. Ця схожiсть особливо помiтна, якщо розглядати

нестабiльну систему малого розмiру. У цьому випадку еволюцiя системи
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починається за механiзмом спiнодального розпаду, але через зростання кластерiв

пересичення зменшується, система стає метастабiльною. Нарештi, пересичення

зменшується настiльки, що розчинення кластерiв з меншими розмiрами стає

необхiдною умовою для зростання кластерiв бiльшого розмiру, i починається

стадiя коалесценцiї. Таким чином, пiдхiд дозволяє описати еволюцiю системи

вiд спiнодального розпаду до стадiї коалесценцiї.

3. У першому та другому роздiлах аналiз було проведено методом

найшвидшого спуску на гiперповерхнi термодинамiчного потенцiалу, який дає

тiльки основний шлях еволюцiї кластера за розмiром та складом. У третьому

роздiлi проведено бiльш детальний аналiз за допомогою чисельного моделюва-

ння на основi кiнетичної теорiї нуклеацiї, термодинамiка формування кластерiв

аналiзується на основi узагальненого методу Гiббса для моделi регулярного

бiнарного розчину. У результатi проаналiзовано еволюцiю функцiї розподiлу

кластерiв за розмiром та складом як для метастабiльних (нуклеацiя), так i

для нестабiльних (спiнодальний розпад) початкових станiв. Розраховано потiк

кластерiв нової фази в просторi розмiрiв, показано, що максимум потоку може

проходити не тiльки через сiдлову точку, але також i через гребiнь гiперповерхнi

термодинамiчного потенцiалу.

4. У четвертому роздiлi за допомогою чисельного моделювання на основi

кiнетичної теорiї нуклеацiї у бiнарному регулярному розчинi визначається

найбiльш вiрогiдний потiк кластерiв нової фази в просторi розмiрiв, залежно вiд

початкового пересичення. Показано, що можна видiлити три областi залежно

вiд ступеня нестабiльностi системи. У першiй областi, при малому значеннi

пересичення, результати класичної теорiї нуклеацiї на основi капiлярного на-

ближення та узагальненого методу Гiббса майже iдентичнi, максимум потоку

кластерiв нової фази в просторi розмiрiв проходить через сiдлову точку. В другiй

областi, при бiльшому значеннi пересичення, робота створення кластера нової

фази помiтно менша, нiж в класичнiй теорiї нуклеацiї, що призводить до iстотно
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бiльш високого значення швидкостi нуклеацiї. Максимум потоку в просторi

розмiрiв, як i в першiй областi, проходить переважно через сiдло. У першiй

i другiй областях можна використовувати для розрахунку швидкостi нуклеацiї

простi аналiтичнi вирази через активацiйний бар’єр. У третiй областi, поблизу

спiнодалi, нуклеацiя вiдбуватиметься не через сiдлову точку, але траєкторiєю, що

проходить через гребiнь гiперповерхнi термодинамiчного потенцiалу. Розраху-

нок швидкостi нуклеацiї у третiй областi можливий тiльки на основi чисельного

моделювання на основi кластерної динамiки.

5. У п’ятому роздiлi дослiджено гетерогенна нуклеацiя кластерiв нової

фази (конденсацiя та кипiння) на плоских твердих поверхнях з урахуванням

змiни параметрiв стану критичних кластерiв (крапельок або бульбашок) залежно

вiд пересичення в рамках узагальненого пiдходу Гiббса. Однокомпонентна

рiдина ван дер Ваальса обрана як модель для аналiзу основних характеристик

процесу. Показано, що у випадку утворення крапельки в перенасиченiй парi

на гiдрофобнiй поверхнi та утворення бульбашок у рiдинi на гiдрофiльнiй

поверхнi ефект гетерогенностi незначний. В альтернативних випадках конден-

сацiї крапельки на гiдрофiльнiй поверхнi та утворення бульбашок у рiдинi

на гiдрофобнiй поверхнi нуклеацiя значно посилюється. Фактично, у цьому

випадку iснування твердої поверхнi призводить до значного змiщення спiнодалi

до менших значень пересичення порiвняно з гомогенною нуклеацiєю, тобто

гетерогенна спiнодаль наближається до бiнодалi, а область метастабiльностi

звужується за рахунок розширення областi нестабiльностi.

6. У шостому роздiлi дослiджено гетерогенна нуклеацiя у регулярному

бiнарному розчинi на плоских твердих поверхнях. Показано, що контактний

кут та каталiтичний фактор для гетерогенної нуклеацiї стають залежними вiд

ступеня метастабiльностi (пересичення) розчину. У випадку утворення кластерiв

нової фази на поверхнi з низькою змочуванiстю (контактний кут бiльше 90◦)

каталiтична активнiсть твердої поверхнi мала. В альтернативному випадку
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високої змочуваностi (контактний кут менше 90◦) iнтенсивнiсть нуклеацiї значно

посилюється твердою поверхнею. Таким чином, у цьому випадку, як i у рiдинi

ван дер Ваальса, гетерогенна спiнодаль наближається до бiнодалi, а область

метастабiльностi звужується за рахунок розширення областi нестабiльностi.

7. У сьомому роздiлi дослiджено гетерогенна нуклеацiя (конденсацiя)

крапель рiдини з пари (газу) на дефектнiй твердiй поверхнi. Пара описується

рiвнянням стану ван дер Ваальса, як поверхневий дефект обрана конiчна

пора. Показано, що контактний кут та каталiтичний фактор для нуклеацiї

на дефектнiй поверхнi залежать вiд ступеня переохолодження пари. У разi

утворення крапель на гiдрофiльнiй поверхнi конiчної пори швидкiсть нуклеацiї

значно збiльшується порiвняно з конденсацiєю на планарнiй поверхнi. Наявнiсть

дефекту на гiдрофiльнiй поверхнi призводить до значного зсуву спiнодалi

порiвняно з гетерогенною нуклеацiєю на планарнiй поверхнi. Зi зменшенням

кута конуса пори гетерогенна спiнодаль наближається до бiнодалi, i область

метастабiльностi звужується за рахунок розширення областi нестабiльностi,

показано також, що iснує граничний кут конуса пори, менше якого формування

нової фази проходить безбар’єрно.

8. У восьмому роздiлi дослiджена гетерогенна нуклеацiя кластерiв нової

фази в регулярному бiнарному розчинi на дефектнiй твердiй поверхнi, i так, як

i в попередньому роздiлi, як дефект поверхнi обрана конiчна пора. Розрахована

швидкiсть нуклеацiї кластера нової фази у залежностi вiд кута конуса пори i

ступеня пересичення розчину.

9. У дев’ятому роздiлi теоретично дослiджено процес закипання ртутi у

iмпульсних джерелах нейтронiв, що працюють на реакцiї сколювання (Spallation

Neutron Source). При адсорбуваннi протонного пучка ртуть пiддається великим

термiчним ударам та ударам тиску. Цi локальнi змiни стану ртутi можуть

спричинити утворення в рiдинi нестабiльних бульбашок, якi можуть пошкодити

при їх кавiтацiї конструкцiйнi матерiали (стiнка труби). У даному роздiлi
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обчислена робота формування критичних кластерiв (мiкробульбашок пари ртутi)

та швидкiсть їх зародження. Показано, що швидкiсть гомогенного зародження

дуже низька при розглянутих умовах процесу навiть пiсля адсорбцiї декiлькох

iмпульсiв протонiв, тому ймовiрнiсть кавiтацiйних процесiв незначна.

10. У десятому роздiлi проведено теоретичний аналiз процесу зародження

пори у малих зразках переохолодженої дiопсидної рiдини у процесi кристалiзацiї

поверхневого шару зразка. Обчислена робота формування пори критичного

розмiру в залежностi вiд негативного тиску та час очiкування першого кри-

тичного зародка (пори) в процесi зростання кристалiчного шару на поверхнi

зразка. Аналiз цього процесу з точки зору класичної теорiї нуклеацiї дає якiсно

правильний результат, однак кiлькiсно теоретичнi оцiнки та експериментальнi

данi вiдрiзняються. Показано, що узагальнений пiдхiд Гiббса приводить до

кiлькiсно правильного опису процесу зародження пори у переохолодженої

дiопсидної рiдини i дозволив пояснити походження внутрiгранулярнiх пiр, що

утворюються при спiканнi керамiки.

Результати дослiджень доповнюють i розширюють наявнi уявлення про

механiзми фазових переходiв першого роду. Вони визначають кiнетику процесiв

самоструктурування речовини вiд нанорозмiрних до галактичних розмiрiв iз

широким спектром застосувань як у фундаментальних, так i в прикладних

дослiдженнях (фiзика, астрономiя, хiмiя, бiологiя, метеорологiя, медицина,

матерiалознавство) та технологiї – конденсацiя та кипiння, сегрегацiя у твердих

та рiдких розчинах, або кристалiзацiя та плавлення. Дослiдження, проведенi

в дисертацiї, є актуальними та мають як фундаментальне, так i прикладне

значення.

Ключовi слова: Нуклеацiя; Теорiя Гiббса; Гетерогенна нуклеацiя; Тер-

модинамiка нуклеацiї; Спiнодальний розпад; Загальна теорiя та комп’ютерне

моделювання нуклеацiї; Загальна теорiя фазових переходiв; Шорстка поверхня;

Поверхневий натяг.
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ABSTRACT

Abyzov A. S. Generalised Gibbs’ approach in nucleation theory. – Qualification

scientific paper, manuscript.

Thesis for a Doctoral Degree in Physics and Mathematics: Speciality

01.04.02 “Theoretical physics” (104 – Physics and Astronomy). – A. I. Akhiezer

Institute for Theoretical Physics, National Science Center “Kharkiv Institute of

Physics and Technology” NAS of Ukraine, Kharkiv, 2021.

In the interpretation of experimental results on the dynamics of first-order

phase transitions starting from metastable initial states, up to now, predominantly the

classical nucleation theory is employed treating the respective processes in terms of

cluster formation and growth. As a simplifying assumption, it is assumed frequently

that the bulk properties of the clusters are widely similar to the properties of the newly

evolving macroscopic phases. This or similar assumptions, underlying the classical

approach, are supported (at least, as far as processes of formation of condensed

phases are analyzed) by the results of Gibbs’ classical theory of heterogeneous

systems applied to processes of critical cluster formation. Treating the clusters as

small particles with properties of the newly evolving macroscopic phase, the process

of cluster growth and dissolution is considered to proceed basically via addition or

emission of single units (atoms, molecules). As a second additional thermodynamic

assumption, the interfacial specific energy of critical clusters is supposed in a first

approximation to be equal to the respective value for an equilibrium coexistence

of both phases at planar interfaces. The alternative continuum’s concept of the

description of the thermodynamics of heterogeneous systems, as developed by van

der Waals, has been applied for the first time to an analysis of nucleation by Hillert,

Cahn and Hilliard. They came, in particular, to the conclusion that the bulk state

parameters of the critical clusters may deviate considerably from the respective

values of the evolving macrophases and from the predictions of Gibbs’ theory.
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Moreover, the mentioned authors developed also as the alternative to the theoretical

description of nucleation – the model of spinodal decomposition. According to the

common belief (having again its origin in the classical analysis due to Gibbs), the

nucleation-growth model works for the description of phase formation starting from

metastable initial states, while thermodynamically unstable states are believed to

decay via spinodal decomposition. As one consequence, the problem arises as to

how one mode of transition (nucleation-growth) goes over into the alternative one

(spinodal decomposition) if the state of the ambient phase is changed continuously

from metastable to unstable states, i.e., how the transition proceeds in the vicinity

of the classical spinodal curve. The classical Gibbs’ approach predicts here some

kind of singular behavior, which is, however, not confirmed by the Cahn-Hilliard

description, statistical-mechanical model analyses and experiment. The resolution

of this contradiction is performed following a generalization of Gibbs’ classical

thermodynamic method. The results of this generalization are presented in the

dissertation for homogeneous (sections 1-4, 9, 10) and heterogeneous (sections 6-

8) nucleation of a new phase on the example of binary regular solution (sections

1-4, 6, 8), van der Waals fluid (sections 5, 7), liquid mercury during proton beam

adsorption (section 9) and pore formation in the stretched diopside melt (section 10).

1. In the first section, the generalized Gibbs method is developed for the

nucleation of a new phase in a simple model of a regular binary solution. The

evolution path of the cluster in terms of size and composition is determined by the

method of the fastest descent on the hypersurface of the thermodynamic potential,

taking into account thermodynamic and kinetic factors. According to this analysis, the

change in the size and composition of the clusters of the new phase are qualitatively

different compared to the classical picture. It is shown that nucleation, i.e. the first

stage of cluster formation, starting from metastable initial states, exhibits properties

resembling spinodal decay: initially the cluster size remains almost constant, and

its composition changes, although the presence of an activation barrier distinguishes



15

the nucleation process from true spinodal decay. In addition, it is shown that the

formation of phases in both metastable and unstable initial states near the classical

spinodal can occur through the passage of the ridge of thermodynamic potential,

i.e. through some activation barrier, despite the fact that for unstable initial states

the value of critical cluster formation, which corresponds to the saddle point of the

thermodynamic potential, is zero. Thus, it is shown that the concept of nucleation – in

a modified form compared to the classical picture – may also be suitable for analyzing

the process of formation of a new phase in an unstable initial state, i.e., in contrast to

the classical Gibbs approach, the generalized Gibbs method describes the formation

of a new phases for both binodal and spinodal regions of the phase diagram. The main

result, which is of practical importance, is that the work of formation of a cluster of

critical size in the generalized Gibbs approach is smaller than in the classical theory

of nucleation in the capillary approximation, and decreases to zero on the spinodal.

2. In the second section, the main features of spinodal decay, on the one hand,

and nucleation, on the other, and the transition between the two mechanisms are

analyzed in a thermodynamic cluster model based on the generalized Gibbs approach

in the model of regular binary solution. In this case, the clusters of the new phase can

change over time, both in size and in their intensive state parameters – for example,

density or composition. The first part of the analysis considers the processes of

formation of a new phase depending on the initial state of the system for the case

when the change of environmental parameters due to the evolution of clusters can be

neglected (this is possible if the fraction of the new phase is small). The next step

analyzes the impact of changes in environmental parameters on the evolution of the

cluster. The consequences of such a change are important both for the analysis of

phase formation in limited (nanoscale) systems and for understanding the evolution

of cluster ensembles in large (infinite) systems. It is shown that nucleation processes,

starting from thermodynamically metastable initial states, proceed qualitatively to a

large extent similar to the process of formation of a new phase by the mechanism of
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spinodal decay. This similarity is especially noticeable when considering an unstable

system of small size. In this case, the evolution of the system begins by the mechanism

of spinodal decay, but due to the growth of clusters, the supersaturation decreases,

the system becomes metastable. Finally, supersaturation decreases to such an extent

that the dissolution of clusters with smaller sizes becomes a necessary condition for

the growth of larger clusters, and the coalescence stage begins. Thus, the approach

allows us to describe the evolution of the system from spinodal decay to the stage of

coalescence.

3. In the first and second sections, the analysis was performed by the method of

the fastest descent on the hypersurface of the thermodynamic potential, which gives

only the main path of evolution of the cluster in size and composition. In the third

section, a more detailed analysis is performed using numerical simulations based on

the kinetic model of nucleation, the thermodynamics of cluster formation is analyzed

based on the generalized Gibbs method for the regular binary solution model. As

a result, we analyzed the evolution of the cluster distribution function by size and

composition for both metastable (nucleation) and unstable (spinodal decay) initial

states. The calculated flux of new phase clusters in the space of size shows that the

maximum flux can pass not only through the saddle point, but also through the ridge

of the hypersurface of the thermodynamic potential.

4. In the fourth section, using the numerical simulation based on cluster

dynamics in binary regular solution, the most probable flux of clusters of the new

phase in the size space is determined, depending on the initial supersaturation. It is

shown that three regions can be distinguished depending on the degree of system

instability. In the first region, with a small value of supersaturation, the results of the

classical nucleation theory based on the capillary approximation and the generalized

Gibbs approach are almost identical, the maximum flux of new phase clusters in the

size space passes through the saddle point. In the second region, with a higher value

of supersaturation, the work of a cluster of a new phase formation is significantly
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less than in the classical theory of nucleation, which leads to a significantly higher

value of the nucleation rate. The maximum flux in the size space, as well as in the first

area, passes mainly through a saddle. In the first and second regions, simple analytical

expressions can be used to calculate the nucleation rate through the activation barrier.

In the third region, near the spinodal, nucleation will take place not through the

saddle point, but through a trajectory passing through the ridge of the hypersurface of

thermodynamic potential. The calculation of the nucleation rate in the third region is

possible only via numerical simulations based on cluster dynamics.

5. The fifth section the heterogeneous nucleation of new phase clusters

(condensation and boiling) on flat solid surfaces taking into account the change in the

state parameters of critical clusters (droplets or bubbles) depending on supersaturation

within the framework of the generalized Gibbs approach is analysed. The one-

component van der Waals fluid was chosen as a model for the analysis of the

main characteristics of the process. It is shown, that in the case of the formation

of a droplet in supersaturated vapor on a hydrophobic surface and the formation of

bubbles in a liquid on a hydrophilic surface, the effect of heterogeneity is insignificant.

In alternative cases of droplet condensation on the hydrophilic surface and the

formation of bubbles in the liquid on the hydrophobic surface, the nucleation is

significantly increased. In fact, in this case, the existence of a solid surface leads to a

significant shift of the spinodal to smaller saturation values compared to homogeneous

nucleation, i.e. heterogeneous spinodal approaches the binodal, and the metastability

region shrinks due to the expansion of the instability region.

6. In the sixth section, heterogeneous nucleation in a regular binary solution on

flat solid surfaces is investigated. It is shown that the contact angle and the catalytic

factor for heterogeneous nucleation become dependent on the degree of metastability

(supersaturation) of the solution. In the case of the formation of new phase clusters on

a surface with low wettability (contact angle greater than 90◦), the catalytic activity

of the solid surface was low. In the alternative case of high wettability (contact angle
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less than 90◦), the intensity of nucleation is significantly increased by a solid surface.

Thus, in this case, as in the case of van der Waals fluid, the heterogeneous spinodal

approaches the binodal, and the region of metastability narrows due to the expansion

of the region of instability.

7. In the seventh section, heterogeneous nucleation (condensation) of liquid

droplets from vapor (gas) on a defective solid surface is considered. The vapor is

described by the van der Waals equation of state, as a surface defect, a conic void is

taken. It is shown that contact angle and catalytic factor for heterogeneous nucleation

on a rough surface depend on the degree of vapor overcooling. In case of droplet

formation on a hydrophilic surface of a conic void the nucleation rate considerably

increases in comparison with the condensation on a planar interface. The presence

of a defect on the hydrophilic surface leads to a considerable shift of the spinodal

towards lower supersaturation in comparison with heterogeneous nucleation on a

planar interface. With the decrease in the void cone angle the heterogeneous spinodal

approaches the binodal, and the region of metastability is diminished at the expense

of the instability region.

8. In the eighth section the heterogeneous nucleation of new phase clusters

in regular solution on a defective solid surface is investigated, as in the previous

section, a conical pore is selected as a surface defect. The nucleation rate of the new

phase cluster is calculated depending on the angle of the pore cone and the degree of

supersaturation of the solution.

9. The ninth section theoretically investigates the boiling process of liquid

mercury in pulsed neutron sources operating on the spallation reaction (Spallation

Neutron Source). During the adsorption of a proton beam, liquid mercury is subjected

to large thermal and pressure shocks. These local changes in the state of mercury can

cause the formation of unstable bubbles in the liquid, which can damage the cavitation

structural materials (pipe wall). The work of critical clusters formation (microbubbles

of mercury vapor) and their nucleation rate are calculated. It is shown that the rate
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of homogeneous nucleation is very low under the considered process conditions even

after adsorption of several proton pulses, so the probability of cavitation processes is

insignificant.

10. In the tenth section, a theoretical analysis is performed of the process of

nucleation of a pore in small samples of an under-cooled diopside liquid, enclosed by a

solid crystalline surface layer growing from the melt. Analysis of this process from the

point of view of the classical theory of nucleation gives a qualitatively correct result,

however, quantitatively, theoretical estimates performed in the framework of classical

nucleation theory and experimental data differ. It is shown here that the generalized

Gibbs approach results in a more adequate quantitatively correct description of the

process of pore nucleation and explains the formation of intragranular residual pores

during ceramic sintering.

The results of the research complement and expand the existing ideas about

the mechanisms of the first-order phase transitions. They determine the kinetics of

the processes of self-structuring of matter from nanoscale to galactic size with a

wide range of applications in both basic and applied research (physics, astronomy,

chemistry, biology, meteorology, medicine, materials science) and technology –

condensation and boiling, segregation in solids and liquid solutions, or crystallization

and melting. The research performed in the dissertation is relevant and has both

fundamental and applied significance.

Key words: Nucleation; Gibbs theory; Heterogeneous nucleation;

Thermodynamics of nucleation; Spinodal decomposition; General theory and

computer simulations of nucleation; General theory of phase transitions; Rough

surface; Surface tension.
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ВСТУП

Обґрунтування вибору теми дослiдження. Процеси нуклеацiї-росту та

спiнодального розпаду є двома основними механiзмами фазових переходiв

першого роду, таких як конденсацiя та кипiння, сегрегацiя у твердих та рiдких

розчинах, або кристалiзацiя та плавлення. Вони визначають кiнетику процесiв

самоструктурування речовини вiд нанорозмiрних до галактичних розмiрiв iз

широким спектром застосувань як у фундаментальних, так i в прикладних

дослiдженнях (фiзика, астрономiя, хiмiя, бiологiя, метеорологiя, медицина,

матерiалознавство) та технологiї.

При iнтерпретацiї експериментальних результатiв по динамiцi фазових

переходiв першого порядку, починаючи з метастабiльних початкових станiв,

досi застосовується переважно класична теорiя нуклеацiї що трактує вiдпо-

вiдний процес з точки зору формування та росту кластерiв [1–10]. Як ще

одне спрощення як правило припускається, що об’ємнi властивостi кластерiв

схожi з властивостями макрофаз [11]. Це або подiбнi припущення, що лежать

в основi класичного пiдходу, пiдтримуються (принаймнi, якщо аналiзуються

процеси формування конденсованих фаз) результатами класичної теорiї Гiббса

гетерогенних систем, яка застосовується до процесiв формування критичного

кластера. Розглядаючи кластери як дрiбнi частинки з властивостями нової

макроскопiчної фази, вважається, що процес росту i розчинення кластера

вiдбувається в основному за рахунок додавання або випромiнювання окремих

одиниць (атомiв, молекул) [1,3,8,9]. Як друге додаткове термодинамiчне припу-

щення передбачається, що в першому наближеннi мiжфазна енергiя критичних

кластерiв дорiвнює вiдповiдному значенню для рiвноважного спiвiснування обох

фаз iз плоскою границею [8].

Альтернативна континуальна концепцiя опису термодинамiки гетероген-

них систем, розроблена ван дер Ваальсом [12], вперше була застосована до
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аналiзу процесiв нуклеацiї-росту Хiлертом, Каном i Хiллiардом [13–15], якi

дiйшли висновку, що параметри об’ємного стану критичних кластерiв можуть

значно вiдрiзнятися вiд вiдповiдних значень макрофаз, що передбачаються у

теорiї Гiббса (цi результати пiдходу ван дер Ваальса були пiдтвердженi згодом

бiльш досконалим методом функцiонала густини [16]). Крiм того, згаданi

автори також розробили альтернативу теоретичному опису нуклеацiї – модель

спiнодального розпаду.

Загальновизнано (маючи в основi класичний аналiз Гiббса), що модель

нуклеацiї-росту описує формування фаз, починаючи з метастабiльних поча-

ткових станiв, тодi як модель спiнодального розпаду описує термодинамiчно

нестiйкi стани. Як наслiдок, виникає проблема, як один режим (нуклеацiя-рост)

переходить в альтернативний (спiнодальний розпад), якщо стан фази навколи-

шнього середовища безперервно змiнюється вiд метастабiльних до нестабiльних

станiв, тобто поблизу класичної спiнодальної кривої. Класичний пiдхiд Гiббса

тут передбачає певну сингулярну поведiнку, яка, однак, не пiдтверджується

описом Кана–Хiллiарда, аналiзом у статистико-механiчнiй моделi [17, 18] та

експериментом [19].

Перша спроба усунути протирiччя в прогнозах двох усталених теорiй

була зроблена в моделi Шайла-Хобстеттера [20, 21] 1948-1952 рокiв (дивись

також [22]), яка, однак, не отримала розвитку в результатi появи незабаром теорiї

спiнодального розпаду Кана–Хiллiарда [14, 15]).

Значно пiзнiше iдеї моделi Шайла-Хобстеттера були вiдкритi заново

за допомогою узагальнення класичного термодинамiчного методу Гiббса в

роботах [23–26] та були значно розвиненi в публiкацiях здобувача [27–36],

що становлять основу дисертацiйної роботи. Зокрема, результати такого уза-

гальнення представленi для гомогенної та гетерогенної нуклеацiї нової фази

на прикладi бiнарного регулярного розчину, рiдини ван дер Ваальса, рiдкої

ртутi при адсорбуваннi протонного пучка та створення пори при кристалiзацiї
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розплавi дiопсиду. Показано, що зародження, тобто перша стадiя формування

кластера, починаючи з метастабiльних початкових станiв, виявляє властивостi,

що нагадують спiнодальний розпад: спочатку розмiр кластера залишається

майже постiйним, а його склад змiнюється, i тiльки пiсля того, як склад кластера

досягне деякого критичного значення, його розмiр починає зростати, хоча

наявнiсть активацiйного бар’єру вiдрiзняє процес зародження вiд справжнього

спiнодального розпаду. Крiм того, показано, що утворення фаз як у метастабiль-

них, так i нестабiльних початкових станах поблизу класичної спiнодалi може

протiкати через проходження хребта термодинамiчного потенцiалу, тобто через

деякий активацiйний бар’єр, незважаючи на те, що для нестабiльних початкових

станiв значення роботи формування критичного кластера, що вiдповiдає сiдлової

точцi термодинамiчного потенцiалу, дорiвнює нулю. Таким чином, показано, що

концепцiя нуклеацiї – в модифiкованiй формi порiвняно з класичною картиною –

може також бути придатною для аналiзу процесу утворення нової фази у

нестабiльному початковому станi, тобто, на вiдмiну вiд класичного пiдходу

Гiббса, узагальнений метод Гiббса дає опис формування нової фази як для

бiнодальної, так i для спiнодальної дiлянок фазової дiаграми. Також показано,

що при аналiзi гетерогеннiй нуклеацiї нової фази в узагальненому пiдходi Гiббса

контактний кут i каталiтичний фактор (фактор зменшення роботи утворення

кластера критичного розмiру за рахунок твердої поверхнi) стають залежними

вiд ступеня метастабiльностi (пересичення, переохолодження або перегрiвання)

системи. Саме це коло дослiджень, яке вже вiдоме у свiтовiй лiтературi [37–39]

як узагальнений пiдхiд Гiббса (Generalized Gibbs Approach, GGA), робить тему

дисертацiї актуальною.

Мета i завдання дослiдження. Основна мета дисертацiйної працi полягає

у виявленнi специфiчних особливостей процесiв формування нової фази в

узагальненому пiдходi Гiббса.

Для досягнення поставленої мети було сформульовано такi завдання:
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• побудувати теорiю нуклеацiї в узагальненому пiдходi Гiббса з ураху-

ванням рiзних коефiцiєнтiв дифузiї компонентiв регулярного розчину, провести

аналiз еволюцiї кластера нової фази за розмiром та складом з урахуванням

термодинамiчних та кiнетичних факторiв;

• дослiдити особливостi та зв’язок мiж механiзмами нуклеацiї, з одного

боку, та спiнодального розпаду, з iншого, на основi узагальненого методу Гiббса

у моделi регулярного бiнарного розчину;

• побудувати кiнетичну теорiю нуклеацiї для регулярного бiнарного

розчину, де термодинамiка утворення кластерiв формулюється на основi уза-

гальненого методу Гiббса;

• побудувати теорiю гетерогенної нуклеацiї на плоскiй твердiй поверхнi

у моделях однокомпонентної рiдини ван дер Ваальса та регулярного бiнарного

розчину з урахуванням залежностi кута змочування вiд параметрiв кластера;

• побудувати теорiю гетерогенної нуклеацiї на дефектах твердої поверх-

нi у моделях однокомпонентної рiдини ван дер Ваальса та регулярного бiнарного

розчину з урахуванням залежностi кута змочування вiд параметрiв кластера;

• дослiдити процес закипання ртутi в iмпульсних джерелах нейтронiв,

що працюють на реакцiї сколювання (Spallation Neutron Source), при адсорбу-

ваннi протонного пучка на основi узагальненого методу Гiббса;

• провести теоретичний аналiз процесу зародження пори в малих зразках

переохолодженої дiопсидної рiдини у процесi кристалiзацiї поверхневого шару

зразка на основi узагальненого методу Гiббса.

Об’єктом дослiдження є процес формування нової фази у метастабiльнiй

або нестабiльнiй (пересиченої, переохолодженої або перегрiтої) системi.

Предметом дослiдження є параметри процесу нуклеацiї нової фази:

швидкiсть нуклеацiї, робота створювання, розмiр та склад (густина) кластера

критичного розмiру, функцiя розподiлу кластерiв нової фази за розмiром.

Метод дослiдження. Для вирiшення поставлених у дисертацiї задач були
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використанi загальноприйнятi та добре перевiренi методи теоретичної фiзики:

методи аналiтичного та чисельного рiшення нелiнiйних диференцiальних рiв-

нянь, метод найшвидшого спуску, чисельне рiшення системи кiнетичних рiвнянь

кластерної динамiки для функцiї розподiлу кластерiв за розмiром.

Наукова новизна отриманих результатiв

Побудована нова теорiя нуклеацiї, узагальнений метод Гiббса, яка, на вiд-

мiну вiд класичної теорiї нуклеацiї, дає можливiсть аналiзу процесу утворення

нової фази у нестабiльному початковому станi поблизу класичної спiнодалi, в

рамках якої здобуто наступнi результати:

• показано, що зародження, тобто перша стадiя формування кластера,

починаючи з метастабiльних початкових станiв, виявляє властивостi, що нагаду-

ють спiнодальний розпад, хоча наявнiсть активацiйного бар’єру вiдрiзняє процес

зародження вiд справжнього спiнодального розпаду;

• показано, що утворення фаз у нестабiльних початкових станах поблизу

класичної спiнодалi може протiкати через деякий активацiйний бар’єр, незва-

жаючи на те, що у цьому випадку значення роботи формування критичного

кластера, що вiдповiдає сiдлової точцi термодинамiчного потенцiалу, дорiвнює

нулю;

• передбачено ефект зменшення кута змочування, i, таким чином, збiль-

шення каталiтичної активностi поверхнi у випадку гетерогенної нуклеацiї на

плоскiй твердiй поверхнi у моделях однокомпонентної рiдини ван дер Ваальса

та регулярного бiнарного розчину; розвинуто теоретичний опис цього ефекту у

випадку утворення кластерiв нової фази на поверхнi з низькою (контактний кут

бiльше 90◦) та високою змочуванiстю (контактний кут менше 90◦), показано,

що гетерогенна спiнодаль наближається до бiнодалi, а область метастабiльностi

звужується за рахунок розширення областi нестабiльностi;

• вперше розглянуто ефекти гетерогенної нуклеацiї на дефектах твердої

поверхнi у моделях однокомпонентної рiдини ван дер Ваальса та регулярного
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бiнарного розчину, проведено порiвняння результатiв класичної теорiї нуклеацiї

iз узагальненим методом Гiббса, отримано залежнiсть параметрiв критичного

кластера та швидкостi нуклеацiї вiд ступеня дефектностi поверхнi;

• вперше теоретично дослiджено процес закипання рiдкої у iмпульсних

джерелах нейтронiв, що працюють на реакцiї сколювання (Spallation Neutron

Source), при адсорбуваннi протонного пучка, отримано залежнiсть швидкостi

нуклеацiї вiд температури та тиску ртутi;

• вперше проведено теоретичний аналiз процесу зародження пори у

малих зразках переохолодженої дiопсидної рiдини у процесi кристалiзацiї

поверхневого шару зразка, який дозволив пояснити походження внутрiшньогра-

нулярнiх пiр, що утворюються при спiканнi керамiки.

Практичне i наукове значення отриманих результатiв полягає в тому,

що результати дослiджень доповнюють i розширюють iснуючi уявлення про

механiзми фазових переходiв першого роду. Вони визначають кiнетику процесiв

самоструктурування речовини вiд нанорозмiрних до галактичних розмiрiв iз

широким спектром застосувань як у фундаментальних, так i в прикладних

дослiдженнях (фiзика, астрономiя, хiмiя, бiологiя, метеорологiя, медицина,

матерiалознавство) та технологiї – конденсацiя та кипiння, сегрегацiя у твердих

та рiдких розчинах, або кристалiзацiя та плавлення.

Особистий внесок здобувача. Науковi результати опублiкованi у стат-

тях [27–36], якi становлять основу дисертацiї, також результати дисертацiї дода-

тково вiдображенi у статтях [40–50] i доповiдалися на наукових конференцiях

[51–62]. Постановка бiльшостi задач, вирiшених у дисертацiї, формулюваннi

основних iдей та методiв дослiдження належить здобувачевi, а також вiн

виконував усi розрахункi i брав участь у аналiзi результатiв.

У статтi [27] здобувачем було запропоновано метод найшвидшого спуску

на гiперповерхнi термодинамiчного потенцiалу з урахуванням кiнетичних фа-

кторiв для дослiдження нуклеацiї нової фази у моделi регулярного бiнарного
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розчину. У [28] здобувачем було запропоновано i проведено аналiз впливу

змiни параметрiв стану навколишнього середовища на еволюцiю кластера. У

статтях [29] i [30] здобувачем було проведено чисельне моделювання на основi

кiнетичної теорiї нуклеацiї для регулярного бiнарного розчину, де термодинамiка

утворення кластерiв формулюється на основi узагальненого методу Гiббса.

Здобувачем була запропонована гiпотеза, що в узагальненому методi Гiббса

контактний кут i каталiтичний фактор (фактор зменшення роботи утворення кла-

стера нової фази критичного розмiру на твердої поверхнi) гетерогенної нуклеацiї

стають залежними вiд ступеня метастабiльностi рiдини, яку було пiдтверджено

у статтi [31] для рiдинi ван дер Ваальса та у статтi [32] для моделi регулярного

бiнарного розчину. У статтях [33] i [34] здобувачем було виконано теоретичнi

розрахунки гетерогенного зародження нової фази на дефектнiй твердiй поверхнi.

У статтi [35] здобувачем було теоретично дослiджено процес закипання рiдкої

ртутi у iмпульсних джерелах нейтронiв, що працюють на реакцiї сколювання

(Spallation Neutron Source). В статтi [36] здобувачем було проведено теоретичний

аналiз процесу зародження пори у малих зразках переохолодженої дiопсидної

рiдини у процесi кристалiзацiї поверхневого шару зразка.

Апробацiя результатiв дисертацiї. Результати дисертацiйної роботи

доповiдалися та обговорювалися на семiнарах Iнституту теоретичної фiзики

iменi О. I. Ахiєзера Нацiонального наукового центру «Харкiвський фiзико-

технiчний iнститут» НАН України, а також на таких Мiжнародних наукових

конференцiях та семiнарах:

• Nucleation and Atmospheric Aerosols. 17th International Conference

(August 13 – 17, 2007, National University of Ireland, Galway, Ireland),

• 4th international workshop “Diffusion and diffusional phase transformations

in alloys (DIFTRANS-07)” (July 16-21, 2007, Sofiyivka (Uman) Cherkasy region,

Ukraine).

• XIII.th, XVI.th, XVII.th and XVIII.th Research Workshop Nucleation
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Theory and Applications (Joint Institute of Nuclear Researches, April 1 – 30, 2009,

2012, 2013 and 2014, Dubna, Russia),

• 9-th International Symposium on Crystallization in Glasses and Liquids

(September 10 – 13, 2009, Foz do Iguaс̧u, PR, Brazil),

• 3rd International Conference on Quantum Electrodynamics and Statistical

Physics (QEDSP2011) (August 29 – September 2, 2011, Kharkov, Ukraine),

• 11th Lähnwitzseminar on Calorimetry 2012 (June 11 – 14, Rostock-

Warnemünde, Germany, 2012),

• Crystallization 2012. 10th International Symposium on Crystallization in

Glasses and Liquids (September 23 – 26, 2012, Goslar, Germany),

• Polymer Group Seminar, Institute of Physics, University of Rostock

(February 12, 2013, Germany, Rostock),

• The Eighth International Conference on Material Technologies and Modeli-

ng (MMT-2014) (July 28 – August 01, 2014, Ariel University, Ariel, Israel).

Зв’язок працi з науковими програмами, планами, темами. Дисертацiя

виконана у вiддiлi теорiї конденсованих середовищ i ядерної матерiї Iнститу-

ту теоретичної фiзики iменi О. I. Ахiєзера Нацiонального наукового центру

«Харкiвський фiзико-технiчний iнститут» НАН України. Вона є невiд’ємною

складовою таких проєктiв:

• базова програма «Вiдомче замовлення НАН України на проведення

наукових дослiджень з атомної науки i технiки Нацiонального наукового центру

«Харкiвський фiзико-технiчний iнститут» на 2006-2010 рр. за темою: «Дифузiйнi

процеси й електроннi властивостi конденсованих середовищ» (номер держреє-

страцiї 080906UР0010, виконавець);

• базова програма «Вiдомче замовлення НАН України на проведення

наукових дослiджень з атомної науки i технiки Нацiонального наукового центру

«Харкiвський фiзико-технiчний iнститут» на 2011-2015 рр. за темою: «Фазовi
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перетворення, явища переносу i електромагнiтнi процеси в гетерогенних кон-

денсованих системах» (номер держреєстрацiї 0111U009545, виконавець);

• базова програма «Вiдомче замовлення НАН України на проведення

наукових дослiджень з атомної науки i технiки Нацiонального наукового центру

«Харкiвський фiзико-технiчний iнститут» на 2016-2020 рр. за темою: «Електрон-

фононнi процеси i фазовi перетворення в класичних i квантових конденсованих

середовищах» (номер держреєстрацiї 0116U007068, виконавець);

• цiльова комплексна програма НАН України «Науково-технiчний су-

провiд розвитку ядерної енергетики та застосування радiацiйних технологiй

у галузях економiки» за темою: “Моделювання кiнетичних процесiв в U-Pu

паливi та в конструкцiйних матерiалах активної зони перспективних ядерних

реакторiв на швидких нейтронах” (номер державної реєстрацiї 0111U009547,

термiн виконання 2011 – 2012 рр., виконавець);

• цiльова комплексна програма НАН України «Науково-технiчний су-
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• проект нiмецької служби академiчних обмiнiв (DAAD) “First-order
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Публiкацiї. Основнi результати дисертацiї опублiкованi у 10 наукових

статтях у фахових мiжнародних виданнях першого та другого квартiлю 1,

процитованi понад 230 разiв, додатковi результати опублiкованi у 8 наукових

працях та у 3 главах в монографiях (процитованi понад 140 разiв). Результати

дисертацiї доповiдалися на вiтчизняних i мiжнародних наукових конференцiях

та семiнарах.

1The Journal of Chemical Physics (2004, 2007, 2013, 2014, 2017),
Journal of Non-Crystalline Solids (2010, 2011, 2014),
European Physical Journal B (2011),
Entropy (2019)
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Структура i обсяг дисертацiї. Дисертацiя складається з вступу, десяти

роздiлiв, висновкiв, та одного додатку. Загальний обсяг дисертацiйної роботи

складає 369 сторiнок, обсяг основної частини складає 344 сторiнки, з яких

додаток займає 5 сторiнок. Робота мiстить 120 рисункiв, з яких 13 повнiстю

займають площу сторiнки, та 363 найменування використаних джерел. Дисер-

тацiйна робота пiдготовлена для захисту в формi наукової доповiдi. Вiдповiдно

Наказу Мiнiстерства освiти i науки України № 1220 вiд 23.09.2019, “за наявностi

не менше нiж десять публiкацiй, якi розкривають основнi науковi результати

дисертацiї, у виданнях, вiднесених до першого i другого квартилiв (Q1 i Q2)

вiдповiдно до класифiкацiї SCImago Journal and Country Rank або Journal Citation

Reports, захист може вiдбуватися у формi наукової доповiдi. Пiд науковою

доповiддю розумiють дисертацiю, оформлену вiдповiдно роздiлу II Вимог до

оформлення дисертацiї, затверджених наказом Мiнiстерства освiти i науки

України 12 сiчня 2017 року № 40, зареєстрованих в Мiнiстерствi юстицiї України

вiд 03 лютого 2017 року за № 155/30023. Роздiлами дисертацiї є публiкацiї

здобувача наукового ступеня” [63].
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54. Abyzov A. S., Schmelzer J. Kinetics of Segregation Processes: Classical versus

generalized Gibbs approaches. XVIth Research Workshop Nucleation Theory and

Applications (JINR, April 1 – 30, 2012). Dubna, Russia, 2012.

55. Abyzov A. S., Schmelzer J. Kinetics of segregation processes: Classical versus

generalized Gibbs approaches. Diffusion and diffusional phase transformations

(DSSR-2012) (1-7 June, 2012). Cherkassy, Ukraine, 2012.

http://vant.kipt.kharkov.ua/ARTICLE/VANT_2012_1/article_2012_1_283.pdf
http://vant.kipt.kharkov.ua/ARTICLE/VANT_2012_1/article_2012_1_283.pdf
http://doi.org/10.1515/9783110298581.441
http://doi.org/10.1016/j.jnoncrysol.2017.11.047


43

56. Abyzov A. S., Schmelzer J. Kinetics of nucleation: Classical versus generalized
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РОЗДIЛ 1

НУКЛЕАЦIЯ АБО СПIНОДАЛЬНИЙ РОЗПАД В ПРОЦЕСАХ

ФАЗОУТВОРЕННЯ В БАГАТОКОМПОНЕНТНИХ РОЗЧИНАХ

У першому роздiлi узагальнений метод Гiббса розвинений для нуклеацiї

нової фази у простiй моделi регулярного бiнарного розчину. Шлях еволюцiї

кластера за розмiром та складом визначається методом найшвидшого спуску

на гiперповерхнi термодинамiчного потенцiалу з урахуванням термодинамiчних

та кiнетичних факторiв.

JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 14 8 OCTOBER 2004

Nucleation versus spinodal decomposition in phase formation processes in multi-

component solutions

Jürn W. P. Schmelzer
Fachbereich Physik der Universität Rostock, Universitätsplatz, 18051 Rostock, Germany and

Universidade Federal de São Carlos, Vitreous Materials Laboratory, 13.565-905 São Carlos - SP - Brazil

Alexander S. Abyzov
Kharkov Institute of Physics and Technology, Academician Street 1, 61108 Kharkov, Ukraine

Jörg Möller
Technische Universität Dresden, Institut für Werkstoffwissenschaften Hallwachstr. 3, 01062 Dresden, Germany

(Received 27 April 2004; accepted 6 July 2004)

In the present paper, some further results of application of the generalized

Gibbs’ approach (J. W. P. Schmelzer et al., J. Chem. Phys. 112, 3820 (2000);

114, 5180 (2001); 119, 6166 (2003)) to describing new-phase formation

processes are outlined. The path of cluster evolution in size and composition

space is determined taking into account both thermodynamic and kinetic

factors. The basic features of these paths of evolution are discussed in

detail for a simple model of a binary mixture. According to this analysis,



J. Chem. Phys., Vol. 121, No. 14, 8 October 2004 Nucleation versus spinodal decomposition 45

size and composition of the clusters of the newly evolving phase change

in an unexpected way which is qualitatively different as compared to the

classical picture of nucleation-growth processes. As shown, nucleation (i.e.,

the first stage of cluster formation starting from metastable initial states)

exhibits properties resembling spinodal decomposition (the size remains

nearly constant while the composition changes) although the presence of

an activation barrier distinguishes the nucleation process from true spinodal

decomposition. In addition, it is shown that phase formation both in

metastable and unstable initial states near the classical spinodal may proceed

via a passage of a ridge of the thermodynamic potential with a finite work

of the activation barrier even though (for unstable initial states) the value of

the work of critical cluster formation (corresponding to the saddle point of

the thermodynamic potential) is zero. This way, it turns out that nucleation

concepts – in a modified form as compared with the classical picture – may

govern also phase formation processes starting from unstable initial states.

In contrast to the classical Gibbs’ approach, the generalized Gibbs’ method

provides a description of phase changes both in binodal and spinodal regions

of the phase diagram and confirms the point of view assuming a continuity

of the basic features of the phase transformation kinetics in the vicinity of

the classical spinodal curve. c©2004 American Institute of Physics. [DOI:

10.1063/1.1786914]

1.1. Introduction

In the interpretation of experimental results on the dynamics of first-order

phase transitions starting from metastable initial states, up to now predominantly

the classical nucleation theory is employed [1–5] treating the respective process in

terms of cluster formation and growth. As one additional simplifying assumption
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it is assumed hereby frequently that the bulk properties of the clusters are widely

similar to the properties of the newly evolving macrophases [6]. This or similar

assumptions (cf. [7]), underlying the classical approach, are supported (at least, as

far as processes of formation of condensed phases are analyzed) by the results of

Gibbs’ classical theory of heterogeneous systems [8] applied to processes of critical

cluster formation. Treating the clusters as small particles with properties of the

newly evolving macroscopic phase, the process of cluster growth and dissolution

is considered to proceed basically via addition or emission of single units (atoms,

molecules) with the same properties.

As a second additional thermodynamic assumption, the interfacial specific

energy of critical clusters is supposed in a first approximation to be equal to the

respective value for an equilibrium coexistence of both phases at planar interfaces.

In order to come to an agreement between experimental and theoretical results, this

second assumption often has to be released by introducing a curvature dependence of

the surface tension. However, such assumption leads to other internal contradictions

in the theory [9–11].

The alternative continuum’s concept of the description of the thermodynamics

of heterogeneous systems, as developed by van der Waals [12, 13], has been applied

for the first time to an analysis of nucleation by Cahn and Hilliard [14]. In application

to nucleation-growth processes (phase transformations originating from metastable

initial states), Cahn and Hilliard came, in particular, to the conclusion that the bulk

state parameters of the critical clusters may deviate considerably from the respective

values of the evolving macrophases and from the predictions of Gibbs’ theory. These

results of the van der Waals’ approach were reconfirmed later-on by more advanced

density functional computations (cf. e.g. [15]).

Moreover, mentioned authors developed also the alternative to the nucleation-

growth model theoretical description of spinodal decomposition. According to the

common believe (having again its origin in the classical analysis due to Gibbs [8]),
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the nucleation-growth model works for the description of phase formation starting

from metastable initial states, while thermodynamically unstable states are believed to

decay via spinodal decomposition. As one consequence, the problem arises how one

mode of transition (nucleation-growth) goes over into the alternative one (spinodal

decomposition) if the state of the ambient phase is changed continuously from

metastable to unstable states, i.e., how the transition proceeds in the vicinity of the

classical spinodal curve. The classical Gibbs’ approach predicts here some kind of

singular behavior, which is, however, not confirmed by the Cahn-Hilliard description,

statistical-mechanical model analyses (cf. e.g. [4, 16, 17]) and experiment [18]. From

a more general point of view, we are confronted here with an internal contradiction in

the predictions of two well-established theories which has to be, hopefully, resolved.

The resolution of this contradiction is one of the aims of the present analysis, it is

performed here following a generalization of Gibbs’ classical thermodynamic method

developed by us in recent years [19–26].

In the mentioned series of recent publications it was demonstrated [19–22] that,

by developing a generalization of Gibbs’ thermodynamic approach, Gibbs’ and van

der Waals’ methods of description of critical cluster formation can be reconciled. The

generalized Gibbs’ approach was shown to lead for model systems to qualitatively

and partly even quantitatively similar results as compared with density functional

approaches [23–26]. In particular, it leads to a significant dependence of the properties

of the critical clusters on supersaturation and to a vanishing of the work of critical

cluster formation for initial states in the vicinity of the spinodal curve.

The generalized Gibbs’ approach has, however, one additional advantage as

compared with existing approaches to the description of cluster formation. Both the

classical Gibbs’ and van der Waals’ methods of description of heterogeneous systems,

as well as modern density functional analyses, have one common limitation. They are

restricted in their applicability to thermodynamic equilibrium states exclusively. As a

consequence, the mentioned theories can supply us with information on the properties
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of critical clusters, governing nucleation (cf. e.g. [15]). However, they cannot supply

us with any theoretically founded description of the properties of single clusters

or ensembles of clusters being not in equilibrium with the ambient phase. By this

reason, in order to describe the evolution of ensembles of clusters in first-order phase

transitions, evolving either as the result of nucleation or of spinodal decomposition,

additional assumptions have to be made concerning their properties and the evolution

of their properties with the changes in cluster size and supersaturation in the system

(cf. e.g. [7]). However, as far as one remains inside mentioned approaches, one has

no theoretical tool to check the degree of validity of these assumptions.

The generalization of Gibbs’ approach, described in its basic premises in detail

in [10, 11, 25, 26], allows us to overcome this deficiency. It gives a tool for the

determination of the thermodynamic functions of a cluster or ensembles of clusters

in the ambient phase both for thermodynamic equilibrium and well-defined non-

equilibrium states. In order to allow the determination of the state parameters of

the clusters in dependence on their sizes, one has to formulate then merely criteria

determining the most probable path of evolution of the clusters in the space of

independent thermodynamic variables.

As the simplest possible prescription and in order to demonstrate the principal

consequences, recently we put forward the criterion [10, 11] that the evolution of a

cluster in a first-order phase transition proceeds along a valley of the appropriate

thermodynamic potential. This valley connects the metastable initial state of the

system with the newly evolving macrophase, passing in its course the saddle point

of the appropriate thermodynamic function. As well-known, latter state corresponds

to the critical cluster. As the result of such analysis, the dependence of the state

parameters of the cluster on their size was established. Moreover, it was shown that

a number of other thermodynamic and kinetic parameters, determining processes of

cluster formation and growth, become cluster-size dependent as well [10].

It was already mentioned in the preceding analysis [10] that, in general, both
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thermodynamic and kinetic properties of the system under consideration will have an

effect on the most probable path of evolution of the cluster or ensembles of clusters

in a first-order phase transformation. However, in [10] the possible effect, connected

with the peculiarities of cluster growth kinetics, was neglected in the search for the

preferred trajectory of evolution of the clusters in the space of thermodynamic state

parameters. It is the first aim of the present paper, to extend the studies made in [10] to

account for both mentioned factors. As in the previous investigation [10], the analysis

will be performed for the case of phase formation in multi-component solutions. The

method is applicable, however, for any (or, at least, for a huge variety of) other cases

of first-order phase transformations as well.

Having at our disposal these results, we will go over then to an analysis of

a second problem, the transition from the nucleation-growth model of the phase

transition to spinodal decomposition in passing the classical spinodal curve of the

system under consideration. A comparison of the classical treatment of nucleation,

based on Gibbs’ thermodynamic approach, and the Cahn-Hilliard theory of spinodal

decomposition leads to the consequence that near the spinodal a discontinuity in the

kinetic mechanisms of formation of the new phase has to be expected. Moreover,

the mentioned approaches lead to different results concerning the properties of the

critical clusters near the spinodal curve. As will be shown, the generalized Gibbs’

approach utilized here, predicts, in agreement with computer simulations [4, 16, 17]

and experimental results [18], a continuous transition from thermodynamic metastable

to thermodynamic unstable initial states in the course of passing the classical spinodal

curve. Even more, as it turns out from the analysis, the scenario of the initial stages

of nucleation-growth processes starting from metastable initial states is shown to

resemble widely the behavior well-known from the Cahn-Hilliard picture of spinodal

decomposition. In addition, the basic mechanism of nucleation – the transition via a

potential barrier in the evolution to the newly evolving phase – is shown to retain (in

a modified form as compared with the classical picture) its importance for unstable
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initial states near the spinodal curve as well.

The paper is organized as follows. In Section 1.2, a more precise formulation

of a recently proposed criterion [10] is given determining the trajectory of evolution

of the cluster or cluster ensembles in the space of thermodynamic state parameters.

The general results are illustrated then for the model of binary regular solutions in

Section 1.3. In Sections 1.4 and 1.5, the typical features of the dynamics of the phase

transition starting both from metastable and unstable initial states are specified as

derived in the framework of the generalized Gibbs’ approach and compared with

the classical models of nucleation-growth and spinodal decomposition processes.

It is shown, in particular, that [i.] the classical model of cluster formation and

growth is, in general, not valid for the description of segregation in solutions; [ii.]

the properties of the clusters change significantly as a function of their sizes, this

change proceeds most dramatically at sizes near to the critical cluster size; [iii.] the

formation of the critical clusters starting from metastable initial states proceeds via

a scenario widely similar to the Cahn-Hilliard picture of spinodal decomposition;

[iv.] the nucleation concept – passage of some activation barrier in the evolution

to the new phase – retains its importance also for new phase evolution in unstable

initial states near the spinodal curve; [v.] an interpretation of the size of the region

with highest amplification of density fluctuations – as derived in the Cahn-Hilliard

theory of spinodal decomposition – can be given as being uniquely correlated with the

critical cluster size in thermodynamically unstable initial states (with zero values of

the work of critical cluster formation) computed via the generalized Gibbs’ approach.

A summary of the results and a discussion, performed in Section 1.6, completes the

paper.
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1.2. The Trajectory of Cluster Evolution in the Space of

Thermodynamic State Parameters

1.2.1. Thermodynamic Determination

1.2.1.1. Segregation in Multi-Component Solutions: General Case

Considering nucleation at isothermal (T = constant) and isobaric (p =

constant) conditions, the change of the Gibbs free energy, due to the formation of

one cluster in the ambient phase, is given – according to the generalized Gibbs

approach [10, 25, 26] – in the most general form as

ΔG = (p − pα)Vα +
k∑

j=1

njα [μjα(pα, T, {xα}) − μjβ(p, T, {xβ})] + σA . (1.1)

The parameters njα are the numbers of particles of the different components in the

cluster, Vα is the volume and A the surface area, σ the interfacial free energy and μj

the chemical potential referred to one particle either in the cluster (α) or the ambient

phases (β). For convenience of the notations, we will omit the subscripts α and β as

far as such omission cannot lead to confusion.

For metastable initial states, we always have a critical cluster volume Vc with

a corresponding value of ΔG equal to ΔGc. This way, Eq. (1.1) can be brought into

a dimensionless form with Φ = (ΔG/ΔGc). The set of (f = k + 1) independent

dimensionless variables is given then by

qj = njα , j = 1, 2, . . . , k ; qk+1 =
Vα

Vc
. (1.2)

In this representation, we have a length scale, the radius of the critical cluster size.

This way, such length unit is to be preferred on physical grounds.

In Eq. (1.1), the intensive parameters of the cluster phase are not defined so

far, they can have, in general, any arbitrary reasonable values. This way, as soon as
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we would like to determine the states of the clusters in dependence on their sizes in

the course of their evolution, we have to advance some criterion allowing to make

the respective predictions. The basic postulate, formulated in [10] in order to resolve

this problem, consists in the following statement: the evolution of the cluster has to

proceed along a valley of the characteristic thermodynamic potential following the

path of the steepest descent from the saddle point.

In some sense, this postulate can be considered as a generalization of the

approach employed by H. Reiss in the early paper of 1950 where the generalization

of classical nucleation theory to binary systems is developed [27]. Above postulate

represents an extension of this approach allowing to describe the state of the clusters

in the whole course of its evolution from sub-critical up to macroscopic sizes.

The mentioned valley is determined by the following considerations: The di-

fferent independent kinetic mechanisms a cluster can change its size and composition

consist in the change of the volume and the number of particles of the different

components in the cluster. Following the basis assumptions of the thermodynamics of

irreversible processes, the driving force for such changes of the state of the system

are proportional to (∂Φ/∂qi). The thermodynamically favored path of the evolution

should be given thus by the set of equations (see Appendix)

dΦ

dl
=

f∑

j=1

∂Φ

∂qi

dqi

dl
, (1.3)

dqi

dl
= −

∂Φ

∂qi
with Φ =

ΔG

ΔGc
. (1.4)

Here l is a scalar parameter determining the trajectory of the evolution in the given

space of thermodynamic variables and dl is the distance between two points on the

trajectory. This way, Eqs. (1.3) and (1.4) describe the trajectory of steepest descent

of the thermodynamic potential with starting points in the immediate vicinity of

the saddle point of the Gibbs’ free energy. In dependence on the choice of these
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starting points, we can determine in this way either the part of the trajectory from

the saddle point to the newly evolving macroscopic phase or, alternatively, the path

to the metastable ambient phase. Based on this basic set of equations, the trajectory

describing the evolution can be determined also in any other appropriate set {Q} of

thermodynamic state parameters (see Appendix).

1.2.1.2. The Case of an Incompressible Cluster Phase

Let us now go over to the limit of an incompressible cluster phase. In this case,

the change of the thermodynamic potential due to the formation of a cluster is given

by the more simple expression [10]

ΔG =
k∑

j=1

njα [μjα(p, T, {xα}) − μjβ(p, T, {xβ})] + σA . (1.5)

The number of degrees of freedom is reduced here by one and the volume of the

cluster can be expressed directly via the specific volumes of the different components

in the cluster phase, ωjα, and the number of particles of the different components in

the cluster, njα, as

Vα =
k∑

j=1

ωjαnjα . (1.6)

For this particular situation, the basic set of coordinates are exclusively dimensionless

numbers.

Eq. (1.5) can be transformed into a dimensionless form, again, where

the independent coordinates are given now by (n1α, n2α, . . . , nkα). Such choice

corresponds, in this particular case, to the physically distinguished coordinate system

for which Eq. (1.4) holds (the correctness of this statement will become even more
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obvious in the forthcoming section, when the set of kinetic equations for cluster

growth in solid solutions will be considered). This way, we may determine now

either the trajectory in the distinguished set of coordinates and perform, if required,

afterwards the necessary computations allowing to determine other parameters of the

clusters in dependence on their sizes as well. Alternatively, we can also omit the first

step and go over directly to alternative sets of coordinates (see Appendix).

1.2.2. Incorporation of the Kinetics of Cluster Evolution on the Determi-

nation of the Trajectory

1.2.2.1. Some Special Cases

For the description of phase separation processes in solutions, the deterministic

growth equations can be written in most applications of interest as (cf. [28–30] and

references cited therein)

dniα

dt
= −wi(n1α, n2α, . . . , nkα)

∂Φ

∂niα
. (1.7)

In the both particularly important cases of diffusion or kinetic limited growth

modes, the coefficients of aggregation wi(n1α, n2α, . . . , nkα) are of the form

wi(n1α, n2α, . . . , nkα) = DixiΘ(n1α, n2α, . . . , nkα) (1.8)

with slightly different specific expressions for the function Θ(n1α, n2α, . . . , nkα) in

dependence on the mode of cluster growth. Here Di is the partial diffusion coefficient

of the i-th component and xi its molar fraction in the ambient phase. In both limiting

cases, we can introduce therefore the new variables

dl = Θ (n1α, n2α, . . . , nkα) dt , miα =
niα√
Dixi

, (1.9)
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and rewrite Eq. (1.7) in the form of Eq. (1.4) as

dmiα

dl
= −

∂Φ

∂miα
. (1.10)

In mentioned and similar cases (when a transformation like Eq. (1.8) is

possible), the evolution in the space of the independent state parameters of the

clusters is given by relations similar to those (cf. Eq. (1.4)) determining the

valley of the respective thermodynamic potential. However, in the expressions for

Φ a transformation of the variables miα =
(√

Dixi

)
niα has to be performed.

Consequently, the path of cluster evolution will depend not only on thermodynamic

factors but on the set of diffusion coefficients of the different components as well. This

way, in the considered cases the kinetics of cluster growth affects the most probable

trajectory of evolution of the cluster via the products of the values of the diffusion

coefficients and the molar fractions of the different component in the ambient phase.

Earlier obtained results will be reestablished if the product Dixi has nearly the same

values for all components in the solution.

Note that this generalization is to some extent similar to Stauffer’s proposal

in the determination of the direction of the nucleation fluxes in the vicinity of the

saddle point [31] and to generalizations of this approach by introducing so-called

generalized nucleation potentials [32]. But here these ideas are extended, again, to the

whole course of evolution of the clusters of the newly evolving phase.

1.2.2.2. General Method of Determination of the Cluster Trajectory

Let us assume, now, that the state of the thermodynamic system consisting of

a cluster in the otherwise homogeneous ambient phase is determined by the set of

variables {q} and the deterministic equations of motion are given or can be brought
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into the form

dqi

dt
= ϕi (q1, q2, . . . , qf) , i = 1, 2, . . . , f . (1.11)

Here {q} can be given by any set of state parameters allowing to determine in a

uniquely defined way the deterministic cluster trajectory.

The set of equations Eq. (1.11) can be solved then starting from initial states

in the immediate vicinity of the saddle point of the thermodynamic potential. In this

way, we can determine the deterministic trajectory of the cluster in the space of

thermodynamic variables. In generalization of the purely thermodynamic evolution

criterion proposed in [10, 11] and discussed here before, we postulate that this

deterministic trajectory gives the most probable path of evolution of the cluster from

the initial ambient phase to the newly evolving macroscopic phase. By this postulate,

the task of determination of the change of the cluster properties in the course of their

evolution is solved.

As evident from the determination of the most probable path, we assume here

that the evolution of the clusters proceeds along a trajectory passing states near the

saddle point of the appropriate thermodynamic potential. In most cases of practical

interest, this assumption is fulfilled. Nevertheless, it was noted from time to time that

situations may exist where this assumption does not hold (see e.g. [16, 32–35]). For

these cases, a separate analysis is required. We will return to this problem shortly.

1.2.2.3. Discussion

In generalization of the purely thermodynamic criterion for the evolution of the

state of the cluster in the course of their growth, advanced earlier [10, 11], now both

thermodynamic and kinetic factors are incorporated adequately. Some consequences

and differences as compared with the case of a purely thermodynamic determination
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of the path of evolution will be analyzed for the case of segregation in regular

solutions in the next section.

As will be demonstrated here for the case of cluster formation in solutions, the

analysis of the most probable path of evolution of the clusters allows immediately

to understand the basic qualitative features of the process of cluster formation and

growth for the considered kind of phase formation. As it will turn out for the

considered here case of phase formation in solutions, the classical picture of this

process does not represent an adequate description of the real situation. In the

analysis, we will consider again phase formation in binary regular solutions allowing

to demonstrate the basic results for a relatively simple model system.

1.3. An Example: Binary Regular Solutions

For a binary regular solution, we can start the analysis with Eq. (1.5) and result

at the following particular expression for ΔG (cf. [10, 19])

ΔG = −nαΔμ + σA , Δμ = −kBTf(x, xα) (1.12)

with

f(x, xα) = (1 − xα)

[

ln

(
1 − xα

1 − x

)

+ 2

(
Tc

T

)
(
x2

α − x2
)
]

+ (1.13)

+ xα

{

ln
(xα

x

)
+ 2

(
Tc

T

)[
(1 − xα)2 − (1 − x)2

]}

,

σ = σ̃ (xα − x)2 . (1.14)

In above equations, kB is the Boltzmann constant, Tc is the critical temperature



J. Chem. Phys., Vol. 121, No. 14, 8 October 2004 Nucleation versus spinodal decomposition 58

of the solution, σ̃ is a parameter depending on temperature, only, and xα and x are

the molar fractions of the second component in the cluster and the ambient phase,

respectively. We will assume in the subsequent computations that the temperature in

the system is fixed to T = 0.7 Tc. The left hand side branches of the binodal (xb)

and the spinodal (xsp) curves are located for this temperature at xb
∼= 0.0857 and

xsp
∼= 0.2261, respectively [10, 19]. The respective right hand side values of the

molar fractions for the binodal and spinodal curves are given by x
(r)
b = 1 − xb and

x
(r)
sp = 1−xsp. We will assume here first that the initial concentrations in the ambient

phase have values in the range xb
∼= 0.0857 ≤ x ≤ xsp

∼= 0.2261 extending the

analysis later to unstable initial states with x ≥ xsp = 0.2261.

Having at our disposal the expression for the thermodynamic potential or,

more generally, the deterministic equations describing cluster growth and decay,

we can now determine the most probable path of evolution of the cluster and the

dependence of the state parameters of the clusters on their sizes. First we show the

results employing the purely thermodynamic criterion [10, 11] (i.e. we suppose that

the evolution proceeds along the valley of the thermodynamic potential passing the

saddle point [Eqs. (1.3) and (1.4)]). The results are presented in Figs. 1.1 – 1.2.

In the right hand side of Fig. 1.1, the shape of the Gibbs free energy surface and

the path of the cluster evolution is shown in the (n1/nc, n2/nc)-space. Here n1 and n2

are the numbers of particles of the different components in the cluster, nc is the total

number of particles in the critical cluster (the subscript α is omitted for convenience

of the notations). The molar fraction of the ambient phase was chosen here to be

equal to x = 0.19. The left hand side of Fig. 1.1 gives a similar dependence but this

time in the size-composition space (r = R/Rc, xα = n2α/(n1α + n2α)), where Rc is

the critical cluster size in nucleation.

The whole path of evolution of the clusters can be divided into three different

parts. In the first part of the trajectory (A-B in Fig. 1.1), the composition of the

clusters remains the same as the composition of the ambient phase. This way, along
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Fig. 1.1. Left: Path of the cluster evolution in the (r, xα)-space. Right: Shape of the

Gibbs free energy surface and trajectory of cluster evolution in the (n1/nc, n2/nc)-

space (for a regular solution with a molar fraction of the segregating component in

the ambient phase equal to x = 0.19). Here n1 and n2 are the numbers of particles of

the different components in the cluster. The respective values are divided by the total

number of particles in the cluster of critical size, nc

this part, ΔG remains equal to zero. This result is easily understandable taking into

account that in this range the cluster cannot be distinguished from the ambient mother

phase. Consequently, the real cluster evolution begins at the point B, where the cluster

composition starts to change. The size of the region in the ambient phase, specified by

B, we will denote as Rs. For the example considered, Rs is nearly equal to the critical

cluster size, Rc. In the next stage, in the part of the trajectory of cluster evolution B-C,

the cluster composition varies dramatically without significant changes in the cluster

size. At the point C the cluster composition corresponds almost to the composition of

the newly evolving macroscopic phase. In the third part of evolution, starting with the

point C, the cluster grows further in size with an already nearly constant composition.

In Fig. 1.2, the dependence of the cluster composition, xα, on the reduced

radius, r = R/Rc, is shown for different values of the molar fraction, x, of the

second component in the ambient phase. Here the following cases are illustrated:

x = 0.086, x = 0.09, x = 0.11, x = 0.13, x = 0.15, x = 0.17, x = 0.19 and

x = 0.22. It is evident that the basic qualitative features of the phase transformation

kinetics do not depend on supersaturation in the considered range of metastable initial
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Fig. 1.2. Dependence of the cluster composition, xα, on the reduced radius, r =

R/Rc, for different values of the concentration in the ambient phase: x = 0.086,

x = 0.09, x = 0.11, x = 0.13, x = 0.15, x = 0.17, x = 0.19 and x = 0.22.

states. However, the size, Rs, a cluster starts its evolution with, varies with a change

in the supersaturation. For small values of the initial supersaturation, the ratio Rs/Rc

tends to zero. However, in absolute units, Rs shows a behavior as presented in Fig. 1.3

(the parameter Ω2 depends on particular properties of the system under consideration,

an estimate yields Ω2
∼= 1 nm (cf. [23])).

The size parameter Rs diverges for small supersaturations similarly to the size

of the critical cluster. This way, independent on the value of the supersaturation, the

classical picture of the nucleation-growth process does not give a correct description

of the real situation. The cluster evolution does not proceed via a growth in size of

initially very small units with properties of the newly evolving phase. In contrast,

in some region in the ambient phase with spatial dimensions of the order 2Rs, the

concentration increases and only after this process is completed to a large extent,

a further increase in cluster size occurs. An illustration of these differences – the

classical model of nucleation-growth processes and the scenario based on the analysis

presented here – is given in Figs. 1.4 (and somewhat later also in Figs. 1.7a and c).

So far, we have analyzed the most probable path of evolution of the

cluster in cluster size space, if the motion is determined by purely thermodynamic

considerations. However, as mentioned already in [10] and discussed in detail in

Section 1.2.2, in general, both thermodynamic and kinetic properties will determine
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Fig. 1.3. Characteristic size, Rs, of the part of the ambient phase, where processes

of amplification of the concentration occur. It is supposed here that the evolution

proceeds via the most probable path in the space of thermodynamic state parameters of

the clusters as determined thermodynamically. This size parameter, Rs, is determined

as a multiple of a parameter Ω2 depending on the particular properties of the solution

considered (cf. Eq. (1.24)). The parameter Ω2 has values of the order of one nanometer

[23].

the most probable path of evolution of the clusters. Here we would like to study in

detail the effect of kinetic factors on the evolution of the state of the clusters in the

course of their growth for the limiting cases of diffusion and kinetic limited growth.

As shown in detail in Section 1.2.2, for these cases we can proceed as earlier but have

to replace in the final expressions niα by miα. The results are independent on the

particular kind of growth kinetics – diffusion or kinetic limited growth – considered.

Indeed, for the both considered growth modes, we get, from Eqs. (1.7) and (1.8), the

same equation for the determination of the cluster trajectory in the parameter space,

i.e.,

dn1α

dn2α
=

D1x1

D2x2

∂Φ(n1α, n2α)

∂n1α

(
∂Φ(n1α, n2α)

∂n2α

)−1

. (1.15)

The results of the computations are illustrated in Figs. 1.5.

In the left hand sides of Figs. 1.5, the results of such computations are given for



J. Chem. Phys., Vol. 121, No. 14, 8 October 2004 Nucleation versus spinodal decomposition 62

Fig. 1.4. Illustration of the differences in the classical picture of nucleation-growth

processes in solutions ((a): growth in size of clusters with nearly the same composition

as the newly evolving macroscopic phase) as compared with the results obtained via

the generalized Gibbs’ approach and the basic postulate as formulated in Section 1.2

((b), see text). The lower curve is drawn here for a molar fraction x = 0.19 (cf.

Fig. 1.1).

the dependence of the cluster composition, xα, on the reduced radius, r, for different

values of the molar fraction, x, of the second component (i.e. x2 = x, x1 = 1 − x)

in the ambient phase (x = 0.11, x = 0.15, x = 0.19, x = 0.22 from top to bottom).

For different values of the kinetic coefficients, different dependencies xα = xα(r) are

obtained. The following values of D1/D2 are chosen: D1/D2 = 0.1 (1), D1/D2 = 1

(2), and D1/D2 = 10 (3). In the right hand side of Figs. 1.5, the shape of the

Gibbs free energy surface and the path of the cluster evolution are shown in the

(n1/nc, n2/nc)-space, again. With an increase of the ratio D1/D2, the position of

the point B in the cluster trajectory (cf. Fig. 1.1) in the space of its state variables is

shifted to higher values of the ratio R/Rc and Rs may even exceed Rc.

In Fig. 1.6, the situation is shown once again for the whole range of possible

values of the parameters D1/D2 and an initial concentration of the ambient phase

equal to x = 0.17. Here, again, the curves, corresponding to ratios D1/D2 = 0.1 (2),

D1/D2 = 1 (3) and D1/D2 = 10 (4) are given. However, they are supplemented by

the limiting curves D1/D2 → 0 (1) and D1/D2 → ∞ (5). As evident from Figs. 1.5

and 1.6, qualitatively the picture remains the same as in the case when the trajectory
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Fig. 1.5. Left: Path of the cluster evolution in the (r, xα)-space. Right: Shape of the

Gibbs free energy surface and path of the cluster evolution in the (n1/nc, n2/nc)-

space. The computations are made for a regular solution with molar fractions x =

0.11, x = 0.15, x = 0.19 and x = 0.22 of the second component in the ambient phase

for different values of the ratio D1/D2: D1/D2 = 0.1 (1), D1/D2 = 1 (2), D1/D2 =

10 (3). In generalization of the results shown in Fig. 1.2, here the trajectory describing

the evolution of the cluster is determined taking into accout both thermodynamic and

kinetic factors.

of evolution is determined by purely thermodynamic criteria. Quantitatively, the most

probable path is shifted in the space of cluster state variables.

1.4. On Some Intrinsic Similarity of Nucleation and Spinodal

Decomposition

According to the classical theory of nucleation and cluster growth, nucleation

proceeds by addition and/or emission of monomers (atoms, molecules etc.) starting

from monomers and leading to the formation of dimers, trimers etc. Hereby the

state of the clusters is assumed to be widely independent on cluster size. As

already mentioned, this feature of the theory is an additional assumption not
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Fig. 1.6. Path of the cluster evolution for a molar fraction of the initial state equal to

x = 0.17 for the whole range of possible ratios of the diffusion coefficients D1/D2:

D1/D2 → 0 (1), D1/D2 = 0.1 (2), D1/D2 = 1 (3), D1/D2 = 10 (4), D1/D2 → ∞
(5).

founded theoretically. Remember that Gibbs’ classical approach [8] is restricted in

its applicability exclusively to equilibria of heterogeneous substances, it cannot give

any information on thermodynamic non-equilibrium states, in general, and the state

of sub- and supercritical clusters, in particular.

In the generalization of Gibbs’ approach, underlying our analysis, we start with

the formulation of appropriate expressions for the thermodynamic potentials (and

the development of the theoretical basis underlying this approach) for clusters of

arbitrary sizes in the ambient phase [10, 11, 25, 26]. This procedure allows us to give

a theoretically founded prescription on the course of evolution of the clusters in the

transformation as it was outlined in preceding sections. Now, let us analyze in more

detail whether the results confirm the classical model of nucleation processes or not.

As it will turn out, the answer is, in general, no.

In order to prove this statement, let us return to an analysis of the results shown

in Figs. 1.1–1.3 and 1.5. It follows immediately from these results that the evolution
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of the critical cluster does not proceed via the classical picture as sketched in Fig. 1.4a

and 1.7a.

Fig. 1.7. Illustration of the basic features of (a) the classical nucleation-growth

scenario, (b) the Cahn-Hilliard spinodal decomposition model and (c) the model

for the description of phase formation in solutions as developed here based on the

generalized Gibbs’ approach (see text).

According to the classical picture of this process, aggregates having nearly

the composition and structure of the newly evolving macroscopic phase grow by

incorporation of additional units with similar properties. In contrast, the analysis

performed here leads to the following picture of the process: in some certain

region of the ambient phase with a typical size, 2Rs, the molar fraction of the

segregating component is increased. This increase of the concentration proceeds

without significant changes in the size of the region representing the precursor of

the new phase remaining comparable with the critical cluster size. As it turns out the

size of this region in the ambient phase, where the concentration amplification takes

place, may even decrease again in the course of increase of the molar fraction of the

second component in it (cf. Figs. 1.5). In such cases, when the cluster size is reduced

with the evolution to the critical size, the driving force of the initial stage of the

cluster evolution consists in the change of the composition, but not of the size. Only

after the change of the composition is widely completed, the cluster starts to grow,

again (see Figs. 1.6b and 1.7c). The further evolution follows widely the classical

model.
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The dependence of the characteristic size parameter, Rs, both in absolute (as

multiples of the parameter Ω2) and relative units (rs = Rs/Rc) on supersaturation for

different values of the ratio D1/D2 is shown in Figs. 1.8 (dotted curve: D1/D2 = 0.1,

dashed curve: D1/D2 = 1, full curve: D1/D2 = 10). As evident, for most values of

Fig. 1.8. Dependence of the size of the precursor of the newly evolving phase on

supersaturation for different values of the ratio D1/D2 (dotted curve: D1/D2 =

0.1, dashed curve: D1/D2 = 1, and full curve: D1/D2 = 10). The respective

dependencies are given both in absolute (as multiples of the parameter Ω2, cf.

Eq. (1.24)) and in relative units as rs = Rs/Rc.

the initial supersaturation the size parameter Rs is of the same order of magnitude as

the critical cluster size and may even exceed it. Such possibility is excluded if the

path of evolution is determined thermodynamically (as shown in Figs. 1.1 - 1.3), it is

a consequence of kinetic effects. Indeed, if the mobility of the second component is

small as compared with the first one (D1 � D2), then its molar fraction in the cluster

is increased mainly by reducing the content of the rapidly moving first component,

i.e., by reducing the size of the cluster.

Summarizing above results, we find a very different picture of the scenario of

the phase formation process in solutions as compared with the classical model. It is

illustrated in Fig. 1.7c. In some part of space of the ambient phase with a characteristic

size 2Rs, the state of the ambient phase is changed continuously. In this process, the

size of the evolving cluster is varied only slightly. The relative width of the range

of sizes of the precursor of the new phase, where this transition proceeds, decreases
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with increasing supersaturation, and a characteristic size Rs, where the cluster begins

to change its composition, tends to the critical radius Rc at x = xsp .

Note that the picture described is in its nature very similar to the Cahn-

Hilliard picture of the initial stages of spinodal decomposition illustrated in Fig. 1.7b.

Here also an amplification of density fluctuations is found in a certain stage of the

transformation. The typical size of these precursors of the new phase depends on the

state of the ambient phase. It is of the order of Rmax
∼= λmax/2 (cf. Eq. (1.19) and

the discussion to it). This way, following the approach to nucleation as described

here, we conclude that nucleation and spinodal decomposition are not complementary

and different but in its nature very similar mechanisms of the phase transformation.

In both cases, the driving force of the process is connected with the change of the

concentration in some given region of the ambient phase. Only after the change

of the composition is widely completed, the subsequent evolution is determined by

factors known from classical theory, where the driving force is connected with the

change of the size of the clusters. On the other hand, some distinction remains, since

processes of phase formation commonly denoted as nucleation – i.e. evolving from

metastable initial states - have to overcome a potential barrier, while processes of

spinodal decomposition - starting from unstable initial states – have not. We will

see, in addition, shortly that nucleation (i.e., processes of phase formation involving

a potential barrier) may be the governing mechanism of evolution of the new phase

also for initial states in the unstable region near the spinodal curve.

1.5. Nucleation, Spinodal Decomposition and the Kinetics of Phase

Transformations in the Vicinity of the Spinodal Curve

1.5.1. Predictions of the Classical Gibbs’ and the Cahn-Hilliard

Approaches

The basic differences in the two classical mechanisms of first-order phase

transitions – nucleation-growth and spinodal decomposition – discussed are illustrated
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in Fig. 1.7a-b (cf. also [16]). According to the model, underlying the classical

description of nucleation processes, in relatively small-scale parts of the ambient

phase fluctuations are formed with state parameters (density, composition) widely

similar in its properties to the newly evolving macroscopic phase. These initially

small clusters grow then in their spatial extensions without significant changes in their

properties (see Figs. 1.4b and 1.7a). In particular, in application to the considered

example of segregation in a regular solution, the molar fraction of the segregating

component in the critical cluster is – following the classical Gibbs’ method of

determination – widely identical (somewhat larger) as compared with the respective

value xmacro = x
(r)
b in the newly evolving macroscopic phase [19, 23]. The radius of

the critical cluster (expressed in terms of Gibbs’ surface of tension) is given as

R(Gibbs)
c =

2σ

(pα − pβ)
∼=

2σ

cαΔμ
. (1.16)

In order to determine Δμ in this expression, one has to substitute into Eq. (1.12)

and (1.13) a value of xα equal (somewhat larger) than xα = xmacro = x
(r)
b .

Remaining inside the framework of the classical Gibbs’ approach, one can

determine uniquely the reference states for the description of the bulk properties of

the critical clusters (they are determined in Gibbs’ classical approach via identity of

temperature and chemical potentials in both coexisting phases, cf. Fig. 1.9). However,

one has no tool at the disposal allowing us to determine the dependence of the surface

tension on supersaturation or, in other terms, on the size of the critical clusters. If

one employs the capillarity approximation (i.e. identifies the value of σ with the

respective value for an equilibrium coexistence of both phases at planar interfaces, i.e.,

σ = σ̃
(
x

(r)
b − xb

)2
), then Rc decreases monotonicly with decreasing supersaturation

(cf. Fig. 1.10). However, both Rc and the work of critical cluster formation (cf.

Fig. 1.11) remain finite at the spinodal curve. However, by the physical meaning

of the spinodal curve (being the boundary between thermodynamically metastable

and unstable states of the homogeneous ambient phase), the work of critical cluster
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Fig. 1.9. Composition of the critical cluster for nucleation in a binary regular solution

as determined via the generalized Gibbs’ approach (full curve), Gibbs’ classical

approach (dashed curve) and the composition of the particular ridge cluster (dotted

curve) having widely the same cluster size as determined via the classical Gibbs’

approach (see text).

formation has to tend to zero here. Provided the surface of tension is chosen as

the dividing surface, the work of critical cluster formation can be written in Gibbs’

classical theory generally as

ΔGc =
4π

3
σ
[
R(Gibbs)

c

]2
(1.17)

or as

ΔGc =
16π

3

σ3

(pα − p)2
∼=

16π

3

σ3

(cαΔμ)2 . (1.18)

In order to allow a correct description of the behavior of the system near

the spinodal curve, the surface tension has to depend on supersaturation or on the

size of the critical cluster. It has to vanish at the spinodal curve. As a consequence

(cf. Eq. (1.16)), the radius of the critical cluster vanishes as well. Note that these

conclusions do not follow directly from Gibbs’ classical theory but are a consequence
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Fig. 1.10. Radius of the critical cluster for nucleation in a binary regular solution as

determined via the generalized Gibbs’ approach (full curve) and the classical Gibbs’

approach utilizing, in addition, the capillarity approximation (dashed curve). The

radius Rc is given as multiples of the parameter Ω2 (cf. Eq. (1.24)). This parameter

has a value of the order of one nanometer [23].

from above given or similar additional considerations.

Following Gibbs’ classical approach, alternatively to the radius of the surface of

tension also other size parameters may be introduced like the equimolecular dividing

surface or their multi-component generalizations. These size parameters behave, in

general, quite differently near the spinodal, they may even diverge here [23–25]. The

bulk properties of the critical clusters do not depend on the choice of the dividing

surface, however.

This way, taking the radii of the equimolecular or similar dividing surfaces as

the size parameter for the description of the critical clusters, latter ones become near

the spinodal very large with bulk properties of the clusters similar to the properties

of the evolving macrophases. Obviously, such model critical clusters cannot be

considered as an appropriate description of the properties of the real critical clusters.

By this reason, in the search for an appropriate description of these real properties

in terms of Gibbs’ classical theory commonly the radius of the surface of tension is

chosen as the more appropriate size parameter.
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Fig. 1.11. Work of formation of the critical clusters (a) for nucleation in a binary

regular solution as determined via the generalized Gibbs’ approach (full curve) and the

classical Gibbs’ approach utilizing, in addition, the capillarity approximation (dashed

curve). In the computations, the parameter Ω1 was set equal to ten (cf. Eq. (1.23)). By

a dotted curve the value of the work of formation of a cluster passing the ridge of the

thermodynamic potential is specified having essentially the same size but a different

composition as compared with the critical cluster in Gibbs’ classical approach. The

right curves (b) give an illustration of the resulting differences in the steady-state

nucleation rates. Here the ratio of the nucleation rates, J/Jclass, are shown, when J is

expressed through the value of the work of critical cluster formation computed via the

generalized Gibbs’ approach (evolution proceeding via the saddle point (full curve))

and via the work required to evolve via the particular ridge path discussed (dotted

curve). Jclass is the steady-state nucleation rate determined via the classical Gibbs’

approach and involving the capillarity approximation.

Summarizing, based on Gibbs’ classical theory of heterogeneous systems [8]

we come, in particular, to the following conclusions: (i.) the size of the critical

cluster is not uniquely defined, it depends on the definition of the size parameter.

Near the spinodal curve, different size parameters behave differently, they may, for

example, tend to zero or to infinity. (ii.) The properties of the critical clusters are

widely equivalent to the properties of the newly evolving macrophases. This condition

is fulfilled independently of the choice of the dividing surface and an inherent

consequence of the classical Gibbs’ approach.

In contrast, if the van der Waals – Cahn and Hilliard method is employed for the
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description of nucleation processes (i.e. for phase formation starting from metastable

initial states), then directly and without the necessity of additional postulates or

assumptions the following conclusions can be drawn [12–14]: For low values of the

supersaturation, the results of the classical Gibbs’ theory are reestablished. However,

with increasing supersaturation, the bulk state parameters of the critical clusters

change and approach near the spinodal the respective values of the metastable initial

states. As one consequence, the work of critical cluster formation tends to zero then.

In addition, the characteristic size parameter describing the spatial extension of the

critical clusters tends to infinity. These results are reconfirmed by more advanced

density functional computations of the properties of critical clusters [15]. This way,

the predictions of the classical Gibbs’ and the van der Waals-type approaches are in

contradiction for metastable initial states near the spinodal curve.

In addition, according to the Cahn-Hilliard picture of spinodal decomposition

(phase formation processes starting from unstable initial states), the first stages of the

phase transformation starting from unstable initial states are characterized by long

wave-length fluctuations with initially small changes in the state parameters of the

precursor of the new phase as compared with the ambient phase (see Fig. 1.7b).

Hereby the wave-number with the highest rate of amplification of the density

fluctuation depends on the molar fraction of the segregating component in the unstable

initial state. It diverges near the spinodal curve (e.g. [36]). For regular solutions, we

get, in particular, the following expression for the wave number with the highest

amplification rate

kmax ∝

{

1 −

(
T

4Tc

)(
1

x(1 − x)

)}

p,T

. (1.19)

For initial states near the spinodal curve, kmax becomes equal to zero [19,

23]. Denoting by a characteristic size parameter, Rmax, the value of the wave-length

divided by two (kmax = 2π/λmax, Rmax = λmax/2), we come to the conclusion
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that the size of the new phase precursor with the highest rate of amplification of the

composition differences tends to infinity for initial states approaching the spinodal

curve from the side of the unstable initial states as

Rmax ∝

{

1 −

(
T

4Tc

)(
1

x(1 − x)

)}−1

p,T

. (1.20)

This way, the van der Waals – Cahn and Hilliard approach is free of internal

contradictions, in the framework of this approach, the nucleation-growth model and

the model of spinodal decomposition lead, near the spinodal curve, to equivalent

results. However, the picture of the nucleation process, as derived via the van der

Waals or similar methods, is in contradiction with the conclusions derived based on

Gibbs’ classical theory: the state parameters of the critical clusters are quite different

and the sizes of the critical clusters behave differently (in particular, if in Gibbs’

approach the surface of tension is chosen as the dividing surface). This way, only one

of both theories (if any) can be correct.

1.5.2. Predictions of the Generalized Gibbs Approach

1.5.2.1. Critical Cluster Properties Near the Spinodal Curve

Having in mind above mentioned and additional problems of Gibbs’ classical

approach to the description of heterogeneous systems, in a number of recent publi-

cations a generalization of Gibbs’ method was developed (see e.g. [10,11,22,25,26])

and employed for the determination of the work of critical cluster formation for a

variety of different processes of phase formation [19–21]. In application to segregation

processes in binary regular solutions, the work of critical cluster formation and the

size of the critical cluster (determined in a similar form as the surface of tension in
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Gibbs’ classical approach) are given via [10, 19, 23]

Rc =
2σ

cαΔμ
, ΔGc =

16π

3

σ3

(cαΔμ)2 . (1.21)

For the considered case, these equations look similar to the classical expressions

as derived via Gibbs’ classical approach (cf. Eqs. (1.16)–(1.18)). However, the

generalization of Gibbs’ theory, as outlined in cited papers, leads to a different

equation for the determination of the state parameters of the critical clusters. For

the considered particular case, we get

3f(x, xα) + (x − xα)
∂f(x, xα)

∂xα
= 0 . (1.22)

The derivation of the respective equations is given in detail in [10,19,23]. Here

we reproduce the final results as far as they are required for the subsequent analysis

performed.

In Fig. 1.9, the composition of the critical clusters (determined via Eq. (1.22),

full curve) is shown in dependence on the composition of the ambient phase in the

range between the left hand side branches of the binodal and spinodal curves. For

small values of the supersaturation, the composition of the critical cluster coincides

with the composition of the newly evolving macroscopic phase (xα = x
(r)
b for

x → xb). It approaches the composition of the ambient phase for initial states near

the spinodal curve (xα → xsp for x → xsp). These results are widely identical to

those obtained via van der Waals – Cahn and Hilliard and more sophisticated density

functional approaches. By a dashed curve, the composition of the critical cluster is

shown determined via Gibbs’ classical method (cf. [19, 23]).

It is often stated that the classical theory of nucleation describes processes of

phase formation correctly for initial states in the vicinity of the binodal curve. This

statement is true but only to some extent. Indeed, for initial states in the vicinity of

the binodal curve both density functional computations and the generalized Gibbs’
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approach come to a similar conclusion as the classical Gibbs’ theory: the state

parameters of the critical clusters are, in this range of supersaturations, widely similar

to the respective properties of the newly evolving macroscopic phase (cf. e.g. Fig. 1.9

and [23–25]). However, as shown, for example, in Figs. 1.3 and 1.8, even in this

range of supersaturations the formation of the critical clusters does not proceed via

the classical model but via amplification of concentration differences in finite regions

of the ambient phase. This way, the classical model is not an appropriate description of

cluster formation processes in solid and liquid solutions even for low supersaturations.

Once the composition of the critical cluster is known in dependence on

supersaturation, immediately other parameters like the radius and the work of

formation of critical clusters may be calculated. For such purposes, we express

Eqs. (1.21) in the form

ΔGc

kBT
= Ω1

g3(x, xα)

f 2(x, xα)
, Ω1 =

16π

3

σ̃3

c2
α(kBT )3

, g(x, xα) = (x − xα)2 ,

(1.23)

Rc = −Ω2
g(x, xα)

f(x, xα)
, Ω2 =

2σ̃

cαkBT
. (1.24)

These dependencies of critical cluster size and work of critical cluster formation

on supersaturation, as determined via the generalized Gibbs’ approach, are shown

on Figs. 1.10 and 1.11a by full curves. The respective curves, obtained via the

classical Gibbs’ approach (corresponding to critical cluster compositions as given

by the dashed curve in Fig. 1.9 and employing the capillarity approximation σ =

σ̃
(
x

(r)
b − xb

)2
) are shown for comparison by dashed curves, again. Since we are

mainly interested here in qualitative results, we set the parameters Ω1 equal to ten

and Ω2 equal to one for convenience (Ω1 = 10, Ω2 = 1 nm). Such assumption is

also employed in the computations for the size parameter Rs shown in Figs. 1.3 and

1.8. More detailed estimates of these parameters for a model system are given in [23]

resulting in Ω1 = 13.6 and Ω2 = 1.2 nm.
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As evident the results of the generalized Gibbs’ approach are in full agreement

with the results of density functional computations of the respective parameters,

again, the work of critical cluster formation tends to zero and the size of the cluster

tends to infinity. This way, the generalized Gibbs’ approach gives a picture of the

critical clusters which is in agreement with van der Waals’ and similar methods of

determination and in contrast to the classical Gibbs’ method of determination of the

respective properties.

In Fig. 1.11b, changes in the values of the nucleation rate are shown, if the

different methods are employed for the determination of the work of critical cluster

formation. As evident, in the range, where intensive nucleation processes may occur,

the generalized Gibbs’ approach leads – provided the pre-exponential terms are taken

to be of the same order of magnitude – to nucleation rates by 6–9 decimal orders larger

as compared with the results of classical nucleation theory. This way, the classical

Gibbs’ approach, involving the capillarity approximation, underestimates the values

of the steady-state nucleation rates for phase separation in solutions significantly.

Note an highly interesting feature of the curve shown in Fig. 1.10 representing

the dependence of the cluster size on supersaturation in the generalized Gibbs’

approach. As evident, except in the immediate vicinity of the binodal curve (where

nucleation cannot occur due to large values of the work of critical cluster formation)

and the vicinity of the spinodal curve (which cannot be reached commonly),

there exists a broad range of supersaturations in between these limits where the

cluster size remains nearly constant. Consequently, in almost any experiment, where

homogeneous nucleation is observed, the critical nuclei may be expected to be always

of nearly the same size.

In Fig. 1.12 another important new consequence of the generalized Gibbs’

approach in comparison with the classical Gibbs’ method of description is illustrated.

In Fig. 1.12a, the dependence of the thermodynamic driving force, (Δμ/kBT ) =

|f(x, xα)|, for critical cluster formation is given both for the classical Gibbs’ method
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Fig. 1.12. (a) Thermodynamic driving force of critical cluster formation

(Δμ/kBT ) = |f(x, xα)| and (b) surface tension (σ(x)/σ∞), referred to the

appropriately defined surfaces of tension, as determined via the classical (dashed

curve) and generalized (full curves) Gibbs’ approaches.

(dashed curve) and the generalized Gibbs’ approach (full curve). While the classical

Gibbs’ approach (in agreement with common expectations) results in a monotonous

increase of the driving force of cluster formation with increasing molar fraction of

the segregating component in the metastable ambient phase, the generalized Gibbs’

approach predicts a non-monotonic behavior. This way, the change of the properties of

the critical clusters reduces the driving force of cluster formation as compared with the

predictions of Gibbs’ classical method. However, this reduction of the driving force

is overcompensated by the decrease of the surface tension. The respective curves (in

reduced units (σ(x)/σ∞), σ∞ = σ̃
(
x

(r)
b − xb

)2
) are shown in Fig. 1.12b.

A similar behavior as discussed above was found also for a variety of other

specific forms of phase transformations (condensation and boiling in one-component

systems [20, 21, 24], boiling in binary liquid-gas solutions [25]). This way, the basic

features obtained from above given analysis can be expected to be of quite general

nature.
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1.5.2.2. Nucleation near the Spinodal Curve By-Passing the Saddle Point

In the preceding analysis, we always assumed that the flux of the clusters to

the new phase passes the saddle point of the characteristic thermodynamic potential.

Such scenario can be considered as the rule, but exceptions from this general rule are

possible as well (see e.g. [32–35]). Such exceptions correspond to situations when

the main flux to the new phase passes not the saddle but some ridge point of the

thermodynamic potential. General expectations and detailed analyses [37, 38] allow

to conclude that ridge crossing will be the preferred channel of the transformation in

cases, when the thermodynamic barrier is relatively low. In such situations, not the

thermodynamic but kinetic factors will govern the process. A precondition of such

change in the kinetics is obviously that the ridge crossing is characterized by relatively

low values of the activation energy as well. The determination of the location of the

particular ridge point of the thermodynamic potential, determining the kinetics of

the transformation, is a highly complicated task [32] and will be discussed in the

framework of the approach outlined in more detail in a future analysis. Here we will

merely show that in the vicinity of the spinodal curve ridge points with relatively low

activation barriers exists, which are kinetically favored as compared with the passage

via the saddle point of the thermodynamic potential.

As already mentioned, in Figs. 1.10 and 1.11a the radius of the critical cluster

and the work of critical cluster formation are shown also for the case that Gibbs’

classical approach is employed for the determination of these quantities and the

capillarity approximation is used, in addition (dashed curves; cf. [19,23]). As evident

from Fig. 1.10, both curves for the critical cluster size coincide widely except in the

immediate vicinity of the spinodal curve.

The question now is, whether nucleation in the vicinity of the spinodal proceeds

necessarily via passing the saddle point of the Gibbs free energy surface or not. On one

side, the saddle point corresponds to the lowest value of the work of cluster formation
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allowing – after the respective barrier is overcome – the cluster to evolve to the new

phase. Indeed, by taking the derivative of the work of critical cluster formation with

respect to the cluster composition, xα, for fixed values of the composition of the

ambient phase, we arrive at Eq. (1.22). On the other side, in order to evolve into the

new phase via the saddle point near the spinodal curve very large clusters have to be

formed which is unfavorable from a kinetic point of view.

Near the spinodal curve (we restrict ourselves here to values of x larger than

0.2), the work of critical clusters is small and also other channels of the transformation

may be effective. Such other channels are the formation of clusters passing not the

saddle but the ridge of the thermodynamic potential, i.e., by-passing the saddle point.

The cluster sizes along this ridge are given by the mechanical equilibrium conditions,

which are expressed for the considered system via Eq. (1.24). This way, utilizing this

expression, we can compute for any value of the composition of the ambient phase

and for any value of the cluster size along the ridge the value of the concentration in

this particular cluster. Then, utilizing Eq. (1.23), we can obtain the value of the work

of cluster formation for this particular channel of evolution to the new phase.

In order to estimate the possible magnitude of the work of cluster formation for

clusters located at the ridge, we suppose the cluster size to be determined via

Rc = −Ω2
g(x, x

(r)
b )

f
(
x, x

(r)
b

) , Ω2 =
2σ̃

cαkBT
. (1.25)

This expression is widely identical to the radius of the surface of tension in the

classical Gibbs approach employing the capillarity approximation. The composition

of the cluster at the ridge of the thermodynamic potential is determined then via the

generalized Gibbs’ approach as

g
(
x, x

(r)
b

)

f
(
x, x

(r)
b

) =
g(x, xα)

f(x, xα)
. (1.26)
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One of the possible solutions of this equation is obviously xα = x
(r)
b .

This solution corresponds to the classical Gibbs’ approach utilizing the capillarity

approximation. As it turns out the classical Gibbs’ result corresponds – interpreted in

terms of the generalized Gibbs’ approach – not to a saddle point path of evolution but

to one of the ridge channels of evolution to the new phase.

There exists, however, also another solution of Eq. (1.26) different from the

classical limiting case, i.e., there exists a ridge path of evolution to the newly evolving

phase with the following properties: (i.) The size of the cluster at the ridge is widely

identical to the radius of the surface of tension determined via Gibbs’ classical

method. (ii.) The composition of this cluster is different from the compositions of

the critical clusters as determined via Gibbs’ classical and the generalized Gibbs’

approaches. The respective dependence of the composition of this particular ridge

cluster on the molar fraction of the segregating component in the ambient phase is

shown in Fig. 1.9 by a dotted curve. (iii.) The value of the work of formation of this

particular cluster – located at the ridge of the thermodynamic potential – is shown

in dependence on the composition of the ambient phase in Fig. 1.11a. The work of

formation of a cluster on the particular ridge point is higher as compared with the

saddle point, when the generalized Gibbs’ method is employed for its determination,

but significantly lower as compared with the value obtained via the classical Gibbs’

approach employing the capillarity approximation. As the result, the considered ridge

path results in an increase of the nucleation rate as compared with the classical

estimate by 5-9 decimal orders (cf. Fig. 1.11b).

We have shown in this way that near the spinodal curve, at least, one channel

of evolution to the new phase exists, which has values of the work of ridge cluster

formation considerably lower as compared with the work of critical cluster formation

according to the classical Gibbs’ results, but is of the same size as the critical

cluster size in Gibbs’ classical approach. The system has got, in this way, at least,

one additional channel of evolution to the new phase with values of the activation
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barrier much less as compared with the results of the classical Gibbs’ approach

but much lower values of the cluster sizes as compared with the saddle point

parameters computed via the generalized Gibbs’ approach (or by density functional

computations). This way, in metastable initial states near the spinodal curve nucleation

will not proceed, in general, via the saddle point but in trajectories of evolution by-

passing the saddle point of the thermodynamic potential. Hereby the mechanism of

cluster evolution can be determined similarly as it is done before for the case of

critical clusters in the generalized Gibbs’ approach (i.e., by determining the most

probable path over the particular point on the ridge of the thermodynamic potential).

1.5.2.3. Application of Nucleation Concepts to Thermodynamically

Unstable States Beyond the Spinodal Curve

It is well-known that the classical Gibbs’ approach to the determination of the

work of critical cluster formation – utilizing the capillarity approximation – does not

show any peculiar features for initial states approaching the spinodal curve from the

side of metastable states (cf. Figs. 1.9-1.11). As mentioned, this property is one of the

severe disadvantages of this approach. In this connection the question arises, what the

predictions of the generalized Gibbs’ approach are for unstable initial states on the

right hand side of the spinodal curve.

In Fig. 1.13a, the composition of the critical cluster is given as a function of

the supersaturation, but now in the range 0 ≤ x ≤ 0.5, as obtained by the classical

(dashed curve) and the generalized Gibbs’ approaches (full curves). The composition

of the cluster phase determined via the generalized Gibbs’ approach (Eq.(1.22)) has,

in general, two solutions, xα = x and xα > x (cf. Fig. 1.9). However, for values

of the initial supersaturation x < xsp, only one of these solutions (xα > x) leads

to physically reasonable results. The solution xα = x would result in this range of

compositions in negative values of the critical cluster size (see also [19, 23] and the

subsequent analysis; xsp is here the concentration at the left branch of the spinodal
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Fig. 1.13. Parameters of the critical and the ridge clusters for metastable and unstable

initial states: (a) Composition of the critical cluster as determined via the classical

Gibbs approach employing the capillarity approximation (dashed curve), via the

generalized Gibbs approach (full curves, see text) and the composition of the ridge

cluster having the same size as the critical cluster in the classical Gibbs approach

(dotted curve); (b) Size of the critical cluster determined via the generalized Gibbs’

approach (full curve) and size of the ridge cluster (dotted curve; this curve gives

also the size of the radius of the surface of tension in dependence on supersaturation

computed in the framework of the classical Gibbs’ approach employing the capillarity

approximation); (c-d) Work of formation of the the critical cluster as obtained via

Gibbs’ classical approach employing the capillarity approximation (dashed curve),

work of formation of the critical cluster in the generalized Gibbs’ approach (full

curve) and of the particular ridge cluster (dotted curve) as specified in the text ( (a)-

(d): left top to right bottom).

curve, again). In contrast, for x ≥ xsp there exists only one solution xα = x, i.e.,

the concentration in the critical cluster equals the concentration in the ambient phase.

For this solution, the equation for the critical cluster size Eq. (1.21) leads to an

indeterminacy of the order 0/0. However, it can be resolved easily to give

Rc = −Ω2 lim
xα→x

(
g(x, xα)

f(x, xα)

)

= −
2Ω2(

∂2f

∂x2
α

∣
∣
∣
∣
xα→x

)

p,T

∝

{

1 −

(
T

4Tc

)(
1

x(1 − x)

)}−1

p,T

.

(1.27)

This expression has negative values for initial states in the range x < xsp (this is

one of the reasons, why this solution is physically meaningless in this range), it has

positive values for x > xsp.
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The dependence of the critical cluster size Rc on supersaturation is shown in

Fig. 1.13b by a full curve. Note that the behavior of this size parameter is, in the range

of unstable initial states, widely identical to the radius Rmax determined via Eq. (1.20).

This way, the generalized Gibbs’ approach allows, when applied to unstable initial

states, to determine the characteristic sizes of the regions in space with the highest rate

of amplification of density fluctuations as predicted in the framework of the Cahn-

Hilliard theory of spinodal decomposition. This way, the size parameter Rc retains a

well-defined physical meaning of a characteristic size where density amplifications

occur preferentially from a thermodynamic point of view.

The expression for the work of critical cluster formation Eq. (1.23), when

applied to unstable initial states, results (after the resolution of the indeterminacy)

in ΔGc/kBT = 0. As it has to be the case, for unstable initial states the activation

energy for the transition to the new phase equals zero. The work of critical cluster

formation, as determined via Eq.(1.23), is shown by a full curve in Fig. 1.13c-d for

the whole range of initial supersaturations considered.

Finally, let us consider also the parameters of the particular ridge pass of

transition of the system, considered earlier, into the new phase when extended to

unstable initial states. As defined earlier, we consider a path over the ridge of the

potential hypersurface having nearly the same size as the critical cluster determined

via Gibbs’ classical approach (cf. the dotted curve in Fig. 1.13b). The composition of

the ridge cluster is shown by a dotted curve in Fig. 1.13a, the work of formation of

this particular ridge cluster in Fig. 1.13c-d by dotted curves as well.

It turns out that the evolution to the new phase can proceed easily via the

formation of such types of ridge clusters having values of the activation energy of

the order 101 − 100 kBT and relative small values of their characteristic sizes. This

way, this channel of evolution can compete with the thermodynamically preferred

channel of formation of critical clusters with zero work of critical cluster formation

or, equivalently, the Cahn-Hilliard scenario of spinodal decomposition.
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1.6. Discussion

In the present paper, the new approach to the description of nucleation-growth

processes in multi-component systems, developed in its basic premises in [10, 11, 25]

and accompanying papers, was extended to account for both thermodynamic and

kinetic factors in the determination of the preferred trajectory of the clusters in the

space of thermodynamic state parameters. This trajectory determines the change of

the properties of the clusters in the course of their evolution. As it turns out the

resulting picture of the process of the phase transition in solid solutions is quite

different as compared with the classical picture. Moreover, as shown, there is no

qualitative difference between nucleation and spinodal decomposition with respect

to the basic mechanism of cluster evolution. Nucleation processes, starting from

thermodynamically metastable initial states, proceed qualitatively widely similar as

compared with processes of phase formation governed by spinodal decomposition.

As one of the consequences the problem arises how the classical kinetic description

of nucleation-growth processes (cf. e.g. [4–7]) has to be modified to account

appropriately for the scenario of the transformation as developed here. Some first

analyses in this direction are outlined in [10, 30].

At part, similar consequences as developed here were drawn some time ago

based on the statistical mechanical analysis of model systems (e.g. [4, 16]). We come

therefore to the conclusion that the generalized Gibbs’ approach leads – for the

model systems studied – to, at least, qualitatively equivalent results as mentioned

statistical mechanical model analyses. This coincidence is considered as an additional

confirmation of the validity of the generalized Gibbs’ approach, utilized basically in

our analysis. Moreover, since in our approach only the knowledge of macroscopic

properties of the ambient and the newly evolving phases is required in order to

determine the properties of the clusters in dependence on their sizes, the approach

presented here seems, to our opinion, to be preferable in the analysis of experimental
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results on phase formation processes. The application of the methods and results

obtained to the interpretation of experimental data will be addressed in future

publications.

The results of the analysis, as performed above, were obtained for the

analysis of regular solutions. They can be quantitatively modified by modifications

of the thermodynamic properties of the real in comparison to the model system,

by peculiarities of the process of diffusion not accounted for here or additional

thermodynamic factors like elastic stresses which have to be taken into consideration

in a number of cases as well. Nevertheless, we believe that the scenario outlined will

be valid generally for processes of segregation in solid or liquid solutions.

The question arises also immediately, whether the general scenario found for

phase separation in solutions is applicable to other processes of phase formation –

like condensation of gases, bubble formation in liquids, crystallization of melts – as

well or not. The answer to this question requires a detailed separate analysis which

can be performed straightforwardly based on the basic ideas and method as outlined

here. The respective work is in progress and the results will be reported in future

communications.

Acknowledgments

The authors would like to express their gratitude to the Deutsche

Forschungsgemeinschaft (DFG) and to the Brazilian Science Foundation FAPESP

(Grant 03/12617-0) for financial support.



J. Chem. Phys., Vol. 121, No. 14, 8 October 2004 Nucleation versus spinodal decomposition 86

Appendix

According to the basic premises of thermodynamics, the thermodynamic

potential Φ of some given system can be expressed as a function of f independent

macroscopic state parameters {q} = (q1, q2, . . . , qf), i.e., Φ = Φ (q1, q2, . . . , qf).

For the analysis of nucleation processes, we can always express the thermodynamic

potential referred to its value at the critical cluster size. Consequently, Φ can be

considered as a dimensionless function. We will assume that the set of variables {q}

is given in a dimensionless form as well.

Let us assume we consider two points ({q} and {q + dq}) on the surface Φ

located in the immediate vicinity of each other. The change of the thermodynamic

potential in the transition from {q} to {q + dq} can be expressed then as

Φ ({q + dq}) − Φ ({q}) =

f∑

i=1

∂Φ

∂qi
dqi or dΦ =

f∑

i=1

∂Φ

∂qi
dqi . (1.28)

Now, let us consider some trajectory on the hypersurface Φ({q}). Along the

given trajectory, the coordinates can be expressed in a parametric form via a scalar

variable l. If we denote the distance between the two considered points by Δl, we

can then introduce the derivative along some given trajectory as

dΦ

dl
=

f∑

i=1

∂Φ

∂qi

dqi

dl
. (1.29)

Now, based on Eqs. (1.28) or (1.29), we can introduce an f -dimensional

Cartesian system of coordinates with the set of unit vectors {~eq}. Then we can write

d~q =

f∑

i=1

~eqidqi , (1.30)
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and define a gradient in the respective system via

∇Φ =

f∑

i=1

~eqi
∂Φ

∂qi
. (1.31)

With these notations, we have

dΦ = (∇Φ)d~q or dΦ = |∇Φ||d~q| cos (∇Φ ∧ d~q) . (1.32)

The absolute value of ∇Φ does not depend on the chosen direction.

Consequently, the absolute value of dΦ has its maximum (for a given value of |d~q|),

if d~q is directed parallel or antiparallel to ∇Φ. This way, searching for the trajectory

with the steepest descent of the thermodynamic potential, we can demand

dqi

dl
= −

∂Φ

∂qi
. (1.33)

Instead of {q}, we may employ also alternative sets of variables {Q} for the

description of the thermodynamic state of the system. So, we have to have some

one-to-one transformation of the form

Qj = Qj(q1, q2, . . . , qf) , j = 1, 2, . . . , f , (1.34)

and the inverse transformation

qj = qj(Q1, Q2, . . . , Qf) , j = 1, 2, . . . , f . (1.35)

Since the variables in each of the sets of parameters {q} and {Q} are independent
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from each other, we have

∂Qj

∂Qk
=

f∑

l=1

∂Qj

∂ql

∂ql

∂Qk
= δjk ,

∂qj

∂qk
=

f∑

l=1

∂qj

∂Ql

∂Ql

∂qk
= δjk . (1.36)

With the new variables, we can carry out the same procedure as earlier and

arrive, similarly to Eq. (1.28), at

dΦ =

f∑

i=1

∂Φ

∂Qi
dQi . (1.37)

The validity of this relation can be shown also directly. Going over in Eq. (1.28) to

new coordinates, we may write

∂Φ

∂qi
=

f∑

j=1

∂Φ

∂Qj

∂Qj

∂qi
, dqi =

f∑

k=1

∂qi

∂Qk
dQk . (1.38)

A substitution into Eq. (1.28) employing Eq. (1.36) results immediately into

Eq. (1.37).

Starting with Eq. (1.33) and going over to the new variables, we have

f∑

j=1

∂Φ

∂Qj

∂Qj

∂qi
= −

f∑

j=1

∂qi

∂Qj

dQj

dl
, i = 1, 2, . . . , f . (1.39)

This set of relations allows one to determine the dependencies (dQj/dl) which give

the direction of motion in the new system of coordinates. Now, by multiplying this

relation with (∂Qk/∂qi) and taking the sum over i, we arrive with Eq. (1.36) at

dQk

dl
= −

f∑

j=1

∂Φ

∂Qj

f∑

i=1

∂Qj

∂qi

∂Qk

∂qi
. (1.40)
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This way, in the new system of coordinates {Q}, a relation similar to Eq. (1.33) holds

then and only then, if the conditions

f∑

i=1

∂Qj

∂qi

∂Qk

∂qi
= δjk (1.41)

are fulfilled for any allowed values of j and k. In general, we have to employ

Eq. (1.40) or equivalent expressions.

One of the sets of coordinates of particular importance for the analysis

performed in the present paper is (r, x2α, x3α, . . . , xkα) determining the evolution in

the size-composition space. It is connected with the original one (n1α, n2α, . . . , nkα)

by Eq. (1.6) and the following transformations

r =
R

Rc
, xiα =

niα

nα
, nα =

k∑

j=1

njα . (1.42)

Here R and Rc are the radius of the cluster and the critical cluster radius,

respectively. From Eqs. (1.6) and (1.42), we obtain then

∂r

∂niα
=

ωiα

4πR3
cr

2
,

∂xjα

∂niα
=

1

nα
(δij − xjα) . (1.43)

The path of evolution in the new space of variables is determined by the general

set of equations Eq. (1.40). In the particular case considered, we arrive with Eqs. (1.6)

and (1.42) also directly at

dr

dl
=

1

4πR3
cr

2

k∑

j=1

ωjα
dnjα

dl
. (1.44)

According to Eq. (1.4), we can replace now the derivatives (dniα/dl) by
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−(∂Φ/∂niα), i.e.

dr

dl
= −

1

4πR3
cr

2

k∑

j=1

ωjα
∂Φ

∂njα
. (1.45)

Going over then to the description in size-composition space, we arrive at

dr

dl
= −

1

4πR3
cr

2

k∑

j=1

ωjα

{
∂Φ

∂r

∂r

∂njα
+

k∑

l=2

∂Φ

∂xlα

∂xlα

∂njα

}

. (1.46)

In the evaluation of Eq. (1.46), Eqs. (1.43) have to be utilized.

Similarly to above given considerations, we obtain from Eq. (1.42)

dxiα

dl
=

1

nα

{
dniα

dl
− xiα

k∑

j=1

dnjα

dl

}

. (1.47)

A substitution of Eq. (1.4) into Eq. (1.47) yields

dxiα

dl
= −

1

nα

{
∂Φ

∂niα
− xiα

k∑

j=1

∂Φ

∂njα

}

. (1.48)

After some straightforward transformations we arrive finally at

dxiα

dl
= −

1

nα

{(
∂r

∂niα
− xiα

k∑

j=1

∂r

∂njα

)
∂Φ

∂r
+ (1.49)

+
k∑

l=2

∂Φ

∂xlα

[
∂xlα

∂niα
− xiα

k∑

j=1

∂xlα

∂njα

]}

.

For phase formation in a two-component system, we obtain as a special case

dr

dl
=

r

3

1

(n1α + n2α)2

[
2r

3

∂Φ

∂r
+ (1 − 2xα)

∂Φ

∂xα

]

, (1.50)
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dxα

dl
=

1

(n1α + n2α)2

{
r

3
(1 − 2xα)

∂Φ

∂r
+
[
x2

α + (1 − xα)2
] ∂Φ

∂xα

}

, (1.51)

where xα ≡ x2α holds.
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1.7. Висновки до роздiлу 1

Результати дослiджень, представлених у даному роздiлi, опублiковано в

статтi [1] (Додаток А. Список публiкацiй здобувача за темою дисертацiї). Серед

основних результатiв у якостi висновкiв можна видiлити наступнi:
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• В узагальненому методi Гiббса змiна розмiру та складу кластерiв

нової фази в процесi зародження якiсно вiдрiзняються порiвняно з класичною

картиною. Показано, що зародження, тобто перша стадiя формування класте-

ра, починаючи з метастабiльних початкових станiв, виявляє властивостi, що

нагадують спiнодальний розпад: спочатку розмiр кластера залишається майже

постiйним, а його склад змiнюється, хоча наявнiсть активацiйного бар’єра

вiдрiзняє процес зародження вiд справжнього спiнодального розпаду.

• Утворення фаз як у метастабiльних, так i нестабiльних початкових

станах поблизу класичної спiнодалi, може протiкати через проходження хребта

термодинамiчного потенцiалу, тобто через деякий активацiйний бар’єр, незважа-

ючи на те, що для нестабiльних початкових станiв значення роботи формування

критичного кластера, що вiдповiдає сiдлової точцi термодинамiчного потенцiалу,

дорiвнює нулю. Таким чином, показано, що концепцiя нуклеацiї – в модифiко-

ванiй формi порiвняно з класичною картиною – може також бути придатною

для аналiзу процесу утворення нової фази у нестабiльному початковому станi,

тобто, на вiдмiну вiд класичного пiдходу Гiббса, узагальнений метод Гiббса дає

опис формування нової фази як для бiнодальної, так i для спiнодальної дiлянок

фазової дiаграми.

• Основним результатом, що має практичне значення, є те, що робота

утворення кластера критичного розмiру в узагальненому методi Гiббса менша,

нiж у класичний теорiї нуклеацiї у капiлярному наближеннi, i зменшується до

нуля на спiнодалi.
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РОЗДIЛ 2

НУКЛЕАЦIЯ АБО СПIНОДАЛЬНИЙ РОЗПАД В ОБМЕЖЕНИХ

БIНАРНИХ РОЗЧИНАХ

У другому роздiлi основнi особливостi спiнодального розпаду, з одного

боку, та нуклеацiї, з iншого, та перехiд мiж обома механiзмами аналiзуються

в рамках термодинамiчної кластерної моделi на основi узагальненого методу

Гiббса у моделi регулярного бiнарного розчину. При цьому кластери нової фази

можуть змiнюватися з часом як за розмiрами, так i за своїми iнтенсивними

параметрами стану, наприклад, густиною або складом. Аналiзується також

вплив змiни параметрiв стану навколишнього середовища на еволюцiю кластера.

Наслiдки такої змiни мають важливе значення як для аналiзу фазоутворення в

обмежених (нанорозмiрних) системах, так i для розумiння еволюцiї ансамблiв

кластерiв у великих (необмежених) системах.
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Basic features of spinodal decomposition, on one side, and nucleation, on the

other side, and the transition between both mechanisms are analyzed within

the framework of a generalized thermodynamic cluster model based on the

generalized Gibbs approach. Hereby the clusters, representing the density or

composition variations in the system, may change with time both in size and
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in their intensive state parameters (density and composition, for example).

In the first part of the analysis, we consider phase separation processes in

dependence on the initial state of the system for the case when changes of the

state parameters of the ambient system due to the evolution of the clusters can

be neglected as this is the case for cluster formation in an infinite system. As

a next step, the effect of changes of the state parameters on cluster evolution

is analyzed. Such depletion effects are of importance both for the analysis of

phase formation in confined systems as well as for the understanding of the

evolution of ensembles of clusters in large (in the limit infinite) systems. The

results of the thermodynamic analysis are employed in both cases to exhibit

the effect of thermodynamic constraints on the dynamics of phase separation

processes. c©2004 American Institute of Physics. [DOI: 10.1063/1.2774989]

2.1. Introduction

Nucleation and spinodal decomposition are two major mechanisms how first-

order phase transitions may proceed in a variety of systems [1–10]. Which one of

the mentioned mechanisms dominates in the decomposition process is commonly

assumed to depend on the degree of instability of the initial state of a phase-separating

system. The phase transition is supposed to proceed via nucleation and growth

for metastable systems [1, 2], while for thermodynamically unstable systems the

mechanism of spinodal decomposition is expected to govern the process [3, 4, 9, 10].

Following the basic ideas anticipated in its basic premises already by Gibbs

[11], in nucleation a nucleus of initially small size is supposed to be formed

stochastically with state parameters widely similar to the properties of the newly

evolving macroscopic phases. In contrast, spinodal decomposition is characterized

by initially smooth changes of the state parameters of the system (composition,

density, etc.) extended, in general, over large regions in space. These differences in the
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basic models lead to essentially different theoretical approaches to the description of

nucleation-growth and spinodal decomposition processes, respectively. In the simplest

formulation, spinodal decomposition is treated as a process of spontaneous growth of

a set of long-wavelength fluctuations of the density or composition of the initial state

[9, 10]. In such description, the growth increment of these fluctuations is determined

in dependence on the wave numbers of the respective modes as performed for the

first time by Cahn and Hilliard [9, 10]. In the decay of initially metastable states via

nucleation, the bulk properties of the clusters are supposed to be widely similar to

the properties of the respective macroscopic phases [11] and the process of stochastic

formation, the further growth and shrinkage of such clusters is analyzed. Briefly

speaking, in the initial stages of spinodal decomposition the change of density and/or

composition is determined for a more or less fixed size of the new phase regions,

while nucleation-growth models draw the attention to a change of the size of the

clusters at given values of their intensive state parameters.

Historically, the mentioned different approaches have been developed employi-

ng (or reinventing) two different thermodynamic methods of description of

thermodynamically heterogeneous systems developed by Gibbs [11] (nucleation)

and van der Waals [12, 13] (spinodal decomposition), respectively. The classical

Gibbs’ theory was and is employed till now as the most frequently used tool

basically for the determination of the properties of critical clusters determining

the rate of cluster formation in metastable systems and, employing more or less

explicitly expressed additional assumptions, to cluster growth and shrinkage processes

(cf. [14–16]). Gibbs’ classical approach cannot give any predictions about phase

formation processes evolving in unstable initial states. In contrast, the van der Waals

& Cahn-Hilliard approach allows one to determine the properties of critical clusters

for metastable systems and the modes of highest density amplification for phase

separation in unstable initial states.

Both Gibbs’ and van der Waals’ methods of description of heterogeneous
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systems are considered hereby conventionally as essentially correct and equivalent.

However, as shown already long ago by Cahn and Hilliard [9], the predictions

concerning the properties of critical clusters in metastable systems derived via the

Gibbs’ and van der Waals’ methods are in deep contradiction to each other (for more

details see [15, 16]). These contradictions are especially significant in the vicinity

of the classical spinodal curve separating metastable from unstable initial states. In

addition, mentioned above comparison of similarities and differences of nucleation

and spinodal decomposition processes is somewhat oversimplified. Modern theories

both of spinodal decomposition and nucleation exhibit more complicated features in

comparison to the models as described briefly above (see, for example, [3–5,16–20]).

Moreover, in contrast to the classical picture a smooth transition from metastability

to instability has been observed both in computer models of phase separating systems

[3, 5, 18, 20] and in experiment [21].

In preceding papers [15, 16], it was shown that the contradictions between Gi-

bbs’ and van der Waals’ methods of description of thermodynamically heterogeneous

systems in application to phase formation processes can be resolved by generalizing

Gibbs’ approach. In this generalization (for the details see [22, 23]), Gibbs’

idealized cluster model is employed again for the theoretical treatment of density

or composition fluctuations, however, the basic equations are generalized allowing

one to consider, in contrast to Gibbs’ classical approach, the interfacial tension, in

general, as a function of the state parameters of both ambient and cluster phases. It

was shown that this generalization of Gibbs’ approach leads, in addition to a variety of

other consequences, to the reconciliation of both mentioned thermodynamic methods

of description of heterogeneous systems. Moreover, the generalized Gibbs’ method is

shown to allow one to arrive also at an understanding of basic features of the kinetics

of spinodal decomposition [16].

In the present paper we extend the analyses performed in [15, 16]. Basic

features of spinodal decomposition, on one side, and nucleation, on the other side,
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and the transition between both mechanisms are analyzed within the framework of

described above generalized thermodynamic cluster model based on the generalized

Gibbs approach [22,23]. Hereby the clusters, representing the density or composition

variations in the system, may change with time both in size and in their intensive state

parameters (density and composition, for example). In the first part of the analysis, we

consider phase separation processes in dependence on the initial state of the system

for the case when changes of the state parameters of the ambient system due to the

evolution of the clusters can be neglected as this is the case for cluster formation in an

infinite system. As a next step, the effect of changes of the state parameters on cluster

evolution is analyzed. Such depletion effects are of importance both for the analysis of

phase formation in confined systems [3,25–31] as well as for the understanding of the

evolution of ensembles of clusters in large (in the limit infinite) systems [25, 32–35].

The results of the thermodynamic analysis are employed in both cases to exhibit the

effect of thermodynamic constraints on the dynamics of phase separation processes.

As a model system for the analysis, we consider phase separation in a binary regular

solution, again (see also [15, 16, 36]).

The paper is organized as follows. In Section 9.2, basic equations employed

for the thermodynamic analysis of phase separation in solutions are summarized. In

Section 9.4, these results are applied to the analysis of phase formation in infinite

domains in the sense as specified above. In Section 8.4, finite size effects in the

kinetics are studied both in application to phase separation in systems of finite size and

with respect to the understanding of the evolution in macroscopic systems described

in terms of formation and competitive growth of ensembles of clusters [25, 37]. A

discussion of the results and possible further developments in Section 8.5 completes

the paper.
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2.2. The model system

We consider thermodynamic aspects of new phase formation in a binary solid

or liquid solution in domains both of finite and infinite sizes. Since here we are

mainly interested in the discussion of the basic principles and consequences of the

newly developed generalized Gibbs’ approach in application to phase separation, the

solution is considered as a regular one representing one of the simplest models of

a system consisting of two kinds of interacting molecules. The domain, where the

processes of nucleation and/or spinodal decomposition are assumed to proceed, is

considered similarly to [29] as a sphere of radius R0. The limiting situation of an

infinite system is thus reached for R0 → ∞, while finite-size effects take place for

finite values of R0 (see Fig. 2.1).

Fig. 2.1. Model employed in the analysis: A cluster of size, R, and molar fraction,

xα, is formed in a volume, V = 4πR3
0/3, of an initially homogeneous binary solid

or liquid solution with a composition given by the molar fraction, xβ . The initial

composition of the ambient solution we denote by x.

Cluster formation in a binary solution results from a redistribution of molecules.

Following Gibbs’ model approach, we consider a cluster as a spatially homogeneous

part of the domain volume with a composition different from the ambient phase. Both
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size and composition of the cluster may vary in a wide range. As the dividing surface,

separating the cluster from the ambient phase in the thermodynamic description

underlying the method of analysis, we always employ here the surface of tension

[11, 22, 23]. As in our previous analyses [26, 27] performed in terms of the classical

Gibbs’ approach and more recent investigations of related problems by several authors

employing different methods [29–31], the effect of the finite size is taken into account

only by the conservation laws for the numbers of particles of the different components

in the cluster (specified by the subscript α) and in the ambient phase (specified by

β). We may write then

nj = njα + njβ = const. , j = 1, 2 ,

n = nα + nβ = const. , (2.1)

nα = n1α + n2α , nβ = n1β + n2β .

The molar fractions of the second component in the ambient phase (xβ) and the cluster

(xα) are defined as

xβ =
n2β

n1β + n2β
, xα =

n2α

n1α + n2α
. (2.2)

The initial state is either a metastable or unstable homogeneous state, characterized

by xα (0) = xβ (0) ≡ x.

In line with the basic assumptions underlying the model of regular solutions

[36] and for simplicity of the notations, the volume per particle, ω, is assumed to

be the same for both components and independent on composition (ωα = ωβ ≡ ω).

Cluster size and particle number in a cluster are related then by the following simple

expression

4π

3
R3 = nαω . (2.3)

Assuming further that a cluster of radius, R, and composition, xα, is formed in a

spherical domain of radius, R0, and initial composition x, Eqs. (2.1), (2.2) and (2.3)
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yield

xβ =
nx − nαxα

n − nα
=

x − xα (R/R0)
3

1 − (R/R0)
3 . (2.4)

The change of the Gibbs free energy, ΔG, connected with the formation of

one cluster in the initially homogeneous ambient phase can be written in a commonly

good approximation as [14–16]

ΔG = σA +
∑

j

njα (μjα − μjβ) +
∑

j

nj (μjβ − μj0) . (2.5)

The first term in the right hand side of Eq. (2.5) reflects cluster surface effects ( σ is

the interfacial tension, and A is the surface area of the cluster) and the second term

cluster bulk contributions to the change of the Gibbs’ free energy. The third term

describes the influence of depletion effects (change of the composition of the ambient

phase due to cluster formation) resulting in differences of the chemical potentials per

particle in the initial state (μj0) and the state of the ambient phase once a cluster has

been formed (μjβ).

For the binary regular solution the chemical potentials of the different

components in the cluster, μjα, and ambient solution, μjβ , are defined by [36]

μ1α/β = μ∗
1α/β + kBT ln(1 − xα/β) + Ωx2

α/β , (2.6)

μ2α/β = μ∗
2α/β + kBT ln xα/β + Ω

(
1 − xα/β

)2
,

where kB is the Boltzmann constant, T the absolute temperature, and Ω is an

interaction parameter describing specific properties of the considered system. The

parameter, Ω, can be expressed via the critical temperature, Tc, of the system (cf. also

Fig. 2.2) as

Tc =
Ω

2kB
. (2.7)
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Fig. 2.2. Phase diagram of a binary regular solution with binodal and spinodal curves.

The spinodal curve separates thermodynamically stable from thermodynamically

unstable states of the homogeneous ambient phase. In the present analysis, we assume

that the temperature is equal to T = 0.7Tc and vary the driving force of the phase

transformation process by changing the initial composition of the ambient phase, x.

The surface tension between two macroscopic phases with compositions xα and xβ ,

respectively, is given, according to Becker ( [36], see also [38]) by

σ = σ̃ (xα − xβ)2 . (2.8)

From Eqs. (2.5), (2.6), (2.7) and (2.8), we have

ΔG

kBT
=

3

2
n1/3

σ n2/3
α (xα − xβ)2 + nαf(xβ, xα) − nf(xβ, x) , (2.9)

where

f (xβ, xα) = (1 − xα)

{

ln
1 − xα

1 − xβ
+ 2

Tc

T

(
x2

α − x2
β

)
}

(2.10)

+ xα

{

ln
xα

xβ
+ 2

Tc

T

[
(1 − xα)2 − (1 − xβ)2

]}

holds and the scaling parameter, nσ, for the particle number in the cluster is specified
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as

n1/3
σ =

2σ̃

kBT

(
4π

3

)1/3

ω2/3 . (2.11)

In addition, we introduce via Eqs. (2.3) and (2.11) also a scaling parameter, Rσ, for

the cluster radius as

Rσ =

(
3nσω

4π

)1/3

=
2σ̃ω

kBT
. (2.12)

In the further analysis, we will always assume for an illustration of the results

that the temperature in the system is equal to T = 0.7Tc. The concentration of the

solute in the initially homogeneous system is varied in the range from x = xb
∼= 0.086

(left branch of the binodal curve) to x = xsp
∼= 0.226 (left branch of the spinodal

curve) covering metastable initial states and xsp < x ≤ 0.5 covering unstable initial

states (see Fig. 2.2). Since the phase diagram of a regular solution is symmetric

[16], we may restrict the analysis to initial states in the considered range with initial

concentrations, x ≤ 0.5. A specification of further parameters like σ̃ and ω is not

required, since we compute reduced characteristics, so that such system parameters

enter the description only via the scaling quantities (see also [16]).

2.3. Phase separation in infinite domains

2.3.1. Thermodynamic analysis

Above given equations allow us to determine the thermodynamic potential

surface as a function of the number of particles, n1α and n2α, in the cluster. The

results are shown for different values of the initial supersaturation in Fig. 2.3 both for

metastable ((a): x = 0.15, (b): x = 0.19, (c): x = 0.22) and unstable ((d): x = 0.3,
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(e): x = 0.4, (f): x = 0.5) initial states. Depletion effects are neglected so far (we

consider infinite systems), so we set R0 → ∞. As far as we are interested mainly in

the demonstration of the basic qualitative features, like in Fig. 2.3 and similar ones,

the numbers are omitted at the axes.

Fig. 2.3. Shape of the Gibbs free energy surface for metastable (x = 0.15, x = 0.19,

and x = 0.22; Figs. 2.3a-c) and unstable initial states (x = 0.3, x = 0.4, and

x = 0.5; Figs. 2.3d-f). As mentioned, the temperature is chosen equal to T/Tc = 0.7

(for further details, see text).

For each of the metastable initial states, the thermodynamic potential surface

has, in the vicinity of the critical cluster coordinates, a typical saddle-shape. The

position of this saddle-point is determined by the set of equations

∂ΔG (n1α, n2α)

∂n1α
= 0 ,

∂ΔG (n1α, n2α)

∂n2α
= 0 , (2.13)
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if we employ Eq. (2.5) for the description of the thermodynamic potential surface.

In an alternative approach utilizing Eq. (2.9), we may determine first the size of the

cluster for any fixed value of xα via

∂ΔG (nα, xα)

∂nα
= 0 =⇒ n1/3

α (xα) = −n1/3
σ

(xα − x)2

f(x, xα)
. (2.14)

A substitution of the expression for nα into Eq. (2.9) yields (cf. also Eq. (2.11))

ΔG(nα(xα), xα)

kBT
=

1

2
nσ

(xα − x)6

f 2(x, xα)
, nσ =

32π

3

σ̃3ω2

(kBT )3
. (2.15)

The composition of the critical cluster and the work of critical cluster formation is

obtained then by searching for the minimum of ΔG(nα(xα), xα) with respect to the

cluster composition, xα, [14–16,23] as

dΔG (nα(xα), xα)

dxα
= 0 . (2.16)

In order to allow us a better understanding of the shape of the thermodynamic

potential surface, contour lines through the saddle are included in the figures by full

curves and the curve of steepest increase of the potential surface starting from the

critical cluster coordinates by dotted curves. The full curve with arrows describes the

most probable trajectory of cluster evolution. It starts at some point along the dashed

curve determined by the initial conditions xα = x and ΔG = 0 (in the initial state,

the composition of the cluster is the same as in the ambient phase). Then it passes the

saddle point and follows further the trajectory of macroscopic growth with an initial

cluster size slightly above the critical size. As discussed in detail in [16], the trajectory

of evolution from the initial state to the saddle point can be assumed to coincide, in

general, with the path of cluster dissolution starting with initial states slightly below

the critical cluster size.

The most probable trajectory of evolution is determined thus for both regions
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by the macroscopic growth equations. For segregation in solutions, these equations

can be written in the form

dn1α

dt
= −D1(1 − xβ)Θ(n1α, n2α)

dΔG

dn1α
,

(2.17)
dn2α

dt
= −D2xβΘ(n1α, n2α)

dΔG

dn2α
,

where D1 and D2 are the partial diffusion coefficients of the different components in

the ambient phase, and the notation

Θ(n1α, n2α) = Θ0n
κ
α (2.18)

is utilized. The parameter κ has the value κ = 2/3 for kinetic-limited growth, and κ =

1/3 for diffusion-limited growth and Θ0 is a parameter depending only on temperature

(we set, as mentioned, the temperature equal to T = 0.7Tc). As evident from above

considerations and the structure of Eqs. (2.17), the path of cluster evolution depends

on the partial diffusion coefficients of both components of the solution (see for the

details [16]), however, qualitatively the picture remains always the same. On Fig. 2.3,

the trajectories are shown for D1(1− xβ) = D2xβ . In this case, the kinetic prefactors

to the partial derivatives of ΔG with respect to njα in Eqs. (2.17) are the same

and the evolution proceeds along the valley of the thermodynamic potential surface,

ΔG (n1α, n2α), passing the saddle point.

The analysis of Eqs. (2.14) and (2.16) shows [14–16] that the composition of

the critical cluster decreases with increasing supersaturation and approaches the value

of the composition of the ambient phase for initial states near to the spinodal curve

(cf. Fig. 2.4). The work of critical cluster formation decreases monotonously with

increasing supersaturation and tends to zero at the spinodal curve (Fig. 2.5). Taking
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Fig. 2.4. Dependence of the composition of the critical cluster, xα,c, on the initial

solute concentration. For x > xsp, always the identity xα,c = x holds [16].

into account Eq. (2.10) and the relations

∂f(x, xα)

∂xα
= ln

(xα

x

)
− ln

(
1 − xα

1 − x

)

+ 4

(
Tc

T

)

(x − xα) ,

∂2f(x, xα)

∂x2
α

=
1

xα
+

1

1 − xα
− 4

(
Tc

T

)

, (2.19)

∂3f(x, xα)

∂x3
α

= −
1 − 2xα

x2
α(1 − xα)2

,

it can be shown that the critical cluster radius, Rc, behaves as

lim
x→xsp

Rc ∝ lim
x→xα

1

(xα − x)
. (2.20)

In this derivation, the equation (∂2f(x, xα)/∂x2
α)
∣
∣
xα=xsp

= 0 has been employed [15].

The dependence of the critical cluster size on supersaturation is illustrated in Fig. 2.6.

The results summarized above are reflected also in Figs. 2.3a-c. As evident

from the figures, with an increase of the supersaturation (molar fraction in the ambient
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Fig. 2.5. Dependence of the minimum work of critical cluster formation,

ΔGc,inf/(nσkBT ), on the initial solute concentration, x, for infinite domains

(specified by the abbreviation, inf) when changes of the state of the ambient solution

due to cluster formation can be neglected.

phase) the nucleation barrier decreases, the location of the saddle point is shifted

closer to the line of initial states, xα = x, and at the spinodal, x = xsp, the position

of the critical cluster tends to the composition of the ambient phase, i.e., the critical

cluster is located in this limiting case on the line of initial states. Since, for the initial

states corresponding to the spinodal curve, the condition xα → x holds, for such

states the work of critical cluster formation (determined via the generalized Gibbs’

approach employed here) tends to zero.

For unstable initial states, xsp < x ≤ 0.5, the situation is different. Here

the critical cluster has always a composition equal to the composition of the ambient

phase (cf. Fig. 2.4 and [16]). The critical cluster size cannot be expressed here directly

employing Eqs. (2.14) and (2.19), since for xα = x the relations

ΔG

kBT

∣
∣
∣
∣
xα=x

=
∂

∂xα

(
ΔG

kBT

)∣∣
∣
∣
xα=x

=
∂

∂nα

(
ΔG

kBT

)∣∣
∣
∣
xα=x

= 0 (2.21)
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Fig. 2.6. Dependence of the critical cluster radius, Rc,inf/Rσ, on the initial solute

concentration, x, for phase formation in an infinite domain at metastable (xb < x <

xsp) and unstable (x > xsp) initial states of the ambient solution.

hold independently of the value of nα in Eq. (2.9). In the definition of the critical

cluster size for unstable initial states we have to rely thus on the second-order

differential of ΔG with respect to nα and xα. As can be proven easily, the second-

order differential of ΔG for states with xα = x is given by d2ΔG
∣
∣
xα=x

=

(∂2ΔG/∂x2
α)
∣
∣
xα=x

dx2
α. The second-order derivative of ΔG with respect to xα at

xα = x can be expressed as

∂2

∂x2
α

(
ΔG

kBT

)∣∣
∣
∣
xα=x

= 3n1/3
σ n2/3

α

{

1 −

(
nα

nα,c

)1/3
}

, (2.22)

where the notations

n1/3
α,c =

3n
1/3
σ

2K
, K = −

1

2

∂2f(x, xα)

∂x2
α

∣
∣
∣
∣
xα=x

=
1

2

[

4

(
Tc

T

)

−
1

x
−

1

1 − x

]

(2.23)

are employed.

In the range of metastable initial states xb < x < xsp, the critical cluster
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corresponds to a minimum of ΔG(nα(xα), xα) with respect to the variations of the

state of the cluster, i.e., (d2ΔG/dx2
α) > 0 holds [23]. For unstable initial states, states

along the trajectory xα = x with ΔG = 0 correspond again to minima with respect

to variations of the state parameters of the cluster phase at fixed values of the cluster

sizes if the inequality (nα/nα,c)
1/3 < 1 is fulfilled (cf. Eq. (2.22)). However, there

exists a cluster size, nα,c, where the state along the line x = xα switches from a

minimum to a maximum of ΔG with respect to variations of the cluster composition

at fixed values of the cluster sizes. Possible trajectories of evolution for nα ≥ nα,c

are shown by full curves with arrows in Figs. 2.3d-f.

Moreover, on Figs. 2.3 d-f, the solid curve, ΔG = 0, divides regions with

ΔG ≥ 0 and ΔG ≤ 0 as compared with the states corresponding to xα = x. In the

first region (that is in the region with ∂2ΔG/∂x2
α

∣
∣
xα=x

> 0 or (nα/nα,c) < 1) cluster

composition changes lead to the growth of the Gibbs free energy, and the cluster is

stable in such region. In the second region (∂2ΔG/∂x2
α

∣
∣
xα=x

< 0 or (nα/nα,c) > 1)

any composition change (both increase and decrease of the concentration of the cluster

concentration) results in a decrease of the Gibbs free energy. In such region, the

cluster is unstable and the decomposition proceeds via growth of the concentration

differences, i.e., according to the basic mechanism commonly assigned to spinodal

decomposition. Thus, for x > xsp, the system is stable for small clusters and unstable

for clusters with a size nα > nα,c. So, changing the size of the clusters with

compositions equal to the composition of the ambient phase, we arrive at a transition

from metastable to unstable states and at nα = nα,c the minimum transforms into a

maximum via a singular point of third order. Reminding the physical meaning of a

critical cluster size as the lowest size of a cluster for which a spontaneous further

growth in accordance with the thermodynamic evolution laws is possible, nα,c as

defined via Eq. (2.23) is obviously an appropriate definition of the critical cluster size

for unstable initial states.
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In terms of the radius, we may express the critical cluster size in infinite domain

as

Rc,inf =
3Rσ

2K
. (2.24)

The parameter K is positive for values of x in the range of unstable initial states

and tends to zero at the spinodal curve (cf. [15, 16]) resulting in a divergence of the

critical cluster size for unstable initial states near the spinodal curve (cf. Fig. 2.6).

The work of formation of such critical cluster is, in the range of unstable initial states

of the ambient phase, always equal to zero (cf. Eq. (2.9)).

2.3.2. Kinetics versus thermodynamics in phase separation

In discussing the trajectories of evolution in phase separation processes, we

assumed here in line with the commonly employed assumption that the evolution to

the new phase proceeds via the saddle point of the thermodynamic potential surface.

Ridge crossing as another possible channel of formation of the new phase [39–41]

we believe to be of importance only in the vicinity of the spinodal curve [16] since

otherwise the increase of the potential barrier required for ridge crossing as compared

with the evolution via the saddle point overcompensates as a rule the advantages

connected with the eventually easier realization of the kinetics of the process. Of

course, the trajectories of evolution via the saddle point will depend on the kinetics

and, for the model system considered, on the ratio of the partial diffusion coefficients

of both components. The different paths of evolution of the critical clusters and

their further growth in dependence on the ratio of the diffusion coefficients of both

components are illustrated in Fig. 2.7.

For this purpose, we choose a volume of radius R in the center of some

spherical domain (see Fig. 2.7, left side). This selected volume has initially the same
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Fig. 2.7. Schematic illustration of trajectories of evolution in dependence on the

ratio of the partial diffusion coefficients of the different components in the solution.

At the right-hand side, the change of the composition of the clusters in dependence

on reduced cluster sizes, R/Rc, is shown for the three different cases considered: a)

D2 � D1, b) D2
∼= D1, c) D2 � D1.

composition as the ambient phase, therefore it is not a cluster yet. If atoms of the

second component are incorporated into this volume, the concentration, xα, of this

component in the cluster increases, its size increases, and it becomes a (super)critical

nucleus of a new phase. Such scenario is realized (cf. [16]) when the mobility of the

atoms of the second component is higher than for the atoms of the first sort (Fig. 2.7a).

The dependence of concentration of the cluster on its radius is given on the right hand

side.

In the opposite case, when the mobility of atoms of the first kind is higher, the

formation of the critical cluster proceeds in such a way that atoms of the first kind



J. Chem. Phys. 127, 114504 (2007) A. S. Abyzov and J. W. P. Schmelzer 114

leave the region where the cluster will be formed. In such case, the concentration,

xα, of the cluster increases but its size decreases (Fig. 2.7c). Again, the dependence

of cluster composition on cluster size is shown on the right hand side. Once the

critical cluster is formed in such process, its further growth is then determined by the

motion of the second less mobile component, again. So, here we have the situation

that growth processes will proceed with much smaller effective diffusion coefficients

as the nucleation process. And, finally, in the case when atoms of the first kind in

the cluster are replaced by atoms of the second one, i.e., when the mobilities of

both components are nearly equal (or more precisely, if the relation D1(1 − x) ∼=

D2x holds, cf. Eq. (2.17)), the change of the composition of the cluster proceeds

at nearly constant size (Fig. 2.7b). In all these cases, the critical cluster is the same

(determined thermodynamically) but the trajectories of evolution differ (see also [16])

due to different ratios of the partial diffusion coefficients of the different components

involved in the process of formation of the new phase.

2.4. Phase separation in finite domains

2.4.1. Thermodynamic analysis

It was shown in the preceding analysis that, neglecting depletion effects, the

critical cluster size diverges in the vicinity of the spinodal curve (Fig. 2.6). Taking into

account that phase separation processes in real systems proceed always in systems of

finite size, the model of an infinite domain is not appropriate in a variety of cases

already by this reason. In the further analysis, the effects of finite domain size on the

phase separation processes are studied.

Similarly to Figs. 2.3, Figs. 2.8-2.11 give an impression about the shape of the

Gibbs free energy surface ΔG(n1α, n2α) in dependence on the domain size, R0, for

different values of the initial solute concentration (Fig. 2.8: x = 0.15 < xsp, Fig. 2.9:
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x = xsp ≈ 0.226, Fig. 2.10: x = 0.3 > xsp and Fig. 2.11: x = 0.4 > xsp). As

Fig. 2.8. Shape of the Gibbs free energy surface for x = 0.15 and for different values

of the domain size, R0.

evident, at a given value of the supersaturation, the degree of instability of the system

decreases with the decrease of the domain size. For example, for the case of an initial

molar fraction equal to x = 0.15 (Fig. 2.8), the critical cluster sizes, Rc, and the

nucleation barrier, ΔGc, increase with the reduction of the size of the domain, R0.

The free energy difference, ΔGf , corresponding to a stable coexistence of a single

cluster with radius, Rf , in the ambient phase noticeably grows, the size of this stable

cluster, Rf , decreases considerably. The free energy difference, ΔGf , reaches a value

equal to zero at R0/Rσ = 14.55. At such system size, initial (homogeneous) and

final (heterogeneous) states become equivalent from a thermodynamic point of view.

With the further reduction of R0, ΔGf becomes positive, and for R0/Rσ = 12.66

the relation ΔGf = ΔGc holds and the transition to a two-phase system becomes
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Fig. 2.9. Shape of the Gibbs free energy surface for x = xsp and for different values

of the domain size, R0.

impossible due to finite-size effects.

For the considered supersaturation, in the range R0/Rσ > 14.55, the initial

state of the finite system is metastable. The final two-phase state is characterized

by smaller values of the Gibbs free energy, ΔGf < 0, as compared with the

homogeneous initial state. As a consequence, once a stable state of the cluster in the

ambient phase has been formed, the reverse transition is, as a rule, highly improbable.

For R0/Rσ = 14.55, the initial state of the system is also a metastable state, however,

now homogeneous and heterogeneous states are characterized by the same values of

the Gibbs free energy, i.e. ΔGf = 0. By this reason, the heterogeneous state can be

transferred by appropriate processes back to the homogeneous initial state. Thus the

inequality

ΔGf ≤ 0 (2.25)
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Fig. 2.10. Shape of the Gibbs free energy surface for x = 0.3 and for different values

of the domain size, R0.

can be considered as the condition of metastability for the homogeneous initial state.

Similar processes occur with even higher probability in the range 12.66 < R0/Rσ <

14.55. Here the initial state of the system is metastable, again, but the final state has

larger values of Gibbs’ free energy as compared with the homogeneous initial state,

i.e.

ΔGc > ΔGf > 0 (2.26)

holds. So, Eq. (2.26) is the condition of metastability for the heterogeneous state.

And, finally, even if phase transformations may occur in a sufficiently large system,

this is excluded for domain sizes R0/Rσ < 12.66. For such system sizes, the system

is to be considered here as stable.
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Fig. 2.11. Shape of the Gibbs free energy surface for x = 0.4 and for different values

of the domain size, R0.

The results discussed here for a particular value of the initial supersaturation in

the range of metastable (for infinite systems) initial states – i.e., increase of the critical

cluster size, Rc, and the work of critical cluster formation, ΔGc, the increase of ΔGf

and decrease of Rf – are general consequences of depletion effects in nucleation. They

have been derived analytically in the framework of the classical Gibbs’ approach

both for condensation in gases and phase formation in solid solutions earlier [24–

27, 32–35]. It can be shown that the respective conclusions remain valid when the

generalized Gibbs’ approach is employed for the description of the thermodynamics

of cluster formation [42]. From a more general point of view, such dependencies can
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be considered as consequences of the principle of le Chatelier-Brown [25,43].

However, as to our knowledge, so far the effect of finite size on the kinetics has

not been studied for the case that the process starts from unstable initial states. This

task will be performed in the subsequent analysis. Shapes of the Gibbs free energy

surface ΔG(n1α, n2α) for x = xsp ≈ 0.226 and for different values of the domain

size, R0, are presented on Fig. 2.9. The shapes of the free energy are qualitatively

very similar to the respective results shown on Fig. 2.8.

The respective dependencies, ΔG(n1α, n2α), for unstable initial states with x =

0.3, are shown on Fig. 2.10. In addition, the dependence of ΔG along the evolution

path are shown on Fig. 2.12 (here the path, s, is the distance in (n1α/nσ, n2α/nσ)-

space, that is ds = (dn2
1α + dn2

2α)1/2/nσ holds, and s > 0 for xα > x and s < 0 for

xα < x). For R0/Rσ > 6.83, spinodal decomposition is a possible mode of evolution

Fig. 2.12. Gibbs free energy along the preferred trajectory of evolution to the new

phase for initial states of the ambient phase with x = 0.3 and for different values of

the domain size, R0.

to the new phase. For low system sizes, here at R0/Rσ < 6.83, a nucleation barrier

arises and the system transforms to a metastable one. With the further reduction of

the domain size the behavior of system is the same as for x ≤ xsp. For x = 0.4,
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the surface ΔG(n1α, n2α) is shown on Fig. 2.11. The shapes of the thermodynamic

potential surfaces are similar to the case x = 0.3, only the characteristic values of

the system size R0, at which the transition from spinodal decomposition to nucleation

occurs, are smaller.

Equation ΔGc(R0, x) = ΔGf(R0, x) defines the minimal domain size,

R0,b(x), which allows nucleation in the initially homogeneous system, it defines the

binodal depending on the domain size. Let us define as the next step the spinodal

curve for the domain of finite size. Eq. (2.22) may be rewritten as

∂2ΔG

∂x2
α

∣
∣
∣
∣
xα=x

= 2K

(
R

Rc,inf

)2
{

1 −
R

Rc,inf

[

1 −

(
R

R0

)3
]}[

1 −

(
R

R0

)3
]−2

,

(2.27)

and then Eq. (2.21), which determines critical size in spinodal region, takes the form

R4
c − RcR

3
0 + R3

0Rc,inf = 0 . (2.28)

The equation has only one root for

R0 = R0,sp(x) =
44/3

3
Rc,inf(x) = Rσ

2

3
44/3

(

4
Tc

T
−

1

x
−

1

1 − x

)−1

, (2.29)

and two real roots for R0 > R0,sp(x), and at R0 < R0,sp(x) Eq. (26) does not

have any roots. Consequently, the function R0,sp(x) determines the minimal domain

size R0,sp(x), which allows spinodal decomposition in the system, i.e., it defines the

spinodal depending on the domain size.

Dependencies of minimal domain sizes R0,b/Rσ and R0,sp/Rσ on the initial

solute concentration, x , are presented on Fig. 2.13. Metastable region is located

between curves R0,b (x) and R0,sp (x), unstable (spinodal) region is located to the

right from R0,sp (x).
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Fig. 2.13. Dependence of the reduced minimal domain size, R0,b/Rσ and R0,sp/Rσ,

on the initial solute concentration, x.

The critical radius for the minimal domain size is determined by

Rc,sp(x) ≡ Rc (R0,sp, x) = Rσ
8

3

(

4
Tc

T
−

1

x
−

1

1 − x

)−1

. (2.30)

The dependence of the reduced critical radius Rc on the initial solute concentration x

for different values of the domain size R0 is illustrated on Fig. 2.14. In the metastable

region, Rc (x) is determined by Eqs. (2.13), in the unstable one, by the solution of

Eq. (2.30). Critical radii corresponding to the minimal domain size for the metastable

region Rc,b(x) ≡ Rc (R0,b, x), and for the unstable one, Rc,sp(x), are shown on

Fig. 2.14 by dashed-dotted and dotted curves, respectively. Note that in the unstable

region two critical radii exist: the smaller one is determined by the balance between

volume reduction and the increase of the thermodynamic potential due to surface

formation (as for an infinite domain), the larger one is determined by the effect of

changes of the state parameters (depletion effect). Indeed, we see that the larger value

of Rc is comparable with the domain size, R0.

Dependence of the minimum value of the work of critical cluster formation,

ΔGc/nσkBT , on the initial solute concentration, x, for different values of the domain
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Fig. 2.14. Dependence of the reduced critical radius, Rc/Rσ, on the initial solute

concentration, x, for different values of the domain size.

size, R0, is shown on Fig. 2.15. In the region x < xsp, with domain size reduction

ΔGc increases insignificantly, while for x > xsp ΔGc = 0 for R0 → ∞ , and nonzero

value of ΔGc arises only for finite values of R0. Dependence of the composition of

the critical cluster, xα,c, on the initial solute concentration x, for different values

of the domain size, R0, is shown on Fig. 2.16. We see that with growth of solute

concentration xα,c decreases down to value xα,c = x, which corresponds to the

unstable region.

2.4.2. Kinetics

Having performed the respective thermodynamic analysis, we will consider,

now, the time evolution of the clusters in segregation processes in systems of finite

size. We assume that the composition in a certain region of the ambient phase is
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Fig. 2.15. Dependence of the minimum value of the work of critical cluster formation

ΔGc/kBT on the initial solute concentration, x, for different values of the domain

size.

slightly shifted as compared with the composition of the matrix by a value δniα, i.e.

n1α = n1α,0 + δn1α , n2α = n2α,0 + δn2α . (2.31)

It is assumed further that the growth is kinetically limited (i.e., we set u = 2/3 in

Eq. (2.18)) A substitution of Eqs. (2.31) into Eqs. (2.17) yields

dδn1α

dt
= −D1(1 − xβ)Θ(n1α, n2α)

dΔG

ds
cos ϕ , (2.32)

dδn2α

dt
= −D2xβΘ(n1α, n2α)

dΔG

ds
sin ϕ . (2.33)

Here dΔG/ds is the absolute value of the gradient of the function ΔG (n1α, n2α) at

values of xα near to xα = x, ϕ is the angle between the direction of the gradient and
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Fig. 2.16. Dependence of the composition of the critical cluster, xα,c, on the initial

solute concentration x, for different values of the domain size.

the axis n1α. It is defined by the equation

tg ϕ =
n2α,0

n1α,0 + n2α,0
=

1 − x

x
. (2.34)

Dividing Eq. (2.33) by Eq. (2.32) and taking into account Eq. (2.34), we obtain

δn1α = −
D1

D2
δn2α . (2.35)

Using the variable xα instead of δn2α,

xα =
n2α

n1α + n2α
=

n2α,0 + δn2α

n1α,0 + n2α,0 +

(

1 −
D1

D2

)

δn2α

, (2.36)

we get the equation

dxα

dt
= Θ0x (1 − x)

(
Rc,inf

R

)4

[xD1 + (1 − x) D2]

(

−
∂2ΔG

∂x2
α

∣
∣
∣
∣
x=xα

)

(xα − x) ,

(2.37)
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where R is initial cluster radius, and
(
∂2ΔG/∂x2

α

)∣∣
x=xα

is determined by Eq. (2.27).

This linear equation has a solution of the form (xα − x) ∼ eγ(R)t, where the growth

increment (or amplification factor) γ(R) is determined via

γ (R) = M

(
Rc,inf

R

)4
(

−
∂2ΔG

∂x2
α

∣
∣
∣
∣
x=xα

)

(2.38)

and

M = Θ0x (1 − x) [xD1 + (1 − x) D2] (2.39)

holds.

For finite systems with a domain size lower than some upper value R0m

R0 ≤ R0m = 2R0,sp = Rσ
47/3

3

(

4
Tc

T
−

1

x
−

1

1 − x

)−1

, (2.40)

the function γ = γ (R) has a maximum. The value of the maximum increases with

increasing domain size. Moreover, at R0 ≥ R0m a second maximum of equal height

arises. After this second maximum appeared, the height of the maxima does not vary

any more with the further increase of the size of the domain (Fig. 2.17). The growth

increment reaches the maximum value for a domain size equal to

R0,max(R, x) =






(
R
Rσ

)4/3 ( R
Rσ

− 3
K

)−1/3
for R > Rγ,max

R0m for R ≤ Rγ,max

(2.41)

where Rγ,max = (8Rσ/3K).

The dependence of the growth increment, γ (R), on cluster radius for various

fixed domain sizes, R0 (full curves), and for R0 = R0,max(R, x) (dashed curve) is

shown on Fig. 2.17 for the case D1 = D2 and x = 0.45, i.e., for macroscopically
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Fig. 2.17. Dependence of the growth increment on the cluster radius, R/Rσ, for

various domain sizes (full curves) and for R0 = R0,max(R, x) (dashed curve) for

x = 0.45.

unstable initial states.

Equation (2.38) looks similar to the expression for the growth increment in

the classical Cahn-Hilliard theory of spinodal decomposition [9, 10]. Indeed, let us

introduce a wave vector via k ≡ Rσ/R, then Eq. (2.38) gets the form

γ (k) = Mk4

(

−
∂2ΔG

∂x2
α

∣
∣
∣
∣
x=xα

)

, (2.42)

∂2ΔG

∂x2
α

∣
∣
∣
∣
xα=x

=
2K

k2

{

1 −
1

k

[

1 −

(
k0

k

)3
]}[

1 −

(
k0

k

)3
]−2

. (2.43)

Employing these relations, on Fig. 2.18 the Cahn plots γ (k) /k2 vs k2 are shown

for various fixed domain sizes, R0 (full curves), and for R0 = R0,max(R, x) (dashed

curve), where the notation kc = Rσ/Rc is used. On Fig. 2.19, the result for R0 =

R0,max(R, x) is compared with experimental data for spinodal decomposition in the

glass SiO2-12.5 Na2O [44]. The Cahn-plot, obtained in this way, is different in its
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Fig. 2.18. Dependence of the ratio γ/k2 on k2 for various domain sizes (full curves)

and for R0 = R0,max(R, x) (dashed curve) for x = 0.45.

shape as compared with the linear classical dependence [9,10], it is in good agreement

with the experimental curves shown for comparison. Thus, the linear analysis of

Eqs. (2.32) and (2.33) allows us to determine the growth increment for spinodal

decomposition (Eq. (2.42)) depending on supersaturation, cluster and domain sizes in

a way giving a better agreement with experimental data as the classical theory.

The numerical solution of Eqs. (2.32) and (2.33) allows one not only to analyze

the initial states of spinodal decomposition but to trace the whole process of evolution

of the cluster. In doing so, we assume kinetic limited growth (u = 2/3 in Eq. (2.18))

and set the temperature equal to T = 0.7Tc, again. Domain size and the initial cluster

radius are chosen to correspond to the maximal growth increment, i.e., R0 = R0m

and R = Rγ,max (see Eqs. (2.40) and (2.41)), the initial cluster composition is given

by xα|t=0 = x (1 + δ).

Results of calculations of the cluster evolution for a regular solution with a

molar fraction of the segregating component in the ambient phase equal to x = 0.45
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Fig. 2.19. Dependence of the ratio γ/k2 on k2: result of calculation for R0 =

R0,max(R, x) for x = 0.45; circles refer to experimental data for the glass

SiO2–12.5 Na2O at 530 ◦C obtained by small-angle x-ray scattering [44].

and δ = 0.01 are presented on Figs. 2.20-2.23.

The shape of the Gibbs free energy surface and the trajectory of cluster

evolution in the (n1α/nσ, n2α/nσ) space (nσ is determined by Eq. (2.11)) are shown

on Fig. 2.20 for different values of the partial diffusion coefficient D1 and D2 ((a)

D1/D2 = 100, (b) D1/D2 = 1, (c) D1/D2 = 0.025 and (d) D1/D2 = 0.001; as

earlier, we assume D1D2 = const.). The process starts in the point S and develops

either increasing (path S → F , curves (a), (b), (c), and (d)) or decreasing (S → F ′,

curves (a’), (b’), (c’) and (d’)) the concentration of the second component. For

x 6= 0.5, the minima of Gibbs free energy, the system may approach following the

different pathes of evolution, have different depths (for x < 0.5 ΔGF < ΔGF ′).

Preferred is the path S → F , therefore further we consider only this version.

The dependencies of compositions of cluster and ambient phase both on time

and on cluster radius are shown on Figs. 2.21 and 2.22, respectively (cf. also Fig. 2.7).
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Fig. 2.20. Shape of the Gibbs free energy surface and trajectory of cluster evolution

in the (n1α/nc, n2α/nc) space for a regular solution with a molar fraction of the

segregating component in the ambient phase equal to x = 0.45 for different values

of D1/D2: a) D1/D2 = 100, b) D1/D2 = 1, c) D1/D2 = 0.025 and d) D1/D2 =

0.001.

For the case of a quickly moving first component (D1/D2 = 100, curve (a)), the

evolution along the path S → T proceeds via emission of particles of the first

component from the cluster. As the result, the cluster shrinks in size (see also

Fig. 2.21b). After a time, ταf , the composition of the cluster almost reaches its final

value, xα ≈ xαf ≈ 0.853 (the point Tα on Figs. 2.20 and 2.22, note also that this state

corresponds to the minimum of Gibbs free energy). During the initial time interval,

τ < ταf , the compositions of cluster and ambient phase change approximately with

equal rate. This rate can be determined by the analytical expressions Eq. (2.38)

with good accuracy (dotted curves on Fig. 2.21). Once this stage of evolution is

completed, the cluster begins to grow with approximately constant composition while

the composition of the ambient phase continues to change. Since the condition of

constancy of cluster composition requires attachment of atoms of both kinds in
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Fig. 2.21. Dependence of the compositions of the cluster, xα, and ambient phase,

xβ, on time for different values of D1/D2: (a) D1/D2 = 100, (b) D1/D2 = 1,

(c) D1/D2 = 0.025 and (d) D1/D2 = 0.001.
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Fig. 2.22. Dependence of the compositions of the cluster, xα, and ambient phase,

xβ, on the reduced cluster radius for different values of D1/D2: (a) D1/D2 = 100,

(b) D1/D2 = 1, (c) D1/D2 = 0.025 and (d) D1/D2 = 0.001.

a certain well-defined proportion, the rate of evolution along the path T → F

is limited by the rate of attachment of atoms of the slow second component (see

Fig. 2.21c). In the time τβf , the composition of the ambient phase reaches its final

value, xβ ≈ xβf ≈ 0.194.

For the case of nearly equal partial diffusion coefficients, D2 = D1, the

evolution proceeds similarly with the difference that the cluster size changes only

insignificantly at the initial stage of evolution, τ < ταf (see Fig. 2.21b) and the time

interval τβf is considerably shorter as compared with the previous case. Such two-

stage behavior is preserved in a wide interval of components mobility, actually only at

D1/D2 ≈ 0.025 cluster size and concentration begin to change monotonically down

to end (see Fig. 2.22, curves (c) and (c’)).

At D1 � D2, the situation is to some extent opposite. Along the path S →

T ′, the cluster grows quickly due to the incorporation of atoms of the second fast

component. Then, after a time xβ ≈ xβf , the composition of the ambient phase has

almost reached its final value xβ ≈ xβf , and a slow reduction of the cluster size due

to emission of atoms of the first component is found along the path T ′ → F .
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Fig. 2.23. Dependence of the characteristic times τβf , ταf and τγ on the D1/D2ratio.

Fig. 2.23 shows the dependence on the (D1/D2)-ratio of the characteristic

times of change of cluster composition, ταf , of ambient phase change, τβf , and

time τγ . Latter parameter can be computed via the analytical expression, Eq. (2.38),

resulting in

τγ =
1

γ (Rγ,max)
ln

[
xαf − x

xδ

]

. (2.44)

The minimum time, min (ταf , τβf), of change of the composition of the cluster or the

ambient phase differs only slightly from τγ , while the full time of decomposition is

determined by the maximum time max (ταf , τβf), which is twice as large as τγ for

D1/D2 ≈ 0.01, and for D1 � D2 τβf larger than ταf and τγ by more than an order

of magnitude.

2.4.3. Transition from independent cluster growth to coarsening

So far, we have considered phase separation in finite domains of size, R0,

considering the evolution of one cluster. However, the results of the analysis can
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be employed more generally allowing one to derive important conclusions about the

initial stages of phase separation processes for systems of arbitrarily large sizes. The

model considered above actually represents the case of an infinite domain with an

ensemble of identical clusters. The analysis of such systems has been shown to be

very fruitful already in previous investigations of the kinetics of phase separation in

solutions when the classical Gibbs’ approach was employed for the thermodynamic

description of the clusters and cluster ensembles [25,32–35]. The respective analyses

are attempted to be generalized in future.

For a more detailed analysis of the kinetics of phase formation, the existence

and evolution of the cluster size distributions has to be taken into consideration.

Independent growth of clusters of nearly the same sizes is possible only at the initial

stage of the process, and such distributions are unstable. Once the depletion effects

begin to dominate, the δ-shaped or Gaussian type distribution functions are inevitably

widened and the system passes into the coalescence stage [37]. In the simplest way,

this can be done by solving the equations of motion of the clusters numerically.

Such approach has been performed in terms of the classical description of cluster

formation and evolution by a variety of authors. Here we would like to show that

these analyzes can be generalized by the mentioned approach accounting both for

variations of cluster sizes and compositions. In order to illustrate these features, here

we restrict the analysis to the evolution of cluster ensembles consisting only of few

clusters.

Completing the analysis, we demonstrate that the transition to the competitive

growth stage can be described adequately in terms of the approach employed here

independently on whether the system starts the transformation from a metastable or

unstable initial state. For this purposes, we consider the evolution of a system of three

clusters in one domain. The clusters due not interact directly but only via consuming
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particles from the ambient phase. The conservation law, Eq. (2.1), gets then the form

n0 =
∑

i

(
n(i)

α + n(i)
α

)
= const. , (2.45)

∑

i

(
n

(i)
1α + n

(i)
2α

)
=
∑

i

[
n

(i)
1α (0) + n

(i)
2α (0)

]
= const. ,

∑

i

(
n

(i)
1β + n

(i)
2β

)
=
∑

i

[
n

(i)
1β (0) + n

(i)
2β (0)

]
= const. ,

n(i)
α = n

(i)
1α + n

(i)
2α , n

(i)
β = n

(i)
1β + n

(i)
2β ,

where the indices i = 1, 2, 3 specify the different clusters evolving in the system. The

concentration of the second component in the ambient solution is given then by

xβ =
∑

i

n
(i)
2β

(
∑

i

n
(i)
β

)−1

, (2.46)

and in the i-th cluster by

x(i)
α =

n
(i)
2α

n
(i)
1α + n

(i)
2α

. (2.47)

The evolution of the system is determined by the set of equations

dn
(i)
1α

dt
= −D1(1 − xβ)Θ

d

dn
(i)
1α

ΔG
({

n
(i)
1α

}
,
{

n
(i)
2α

})
, (2.48)

dn
(i)
2α

dt
= −D2xβΘ

d

dn
(i)
2α

ΔG
({

n
(i)
1α

}
,
{

n
(i)
2α

})
, (2.49)
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where

1

kBT
ΔG

({
n

(i)
1α

}
,
{

n
(i)
2α

})
=

3

2
n1/3

σ

∑

i

(
n(i)

α

)2/3 (
x(i)

α − xβ

)2
(2.50)

+
∑

i

n(i)
α f(xβ, x

(i)
α ) − n0f(xβ, x) .

As before, the functions f(xβ, x
(i)
α ) and f(xβ, x) are determined by Eq. (2.10), and

nσ by Eq. (2.11). Domain size and the initial cluster radii are assumed to be equal to

the maximum growth increment, i.e., R0 = 31/3R0m and R = Rγ,max (see Eqs. (2.40)

and (2.41)), the initial cluster compositions are chosen as xα,i = x (1 + δi), where

δ1 = 0.004, δ2 = 1.12 ∙δ1, δ1 = 1.2 ∙δ1 (thus, the first cluster has the lowest deviation

from the initial composition, the second a larger and the third the highest one). The

results of the computations are shown on Figs. 2.24 and 2.25.

On Fig. 2.24, a cross-section of the Gibbs free energy surface and the trajectory

of evolution of the first cluster is given in the
(
n

(1)
1α/nσ, n

(1)
2α/nσ

)
space. On Fig. 2.25,

the dependence of the compositions, x
(i)
α , the radii, R(i), of the clusters (i = 1, 2, 3),

and the composition of ambient phase, xβ , are shown in dependence on time. For three

clusters the phase space is six-dimensional, therefore we plot only its two-dimensional

sections for the first cluster (which is dissolved as the first one) for different moments

of time (as specified on the figure).

At the first stage of the process, for τ < τ
(i)
α (τ (1)

α ≈ 135, τ
(2)
α ≈ 128, and

τ
(3)
α ≈ 122), all three clusters evolve in an almost equal manner: the concentration

of the second component grows, the sizes of the clusters decrease (see Fig. 2.24b).

In the initial state, the Gibbs free energy has a shape characteristic for the instability

region (see Figs. 2.24a and 2.20), but already at τ = τb ≈ 120 a saddle point evolves

being a characteristic feature of metastable states (Fig. 2.24b). At τ = τ
(1)
α , the

concentration of the second component in the first cluster approaches the maximum

value (see Fig. 2.24c, it corresponds to the path S → T on Fig. 2.20). After that,

the cluster begins to grow, and at τ = τc ≈ 160 it reaches the maximum size. The
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Fig. 2.24. Cross-section of the Gibbs free energy surface and trajectory of the first

cluster evolution in the
(
n

(1)
1α/nc, n

(1)
2α/nc

)
space for a regular solution with a molar

fraction of the segregating component in the ambient phase equal to x = 0.3 for

D1/D2 = 1.

Gibbs free energy reaches then a local minimum (see Fig. 2.24d). In the case of a

single cluster, the process would have finished at such state, however, the second

and the third clusters continue to consume atoms of the second component, lowering

their concentration in the ambient phase. As the result of such depletion effects,

the first cluster shrinks, the concentration of the second component decreases. This

process corresponds to the beginning of dissolution of the first cluster. The process is

completed in a time τ1 ≈ 467, when the composition of the first cluster composition

approaches the composition of the the ambient phase, x
(1)
α = xβ . At this moment,
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Fig. 2.25. Dependence of the compositions, x
(i)
α , radiuses, R(i), of the clusters (

i = 1, 2, 3), and composition of ambient phase, xβ, on time.

the radius of the cluster remains finite (see Fig. 2.24b). The evolution of the second

cluster proceeds similarly, and in time τ2 ≈ 729 it is dissolved. At τ3 ≈ 937 the

process is finished and only one cluster remains in the domain.

2.5. Results and discussion

In the present paper, basic features of nucleation-growth and spinodal

decomposition processes in solutions are analyzed within the framework of a

thermodynamic cluster model based on the generalized Gibbs’ approach. This

approach allows one to determine the thermodynamic potentials of clusters

and ensembles of clusters in the otherwise homogeneous ambient phase for

thermodynamically well-defined (cf. [22,23]) non-equilibrium states of the considered
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heterogeneous systems. Hereby the cluster, representing the density and/or composi-

tion fluctuations may change with time both in size and intensive state parameters.

The thermodynamic analysis is employed further as the basis for the description of

the kinetics of the decomposition processes.

The thermodynamic analysis of cluster formation is performed in dependence

on supersaturation for metastable and unstable initial states and domains of infinite

and finite sizes. For domains of infinite sizes, in particular, the parameters of the

critical clusters – size, intensive state parameters, work of critical cluster formation –

are determined for metastable initial states of the solutions. It is shown that – in the

framework of the generalized Gibbs’ approach – the notation of a critical cluster can

be extended also to unstable initial states. Here the composition of the critical clusters

is equal to the composition of the ambient phase and the work of critical cluster

formation is equal to zero. The size of the critical clusters for unstable initial states

behaves like the size of the regions with highest amplification of density/composition

differences in the classical Cahn-Hilliard approach to the description of spinodal

decomposition. As shown, moreover, there is no qualitative difference between

nucleation and spinodal decomposition with respect to the basic mechanism of cluster

evolution. Nucleation processes, starting from thermodynamically metastable initial

states, proceed qualitatively widely similar as compared with processes of phase

formation governed by spinodal decomposition. As it turns out further, the classical

model of nucleation is not correct in application to phase formation in solutions (cf.

also [14, 16]).

As an additional step, the effect of finite domain sizes on cluster formation is

analyzed. It is shown, as a general consequence, that the degree of stability of the

system to phase formation increases with decreasing system size due to depletion

effects. In particular, the parameters of the critical clusters depend on system size. In

addition, systems of finite size may be metastable or even stable even if the infinite

samples are unstable. In this case the evolution of the system starts via spinodal
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decomposition. Then, due to the growth of the clusters, the supersaturation decreases,

and the system becomes metastable. Anyway, cluster growth continues. Finally, the

supersaturation decreases to such extent that the dissolution of the clusters with

smaller sizes becomes the prerequisite for the growth of the larger one, and the stage

of coarsening starts [37]. Thus, the approach allows us to describe the evolution of

the system from spinodal decomposition up to the coalescence stage accounting both

for changes of the sizes and the intensive state parameters of the clusters in the course

of this process. An analysis of experimental results on phase separation in solutions at

high supersaturations is performed in terms of the generalized cluster model showing

that the generalized cluster model allows us a more correct interpretation of the

dynamics of phase separation as compared with this classical theory.

In our approach only the knowledge of macroscopic properties of the ambient

and the newly evolving phases is required for the analysis of phase formation

processes. By this reason, the approach presented here seems, to our opinion, to

be preferable in the analysis of experimental results. The results of the analysis,

as performed above, were obtained employing the model of regular solutions. They

can be quantitatively modified by a more detailed account of the thermodynamic

properties of the real system, by taking into consideration additional thermodynamic

factors like special properties of domain boundaries or elastic stresses, which may

be of importance in a number of cases, or by accounting for peculiarities of the

process of diffusion not elaborated here. Nevertheless, we believe that the scenario

outlined will be valid generally for processes of segregation in solid or liquid

solutions. The application of the methods and results obtained to the interpretation

of experimental data will be addressed in future publications. Another question is

whether the results are applicable for other types of phase formation processes like,

for example, condensation and boiling. This topic will be addressed in a forthcoming

analysis.
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2.7. Висновки до роздiлу 2

Результати дослiджень, представлених у даному роздiлi, опублiковано

в статтi [2] (Додаток А. Список публiкацiй здобувача за темою дисертацiї). Серед

основних результатiв у якостi висновкiв можна видiлити наступнi:

• Показано, що в узагальненому методi Гiббса з процеси нуклеацiї,

починаючи з термодинамiчно метастабiльних початкових станiв, протiкають

якiсно значною мiрою аналогiчно процесу утворення нової фази за механi-

змом спiнодального розпаду. Ця схожiсть особливо помiтна, якщо розглядати

нестабiльну систему малого розмiру. У цьому випадку еволюцiя системи

починається за механiзмом спiнодального розпаду, але через зростання кластерiв

пересичення зменшується, система стає метастабiльною. Нарештi, пересичення

зменшується настiльки, що розчинення кластерiв з меншими розмiрами стає

необхiдною умовою для зростання кластерiв бiльшого розмiру, i починається

стадiя коалесценцiї.

• Таким чином, узагальнений пiдхiд Гиббса дозволяє описати еволюцiю

системи вiд спiнодального розпаду до стадiї коалесценцiї.
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РОЗДIЛ 3

ЕВОЛЮЦIЯ РОЗПОДIЛУ КЛАСТЕРIВ ЗА РОЗМIРОМ У ПРОЦЕСАХ

ЗАРОДЖЕННЯ-ЗРОСТАННЯ ТА СПIНОДАЛЬНОГО РОЗПАДУ В

РЕГУЛЯРНОМУ РОЗЧИНI

У першому та другому роздiлах аналiз процесу нуклеацiї було проведено

методом найшвидшого спуску на гiперповерхнi термодинамiчного потенцiалу,

який дає тiльки основний шлях еволюцiї кластера нової фази за розмiром та

складом. У третьому роздiлi проведено бiльш детальний аналiз за допомогою

чисельного моделювання на основi кiнетичної теорiї нуклеацiї, термодинамiка

формування кластерiв аналiзується на основi узагальненого методу Гiббса

для моделi регулярного бiнарного розчину. Проаналiзована еволюцiя функцiї

розподiлу кластерiв за розмiром та складом як для метастабiльних (нуклеацiя),

так i для нестабiльних (спiнодальний розпад) початкових станiв.
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ABSTRACT

Nucleation-growth and spinodal decomposition processes are two of the

basic mechanisms first-order phase transitions – like condensation and

boiling, segregation or crystallization and melting – may proceed. Their

adequate theoretical description is essential in order to understand the basis

mechanisms of self-structuring of matter at nano-scale dimensions. The basic

features of evolution of cluster size-distribution are discussed in detail both

for meta-stable (nucleation) and unstable (spinodal decomposition) initial

states for a simple model of a binary mixture. The results are obtained by the

numerical solution of a set of kinetic equations where the thermodynamics

of cluster formation is formulated based on the generalized Gibbs’ method.

It is shown, that nucleation will not proceed, in general (especially in

meta-stable initial states near to the spinodal curve), via the saddle point

but in trajectories of evolution by-passing the saddle point. For systems

in unstable initial states, spinodal decomposition can proceed similarly to

nucleation forming clusters evolving to the new phase via the ridge of

the thermodynamic potential hyper-surface. c©2010 Elsevier B.V. All rights

reserved.

3.1. Introduction

In the preceding analysis of nucleation-growth processes in solutions performed

by us [1–4], we always assumed, as it is generally done, that the flux of the clusters to

the new phase passes the saddle point of the characteristic thermodynamic potential.

Such scenario can be considered as appropriate for initial states near to the binodal

curve, where the thermodynamic barrier to nucleation is relatively high and in the

mean part of the meta-stable region, where the thermodynamic barrier is relatively

low, but the critical radius is small as well. But near to the spinodal curve, the
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thermodynamic barrier is low, the critical radius (computed via the generalized Gibbs

approach or density functional computations) grows, again, and in order to evolve into

the new phase via the saddle point very large clusters have to be formed. Such kind of

evolution path is unfavorable from a kinetic point of view. In such situations, not the

thermodynamic but the kinetic factors will govern the process, and the main flux to the

new phase passes not the saddle but some ridge point of the thermodynamic potential,

which corresponds to the smaller size of cluster. Such suggestion was formulated by

us also in the already cited references [1–4] following earlier suggestions by other

authors [5–11]. Here we will analyze these peculiarities in detail by solving directly

a set of kinetic equations governing nucleation and growth processes employing the

generalized Gibbs’ approach for the description of the properties of sub-, critical and

super-critical clusters.

3.2. Model system

We consider kinetic aspects of new phase formation in a binary solid or liquid

solution. Since here we are mainly interested in the discussion of the basic principles

and consequences of the newly developed generalized Gibbs’ approach in application

to phase separation, the solution is considered as a regular one representing one of

the simplest models of a system consisting of two kinds of interacting molecules.

Cluster formation in a binary solution results from a redistribution of molecules.

Following Gibbs’ model approach, we consider a cluster as a spatially homogeneous

part of the domain volume with a composition different from the ambient phase. Both

size and composition of the cluster may vary in a wide range. As the dividing surface,

separating the cluster from the ambient phase, in the thermodynamic description

underlying the method of analysis, we always employ here the surface of tension

[12–14]. In line with the basic assumptions underlying the model of regular solutions

[15] and for simplicity of the notations, the volume per particle, ω, is assumed to be
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the same for both components and independent of composition (ωα = ωβ ≡ ω, the

subscript α specifying the cluster, and β, the parameters of the ambient phase). Cluster

radius, R, and particle number in a cluster, nα, are related then by the following simple

expression

4π

3
R3 = nαω . (3.1)

The change of the Gibbs free energy, ΔG, connected with the formation of

one cluster in the initially homogeneous ambient phase can be written in a commonly

good approximation as [2, 16, 17]

ΔG = σA +
∑

j

nj (μjα − μjβ) . (3.2)

The first term in the right hand side of Eq. (3.2) reflects cluster surface effects ( σ is

the interfacial tension, and A is the surface area of the cluster) and the second term

cluster bulk contributions to the change of the Gibbs’ free energy, nj are the numbers

of particles of the different components in the cluster, nα = n1 + n2 (the subscript α

is omitted for n1 and n2 for convenience of the notations).

For binary regular solutions, the chemical potentials of the different components

in the cluster, μjα, and ambient solution, μjβ , are given by [15]

μ1α = μ∗
1α + kBT ln(1 − xα) + Ωx2

α , (3.3)

μ2α = μ∗
2α + kBT ln xα + Ω (1 − xα)2 ,

μ1β = μ∗
1β + kBT ln(1 − x) + Ωx2 ,

μ2β = μ∗
2β + kBT ln x + Ω (1 − x)2 ,

where kB is the Boltzmann constant, T the absolute temperature, xα and x are

the molar fractions of the second component in the cluster and the ambient phase,
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respectively,

xα =
n2

n1 + n2
,

and Ω is an interaction parameter describing specific properties of the considered

system. The parameter, Ω, can be expressed via the critical temperature, Tc, of the

system (cf. also Fig. 3.1) as

Tc =
Ω

2kB
. (3.4)

The surface tension between two macroscopic phases with compositions xα and x,

respectively, is given, according to Becker ( [15], see also [18]) by

σ = σ̃ (xα − x)2 . (3.5)

From Eqs. (3.2) – (3.5) we have

ΔG (nα, xα)

kBT
=

3

2
n1/3

σ n2/3
α (xα − x)2 + nαf(x, xα) , (3.6)

where

f (x, xα) = (1 − xα)

{

ln
1 − xα

1 − x
+ 2

Tc

T

(
x2

α − x2
)
}

(3.7)

+ xα

{

ln
xα

x
+ 2

Tc

T

[
(1 − xα)2 − (1 − x)2

]}

holds and the scaling parameter, nσ, for the particle number in the cluster is specified
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Fig. 3.1. Phase diagram of a binary regular solution with binodal and spinodal curves.

The spinodal curve separates thermodynamically stable from thermodynamically

unstable states of the homogeneous ambient phase. In the present analysis, we assume

that the temperature is equal to T = 0.7Tc and vary the driving force of the phase

transformation process by changing the initial composition of the ambient phase, x.

as

n1/3
σ =

2σ̃

kBT

(
4π

3

)1/3

ω2/3 . (3.8)

In addition, we introduce via Eqs. (3.1) and (3.8) also a scaling parameter, Rσ, for

the cluster radius as

Rσ =

(
3nσω

4π

)1/3

=
2σ̃ω

kBT
. (3.9)

In the further analysis, we will always assume for an illustration of the results

that the temperature in the system is equal to T = 0.7Tc. The concentration of

the solute in the initially homogeneous system is varied in the range from x =

xb
∼= 0.086 (left branch of the binodal curve) to x = xsp

∼= 0.226 (left branch of

the spinodal curve) covering meta-stable initial states and xsp < x ≤ 0.5 covering

unstable initial states (see Fig. 3.1). Since the phase diagram of a regular solution

is symmetric, we may restrict the analysis to initial states in the considered range
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with initial concentrations, x ≤ 0.5. A specification of further parameters like σ̃

and ω is not required, since we compute reduced characteristics, so that such system

parameters enter the description only via the scaling quantities (see also [2]).

Above given equations allow us to determine the thermodynamic potential

surface as a function of the number of particles, n1 and n2, in the cluster. The results

are shown for different values of the initial supersaturation in Fig. 3.2 both for meta-

stable ((a) x = 0.17) and unstable ((b) x = 0.3) initial states. As far as we are

interested mainly in the demonstration of the basic qualitative features, in Fig. 3.2

and similar ones, the numbers are omitted at the axes.

Fig. 3.2. Shape of the Gibbs free energy surface for meta-stable (x = 0.17, Fig. 3.2a)

and unstable initial states (x = 0.3, Fig. 3.2b). As mentioned, the temperature is

chosen equal to T/Tc = 0.7 (for further details, see text).

For each of the meta-stable initial states, the thermodynamic potential surface

has, in the vicinity of the critical cluster coordinates, a typical saddle-shape. The
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position of this saddle-point is determined by the set of equations

∂ΔG (n1, n2)

∂n1
= 0 ,

∂ΔG (n1, n2)

∂n2
= 0 . (3.10)

In order to allow us a better understanding of the shape of the thermodynamic

potential surface, contour lines through the saddle are included in the figures by full

curves and the ridge position by dashed curves. The thick full curve with arrows

describes the most probable trajectory of cluster evolution. It starts at some point

along the dashed curve determined by the initial conditions xα = xin (in the initial

state the composition of the cluster is different from the ambient phase, xin > x, the

detailed explanation see below). Then it passes the saddle point and follows further

the trajectory of macroscopic growth with an initial cluster size slightly above the

critical size. As discussed in detail in [2], the trajectory of evolution from the initial

state to the saddle point can be assumed to coincide, in general, with the path of

cluster dissolution starting with initial states slightly below the critical cluster size.

The most probable trajectory of evolution is determined thus for both regions by the

macroscopic growth equations. For segregation in solutions, these equations can be

written in the form

dn1

dt
= −D1(1 − xβ)Θ(n1, n2)

dΔG

dn1
, (3.11)

(3.12)
dn2

dt
= −D2xΘ(n1, n2)

dΔG

dn2
,

where D1 and D2 are the partial diffusion coefficients of the different components in

the ambient phase, and the notation

Θ(n1, n2) = Θ0n
κ
α (3.13)
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Fig. 3.3. Dependence of the minimum work of critical cluster formati-

on, ΔGc/(nσkBT ), and the minimum work of ridge cluster formation,

ΔGridge/(nσkBT ), on the initial solute concentration, x.

is employed. The parameter κ has the value κ = 2/3 for kinetic-limited growth,

and κ = 1/3 for diffusion-limited growth and Θ0 is a parameter depending only

on temperature (we set, as mentioned, the temperature equal to T = 0.7Tc). As

evident from above considerations and the structure of Eqs. (3.11), the path of cluster

evolution depends on the partial diffusion coefficients of both components of the

solution (see for the details [18]), however, qualitatively the picture remains always

the same. On Fig. 3.2, the trajectories are shown for D1 = D2.

The analysis of Eqs. (3.10) shows [2, 16, 17] that the work of critical cluster

formation decreases monotonically with increasing supersaturation and tends to zero

at the spinodal curve (see Fig. 3.3, solid curve). The dependence of the critical cluster

size, Rc, on supersaturation is illustrated in Fig. 3.4 (solid curve). We can see, that -

computed in terms of the generalized Gibbs approach - near the spinodal curve the

critical radius increases, and in order to evolve into the new phase via the saddle

point very large clusters have to be formed which is unfavorable from a kinetic point

of view. In such situations, we can predict, that not the thermodynamic but kinetic

factors will govern the process, and the main flux to the new phase passes not the
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Fig. 3.4. Dependence of the critical cluster radius, Rc/Rσ (solid curve) and ridge

crossing radius, Rridge (dashed curve), on the initial solute concentration, x, for phase

formation at meta-stable (xb < x < xsp) and unstable (x > xsp) initial states of the

ambient solution.

saddle but some ridge point of the thermodynamic potential, which corresponds to

smaller sizes of the cluster. This expectation will be confirmed by the results of the

numerical computations.

Having at our disposal the expression for the thermodynamic potential, we can

now formulate the set (for any possible values of n1 and n2) of equations, which

defines the evolution of the distribution function of clusters, f (n1, n2):

∂f (n1, n2)

∂t
= (3.14)

= ω−
1 (n1 + 1, n2) f (n1 + 1, n2) + ω+

1 (n1 − 1, n2) f (n1 − 1, n2) +

+ ω−
2 (n1, n2 + 1) f (n1, n2 + 1) + ω+

2 (n1, n2 − 1) f (n1, n2 − 1) −

−
[
ω+

1 (n1, n2) + ω−
1 (n1, n2) + ω+

2 (n1, n2) + ω−
2 (n1, n2)

]
f (n1, n2) .

Here the kinetic coefficients ω+
1(2) have the meaning of the probability of incorporation

into the cluster of atom of sort 1(2), and ω−
1(2) the probability of emission. These
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kinetic coefficients are given by

ω−
1 (n1 + 1, n2)

ω+
1 (n1, n2)

= exp

{
Δg1 (n1 + 1, n2)

kBT

}

, (3.15)

ω−
1 (n1, n2)

ω+
1 (n1, n2)

= exp

{
Δg1 (n1, n2)

kBT

}

, (3.16)

ω−
2 (n1, n2 + 1)

ω+
2 (n1, n2)

= exp

{
Δg2 (n1, n2 + 1)

kBT

}

, (3.17)

ω−
2 (n1, n2)

ω+
2 (n1, n2)

= exp

{
Δg2 (n1, n2)

kBT

}

, (3.18)

ω+
1 (n1, n2) = 4πD1(1 − x)ω−2/3n1/3 , (3.19)

ω+
2 (n1, n2) = 4πD2xω−2/3n2/3 , (3.20)

where

Δg1 (n1 + 1, n2) = ΔG (n1 + 1, n2) − ΔG (n1, n2) , (3.21)

Δg1 (n1, n2) = ΔG (n1, n2) − ΔG (n1 − 1, n2) , (3.22)

Δg2 (n1, n2 + 1) = ΔG (n1, n2 + 1) − ΔG (n1, n2) , (3.23)

Δg2 (n1, n2) = ΔG (n1, n2) − ΔG (n1, n2 − 1) . (3.24)

Let us introduce, now, the new reduced variables

t′ ≡ t ∙ 4π
√

D1D2ω
−2/3n2/3

σ , (3.25)
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R′ ≡ R/Rσ , n′
1,2 ≡ n1,2/nσ , D′

1,2 ≡
D1,2√
D1D2

, (3.26)

where Rσ and nσ are defined via the Eqs. (3.9) and (3.8), respectively. We will omit

the primes for convenience of the notations, and then Eq. (3.15) gets the form

∂f (n1, n2)

∂t
= (3.27)

= ω+
1 (n1, n2)

[

f (n1 + 1, n2) exp

{
Δg1 (n1 + 1, n2)

kBT

}

− f (n1, n2)

]

+ ω+
2 (n1, n2)

[

f (n1, n2 + 1) exp

{
Δg2 (n1, n2 + 1)

kBT

}

− f (n1, n2)

]

− ω+
1 (n1 − 1, n2)

[

f (n1, n2) exp

{
Δg1 (n1, n2)

kBT

}

− f (n1 − 1, n2)

]

− ω+
2 (n1, n2 − 1)

[

f (n1, n2) exp

{
Δg2 (n1, n2)

kBT

}

− f (n1, n2 − 1)

]

,

where

ω+
1 (n1, n2) = D1(1 − x)n1/3 , ω+

2 (n1, n2) = D2xn1/3 . (3.28)

The total flux of clusters in the space (n1, n2) can be written in the form

J(n1, n2, t) = Jr(n1, n2, t) + Js(n1, n2, t) , (3.29)

where

Jr,i(n1, n2, t) = −ω+
i (n1, n2)

f (n1, n2)

kBT

∂ΔG (n1, n2)

∂ni
(3.30)

is the regular part of the flux (i = 1, 2), and

Js,i(n1, n2, t) = −ω+
i (n1, n2)

∂f (n1, n2)

∂ni
(3.31)

is the fluctuational part of the flux.
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Let us note that the formal use of the potential Eq. (3.2) with Eq. (3.28) leads

to a non-physical result, that is, the clusters in the space (n1, n2) are floating towards

the bigger sizes along the bottom of the valley, ΔG = 0, corresponding to the initial

concentration x. Therefore we can formally choose in any place of the initial phase

the domain of the corresponding size, and because such “cluster” is not distinguished

from the environment its formation work equals zero and therefore all these states are

virtual. It is evident that the process of cluster formation can be influenced only by the

domains with a concentration which is different from the initial one by some value,

which is defined by the structures of the new and the initial phase. For example, if

in the domain of the initial phase consisting of 1000 atoms of kind A one atom is

replaced with the atom of kind B one gets a cluster with the concentration of atoms

of kind B, xα, equal to 0.001, if this domain consists of 50 atoms, one gets the

concentration xα = 0.02, in the case of 100 atoms xα = 0.1. Obviously the first

case is physically unrealistic, as opposed to the third and, probably, second cases, so

one should put a limit where a cluster starts being considered as different from the

environment.

In the further analysis, we set the limit in such a way that the initial cluster

has a concentration, xin, which is by 10% or more different from the initial one. For

example, for the concentration of the initial phase x = 0.2 the clusters have then a

minimum concentration x ≥ xin = 0.22 to be treated as a cluster of the new phase.

Such an approach is approximate, because in the general case, xin depends on the size

of the cluster, and also the exact solution of this problem significantly depends on the

properties of the specific materials and therefore is not considered in the present work.

We do not take into account the fluctuations with xa < x as well, because for the case

under consideration, x < 0.5, they will be significant only in the very unstable region,

but in such case we need to take into account the law of conservation of matter which

is not considered in the present work (we assume that the number of clusters and their

sizes are sufficiently small so that the state of the ambient solution is not changed).
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3.3. Results and discussion

Eq. (3.28) was solved numerically for particle numbers in the cluster in the

range n1,2 = 1, 2, . . . , 100, the composition of the initial clusters was chosen as

n1(0) = 0, n2(0) = 2, that is f (0, 2)|t=0 = 1010 and f (n1, n2)|t=0 = 0 for n2 6= 2.

The distribution function for the different moments of time, t = 100, 1000, 3000,

and t > 10000, is presented on Figs. 3.5a-d, respectively. The molar fraction of the

ambient phase was chosen here to be equal to x = 0.17, and the diffusion coefficients

are supposed to obey the relation D1 = D2.

Fig. 3.5. Cluster distribution functions for different moments of time: a) t = 100, b)

t = 1000, c) t = 3000, and d) t > 10000.
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In Figs. 3.6a-d, the shape of the Gibbs free energy surface and the path of the

cluster evolution is shown in the (n1, n2)-space for the molar fraction of the ambient

phase equal to x = 0.13, 0.17, 0.21, and 0.25, respectively. We set, as mentioned,

the temperature equal to T = 0.7Tc. One can see, that at first the clusters in the

Fig. 3.6. Shape of the Gibbs free energy surface and schematic illustration of the

trajectories of evolution for different values of the supersaturation: a) x = 0.13,

b) x = 0.17, c) x = 0.21, and d) x = 0.25. In all cases, we have set here D2
∼= D1.

space (n1, n2) are floating towards the bigger sizes along the bottom of the valley, the

distribution function has a maximum at x ∼= xin. Such clusters can be considered as

homo-phase fluctuations of the initial state. Then the nucleation process starts, and a

maximum of the distribution function is formed, which corresponds to the new phase
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(hetero-phase fluctuations). As it was mentioned before, we do not take into account

here the law of conservation of matter, so after the time t ≈ 10000, the process

becomes a steady-state one.

On Fig. 3.6, the dashed line shows the position of the ridge of the Gibbs free

energy surface, which is determined from the condition that the regular part of the

flux of clusters, Jr = (JrS) (Jr is defined by Eq. (3.30), S is normal vector to

the ridge), equals zero, and the solid line shows the maximum of the full flux of

clusters Eq. (3.29). It can be seen, that in the case of small supersaturation (x =

0.13, Fig. 3.6a), the nucleation goes through the saddle point, but with increasing

supersaturation (x = 0.17, Fig. 3.6b and x = 0.21, Fig. 3.6c) the point where the

flux crosses the ridge (with a radius Rridge) more and more deviates from the saddle

point, more precisely, the critical radius, Rc, which corresponds to the saddle point,

increases to infinity at x = xsp, while Rridge decreases but insignificantly (see also

Fig. 3.4, solid and dashed lines correspond to the Rc and Rridge, respectively). Ridge

crossing as another possible channel of formation of the new phase in the framework

of classical nucleation theory has been considered for the first time by Trinkaus [5]

and later in [6–11].

Let us note, that for unstable initial states the critical cluster has always a

composition equal to the composition of the ambient phase, and the critical cluster

corresponds to a cluster size where the state along the line x = xα switches from a

minimum to a maximum of ΔG with respect to variations of the cluster composition at

fixed values of the cluster sizes. This critical point of third order differs from the usual

saddle point of second order which determines nucleation in the metastable region but

fulfils a similar role (for details see [1–4]). For R < Rc, cluster composition changes

lead to the growth of the Gibbs free energy, and the cluster is stable in such region.

For R > Rc, any composition change (both increase and decrease of the cluster

concentration) results in a decrease of the Gibbs free energy. In such region, the

cluster is unstable and the decomposition proceeds via growth of the concentration
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differences, i.e., according to the basic mechanism commonly assigned to spinodal

decomposition. Nevertheless, we can see that in the region of weakly unstable initial

states (x = 0.25, Fig. 3.6d), the process evolves via a nucleation scenario passing the

ridge of Gibbs free energy surface.

The cross-sections of the distribution function for t > 10000, x = 0.17, D1 =

D2 are presented in Figs. 3.7 for the ridge position and different numbers of atoms in

the cluster (that is for n1 + n2 = const.). One can see, that these cross sections for

Fig. 3.7. Cross-sections of the distribution function for t > 10000, x = 0.17, D1 =

D2 for the ridge position and different number of atoms in the cluster (that is for

n1 + n2 = const.).

n = const. have two maxima, the first, at small values of n, corresponds to homo-

phase fluctuations of the initial state, the second one corresponds to the clusters of

the new phase or hetero-phase fluctuations.

In Fig. 3.8 the flux via the ridge in dependence on the size of the ridge position

(here expressed via n1) is shown, by a circle the position of the critical cluster is

specified. It is evident that the maximum of the flux is located near to the critical

cluster size only for relatively small and moderate initial super-saturations. In addition,

we can conclude that the transition to the new phase for a moderate entrance into the
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Fig. 3.8. Flux density via the ridge in dependence on the size of the ridge position

(here expressed via n1), for different values of the supersaturation: x = 0.13, x =

0.17, x = 0.21, and x = 0.25. By a circle the position of the critical cluster is

specified, in all cases, we have set here D1 = D2.

unstable region (which is usually associated with spinodal decomposition) occurs by

a similar nucleation scenario. This happens because near to the spinodal curve the

characteristic size of the Cahn-Hilliard instability region is large (see e.g. [2, 3, 19]

and Fig. 3.4), and it is much easier for the system to overcome the small potential

barrier by the nucleation scenario with the cluster of smaller size. Nevertheless this

process being activated by its nature has, again, features considered conventionally as

specific to spinodal decomposition, namely, during the evolution of the clusters their

composition changes significantly.

Finally, in Fig. 3.9 the flux density via the ridge Eq. (3.29) in dependence

on size of the ridge position is shown for x = 0.17 and for different values of

the (D1/D2)-ratio (D1D2 = const.). The dependence of the maximal value of flux

density, Jmax, and integral flux, Jint, via the ridge on the (D1/D2)-ratio is shown

in Fig. 3.10a; and the dependence of the minimum work of ridge cluster formation,

ΔGridge/(nσkBT ) and the size of the ridge position (here expressed via n1,r), on

the (D1/D2)-ratio is shown in Fig. 3.10b. Dashed lines show the minimum work of

cluster formation and n1,c is the value for the saddle point. In all cases, we have set
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Fig. 3.9. Flux density via the ridge in dependence on the size of the ridge position

(here expressed via n1), for different values of the (D1/D2)-ratio and x = 0.17.

here x = 0.17. We see, that for large (D1/D2)-ratios the process evolves passing the

ridge of Gibbs free energy surface near to the saddle point, but with a decrease of

the (D1/D2)-ratio the ridge crossing point, (n1,r, n2,r), more and more deviates from

the saddle point (n1,c, n2,c), so that n2,r ≈ n2,c, but n1,r < n1,c and decreases with

a decrease of the (D1/D2)-ratio (see Fig. 3.10b). This happens because for a low

mobility of the atoms of the first kind it is much easier for the system to overcome

the relatively higher potential barrier, but with clusters consisting of a smaller number

of particles n1 (see Fig. 3.10b). The maximal value of flux density, Jmax, reaches a

maximum at D1/D2 ≈ 0.15 and the integral flux, Jint, has a maximum at D1/D2 ≈

0.5 (see Fig. 3.10a).

The discussed above results are obtained under the assumption that the number

of the clusters is small and they do not influence the composition of the initial phase

significantly, so the law of conservation of matter is not taken into account explicitly

in computing the state of the ambient phase. Therefore, the results can be employed

only for the description of the initial stages of the process. This comment is especially

important when large super-saturations are considered, i.e., when the fast-growing

clusters deplete the surrounding phase. Nevertheless the results obtained in the present
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Fig. 3.10. a) Maximal value of flux density, Jmax, and total flux, Jtot, via the ridge

in dependence on the (D1/D2)-ratio; b) minimum work of ridge cluster formation,

ΔGridge/(nσkBT ) and the size of the ridge position (here expressed via n1,r), in

dependence on the (D1/D2)-ratio. Dashed lines show the minimum work of cluster

formation and n1,c value for the saddle point. In all cases, we have set here x = 0.17.

work qualitatively agree with the conclusions we have obtained earlier, where it was

also shown that taking depletion effect into account leads to the fact that in an unstable

region the process may proceed via the common nucleation scenario [3]. Of course,

it is more correct to calculate the kinetics of the process together with taking into

account from the very beginning the depletion effect. It can also be shown that in such

case the cluster distribution as a rule has a bimodal form, where the first maximum

corresponds to the fluctuations of the initial phase concentration, and the second one

corresponds to the clusters of the new growing phase. Both topics will be addressed

in detail in future analyses.
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1999), pgs. 237-267.

17. J. W. P. Schmelzer, J. Schmelzer Jr., and I. Gutzow, J. Chem. Phys. 112, 3820

(2000).

18. J. W. Christian, in: R. W. Cahn (Ed.): Physical Metallurgy (North-Holland

Publishers, Amsterdam, 1965, pgs. 227-346).

19. K. Binder, Rep. Prog. Phys. 90, 783 (1987).

3.5. Висновки до роздiлу 3

Результати дослiджень, представлених у даному роздiлi, опублiковано

в статтi [3] (Додаток А. Список публiкацiй здобувача за темою дисертацiї). Серед
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основних результатiв у якостi висновкiв можна видiлити наступнi:

• Проведено детальний аналiз процесу нуклеацiї нової фази з за допо-

могою чисельного моделювання на основi кластерної динамiки, термодинамiка

формування кластерiв аналiзується на основi узагальненого методу Гiббса для

моделi регулярного бiнарного розчину.

• Проаналiзована еволюцiя функцiї розподiлу кластерiв за розмiром та

складом як для метастабiльних (нуклеацiя), так i для нестабiльних (спiнодаль-

ний розпад) початкових станiв.

• Проведено порiвняння швидкостi нуклеацiї основi узагальненого ме-

тоду Гiббса i для класичної теорiї. Показано, що вихiд на квазiстацiонарний

режим нуклеацiї в узагальненому пiдходi Гiббса вiдбувається повiльнiше, нiж в

класичному випадку, але швидкiсть нуклеацiї помiтно вище.

• Розраховано потiк кластерiв нової фази в просторi розмiрiв, показано,

що у нестабiльних початкових станах поблизу класичної спiнодалi максимум по-

току може проходити через гребiнь гiперповерхнi термодинамiчного потенцiалу,

тобто утворення фаз може протiкати через активацiйний бар’єр, незважаючи на

те, що у цьому випадку значення роботи формування критичного кластера, що

вiдповiдає сiдлової точцi термодинамiчного потенцiалу, дорiвнює нулю.
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РОЗДIЛ 4

КIНЕТИКА ПРОЦЕСIВ СЕГРЕГАЦIЇ У РОЗЧИНАХ: ЕВОЛЮЦIЯ

ЧЕРЕЗ СIДЛОВУ ТОЧКУ АБО ЧЕРЕЗ ГРЕБIНЬ

ТЕРМОДИНАМIЧНОГО ПОТЕНЦIАЛУ

У четвертому роздiлi за допомогою чисельного моделювання на основi

кластерної динамiки у бiнарному регулярному розчинi визначається найбiльш

вiрогiдний потiк кластерiв нової фази в просторi розмiрiв залежно вiд початко-

вого пересичення.
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ABSTRACT

Based on the solution of the set of kinetic equations, describing nucleation

and growth in solutions, the most probable path of evolution of the cluster

ensemble in nucleation and growth processes is specified in dependence on

the initial supersaturation. Hereby, on one side, the classical Gibbs’ approach

is employed for the description of the thermodynamic properties of the
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system (utilizing the capillarity approximation). As an alternative method,

the classical Gibbs’ method of description is replaced by the generalized

Gibbs’ approach. It is shown that significant deviations from the saddle

point trajectory of evolution are found only if in the thermodynamics of

cluster evolution the generalized Gibbs’ approach is employed allowing

one to account for and to determine changes of the state of the clusters in

dependence on supersaturation and cluster size. In addition, the basic origin

for the deviation of the most probable path of evolution from the path via

the saddle point of the thermodynamic potential surface is specified.

c©2013 Elsevier B.V. All rights reserved.

4.1. Introduction

In the analysis of nucleation-growth processes in glass-forming melts, it is

commonly assumed that nucleation processes proceed along a trajectory passing

the maximum or, more generally, the saddle point of the thermodynamic potential

surface [1, 2]. Hereby the properties of the critical clusters are identified as a rule

with the properties of the newly evolving macroscopic phases in line with Gibbs’

classical theory of heterogeneous systems [3]. Extending Gibbs’ classical theory to

the description of heterogeneous systems in non-equilibrium states (for an overview,

c.f. [4]), we have re-analyzed in two recent publications the process of segregation

in solutions from thermodynamic [5] and kinetic [6] points of view by analytical

methods and by solving numerically the set of kinetic equations describing nucleation

and growth processes. Following earlier suggestions by other authors [7–13] it was

shown, in particular, that for sufficiently large supersaturation the transition to the

newly evolving phase does not proceed via the saddle but via a ridge of the

thermodynamic potential barrier and that such switch in the choice of the preferential

path of evolution to the new phase is of much more significance if the generalized

Gibbs’ approach is employed for the thermodynamic description of the cluster
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ensemble evolving in the ambient solution.

This analysis is continued and developed in more detail in the present paper.

Based on the solution of the set of kinetic equations, describing nucleation and growth

in solutions, the most probable path of evolution is specified in dependence on the

initial supersaturation (i.) if on one side the classical Gibbs’ approach is employed for

the description of the thermodynamic properties of the system (utilizing the capillarity

approximation), and on the other side, (ii.) if the classical Gibbs’ is replaced by the

generalized Gibbs’ approach. In addition, (iii.) the basic origin for the deviation of

the most probable path of evolution from the path via the saddle point is specified.

The starting point of the analysis and the problem to be analyzed can be described as

follows:

The critical cluster size, Rc, and the work of critical cluster formation, ΔGc,

in dependence on the initial solute concentration, x, in the ambient phase can be

represented, according to [5,6], in a form as shown in Fig. 4.1. While in the respective

Fig. 4.1. Critical cluster size and work of critical cluster formation according to

the classical (employing the capillarity approximations, dashed curve, RCNT(σ∞),

ΔGCNT(σ∞)) and the generalized (full curve, Rc, ΔGc) Gibbs’ approaches (scaling

parameters, Rσ and Gσ, for the cluster radius and the work of critical cluster formation

are introduced via Eqs. (4.9) and (4.10)). If in the classical Gibbs’ approach a

curvature dependence of the interfacial tension is introduced in such a way that the

work of critical cluster formation tends to zero at the spinodal curve, then the critical

cluster size approaches zero as well (dashed-dotted curve, RCNT(σ(R)), ΔGCNT(σ(R)))
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dependencies obtained via the classical Gibbs’ approach, RCNT(σ∞) and ΔGCNT(σ∞),

(employing the capillarity approximation) no peculiarities occur in the vicinity of the

spinodal curve, the critical cluster – computed via the generalized Gibbs’ approach

– diverges here and the work of critical cluster formation tends to zero remaining

equal to zero also in the region of unstable initial states. Provided we introduce in the

classical Gibbs’ approach a curvature dependence of the interfacial tension in such a

way that the work of critical cluster formation tends – as it should be the case – to

zero at the spinodal, then the critical cluster size tends to zero at the spinodal in such

approach as well (c.f. e.g. [14,15]). In the subsequent analysis we will not consider the

latter case but employ the capillarity approximation as usually done in the classical

theory of nucleation and growth. Note as well that in the framework of the generalized

Gibbs’ approach – in contrast to the classical Gibbs’ method of description – a critical

cluster size can be determined also for unstable initial states [5], it corresponds to

the lower limit of the size of the region where spontaneous density or composition

amplification may be realized according to the Cahn-Hilliard theory [16] of spinodal

decomposition. So, the question we would like to address here is: Will the evolution

of the system to the new phase proceed via some of the specified saddle points –

determined either by the classical or generalized Gibbs’ approaches – or will there

occur deviations from the saddle-point trajectory of cluster evolution and, if this is

the case, why.

In the analysis, we employ the methodology as outlined in detail in [5, 6] and

for the description of the thermodynamics the model of a binary regular solution. The

method and the model are sketched here only briefly. The reader is referred for the

respective details to above cited papers.
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4.2. Brief description of the methodology and the model system

Cluster formation in a binary solution results from a redistribution of molecules

in space. Following Gibbs’ model approach, we consider a cluster as a spatially

homogeneous part of the domain volume with a composition different from the

ambient phase. As the dividing surface, separating the cluster from the ambient phase,

in the thermodynamic description utilized in the analysis, we always employ here the

surface of tension [3, 17]. In line with the basic assumptions underlying the model

of binary regular solutions [18, 19] and for simplicity of the notations, the volume

per particle, ω, is assumed to be the same for both components and independent of

composition (ωα = ωβ ≡ ω = a3, the subscript α specifying the cluster, and β,

the parameters of the ambient phase, a is an interatomic distance parameter). Cluster

radius, R, and particle number in a cluster, nα, are related then by the following

simple expression

4π

3
R3 = nαω = nαa3 . (4.1)

The change of the Gibbs free energy, ΔG, connected with the formation of

one cluster in the initially homogeneous ambient phase can be written in a commonly

good approximation as [20, 21]

ΔG = σA +
∑

j

nj (μjα − μjβ) . (4.2)

The first term in the right hand side of Eq. (4.2) reflects cluster surface effects ( σ is

the interfacial tension, and A is the surface area of the cluster) and the second term

cluster bulk contributions to the change of the Gibbs’ free energy, nj are the numbers

of particles of the different components in the cluster, nα = n1 + n2 (the subscript α

is omitted for n1 and n2 for convenience of the notations).
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For binary regular solutions, the chemical potentials of the different components

in the cluster, μjα, and ambient solution, μjβ , are given by [19]

μ1α = μ∗
1α + kBT ln(1 − xα) + Ωx2

α , (4.3)

μ2α = μ∗
2α + kBT ln xα + Ω (1 − xα)2 ,

μ1β = μ∗
1β + kBT ln(1 − x) + Ωx2 ,

μ2β = μ∗
2β + kBT ln x + Ω (1 − x)2 ,

where kB is the Boltzmann constant, T the absolute temperature, x and xα =

n2/ (n1 + n2) are the molar fractions of the second component in the ambient phase

and the cluster, respectively, Ω = 2kBTc is an interaction parameter describing

specific properties of the considered system, and Tc is the critical temperature of the

system. The interfacial tension between two macroscopic phases with compositions

xα and x, respectively, is given, according to Becker ( [18], see also [19]) by

σ = σ̃ (xα − x)2 . (4.4)

From Eqs. (4.2) – (4.4) we have

ΔG (nα, xα)

kBT
=

3

2
n1/3

σ n2/3
α (xα − x)2 + nαψ(x, xα) + Δψ(n, x, xα) , (4.5)

where

ψ (x, xα) = (1 − xα)

{

ln
1 − xα

1 − x
+ 2

Tc

T

(
x2

α − x2
)
}

(4.6)

+ xα

{

ln
xα

x
+ 2

Tc

T

[
(1 − xα)2 − (1 − x)2

]}
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holds. In Eq. (4.5), a correction term

Δψ(n, x, xα) =






δ(nα − nm)

(xα − x)2 for nα > nm ,

0 for nα ≤ nm

(4.7)

is incorporated to remove the virtual clusters, that is the clusters with the same

composition, x = xα, as the initial solution, nm is the number of atoms in one

structural unit of the solution (see also [6] for more details). Here the scaling

parameter, nσ, for the particle number in the cluster is specified as

n1/3
σ =

2σ̃a2

kBT

(
4π

3

)1/3

. (4.8)

In addition, we introduce via Eqs. (4.1) and (4.8) also scaling parameters, Rσ, for the

cluster radius as

Rσ = a

(
3nσ

4π

)1/3

= a
2σ̃a2

kBT
, (4.9)

and for the work of cluster formation, Gσ, as

Gσ =
16π

3

(
σ̃a2

kBT

)3

. (4.10)

The reduced critical parameters, Rc/Rσ, RCNT/Rσ, and ΔGc/kBTGσ,

ΔGCNT/kBTGσ, do not depend on the interfacial tension, σ [21], and we will

use these reduced variables (R/Rσ and ΔG/kBTGσ) for the presentation of our

results.

In the analysis, we always assume for an illustration of the results that the

temperature in the system is equal to T = 0.7Tc. The concentration of the solute

in the initially homogeneous system is varied in the range from x = xb
∼= 0.086

(left branch of the binodal curve) to x = xsp
∼= 0.226 (left branch of the spinodal
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curve) covering meta-stable initial states and xsp < x ≤ 0.5 covering unstable initial

states. Since the phase diagram of a regular solution is symmetric, we may restrict the

analysis to initial states in the considered range with initial concentrations, x ≤ 0.5.

Having at our disposal the expression for the thermodynamic potential, we can

now formulate the set (for any possible values of n1 and n2) of equations, which

defines the evolution of the distribution function of clusters, f (n1, n2):

∂f (n1, n2)

∂t
= (4.11)

= ω−
1 (n1 + 1, n2) f (n1 + 1, n2) + ω+

1 (n1 − 1, n2) f (n1 − 1, n2) +

+ ω−
2 (n1, n2 + 1) f (n1, n2 + 1) + ω+

2 (n1, n2 − 1) f (n1, n2 − 1) −

−
[
ω+

1 (n1, n2) + ω−
1 (n1, n2) + ω+

2 (n1, n2) + ω−
2 (n1, n2)

]
f (n1, n2) .

Here the kinetic coefficients ω+
1(2) have the meaning of the probability of incorporation

into the cluster of atom of sort 1(2), and ω−
1(2) is the probability of emission per unit

time. These kinetic coefficients are given by

ω−
1 (n1 + 1, n2)

ω+
1 (n1, n2)

= exp

{
Δg1 (n1 + 1, n2)

kBT

}

, (4.12)

ω−
1 (n1, n2)

ω+
1 (n1, n2)

= exp

{
Δg1 (n1, n2)

kBT

}

,

ω−
1 (n1, n2)

ω+
1 (n1, n2)

= exp

{
Δg1 (n1, n2)

kBT

}

,

ω−
2 (n1, n2)

ω+
2 (n1, n2)

= exp

{
Δg2 (n1, n2)

kBT

}

,

ω+
1 (n1, n2) = 4πD1(1 − x)a−2n1/3 , (4.13)

ω+
2 (n1, n2) = 4πD2xa−2n2/3 ,

where
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Δg1 (n1 + 1, n2) = ΔG (n1 + 1, n2) − ΔG (n1, n2) , (4.14)

Δg1 (n1, n2) = ΔG (n1, n2) − ΔG (n1 − 1, n2) ,

Δg2 (n1, n2 + 1) = ΔG (n1, n2 + 1) − ΔG (n1, n2) ,

Δg2 (n1, n2) = ΔG (n1, n2) − ΔG (n1, n2 − 1) .

Let us introduce, now, the a dimensionless time scale via

t′ ≡ t
4π

√
D1D2

a2
, (4.15)

and dimensionless diffusivities as

D′
1,2 ≡

D1,2√
D1D2

. (4.16)

We will omit further the primes for convenience of the notations, and then Eq. (4.12)

gets the form

∂f (n1, n2)

∂t
= (4.17)

= ω+
1 (n1, n2)

[

f (n1 + 1, n2) exp

{
Δg1 (n1 + 1, n2)

kBT

}

− f (n1, n2)

]

+ ω+
2 (n1, n2)

[

f (n1, n2 + 1) exp

{
Δg2 (n1, n2 + 1)

kBT

}

− f (n1, n2)

]

− ω+
1 (n1 − 1, n2)

[

f (n1, n2) exp

{
Δg1 (n1, n2)

kBT

}

− f (n1 − 1, n2)

]

− ω+
2 (n1, n2 − 1)

[

f (n1, n2) exp

{
Δg2 (n1, n2)

kBT

}

− f (n1, n2 − 1)

]

,

where

ω+
1 (n1, n2) = D1(1 − x)n1/3 , ω+

2 (n1, n2) = D2xn1/3 . (4.18)

The total flux of clusters in the space (n1, n2) can be written in the form

J(n1, n2, t) = Jr(n1, n2, t) + Js(n1, n2, t) , (4.19)
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where

Jr,i(n1, n2, t) = −ω+
i (n1, n2)

f (n1, n2)

kBT

∂ΔG (n1, n2)

∂ni
(4.20)

is the regular part of the flux (i = 1, 2), and

Js,i(n1, n2, t) = −ω+
i (n1, n2)

∂f (n1, n2)

∂ni
(4.21)

is the fluctuational part of the flux. By solving numerically this set of equations, we

can now compute a variety of characteristics of the nucleation-growth process.

4.3. Results and discussion

The set of kinetic equations describing nucleation and growth processes

Eqs. (4.17) has been solved numerically assigning the following values to the

parameters a and Tc: a = 4.5 ∙ 10−10m, Tc = 1400 K. The computations were

performed for different values of the interfacial tension being equal to σ = 0.014,

0.021, 0.028, 0.04, and 0.055 J/m2, respectively. These values of interfacial tension

correspond to the respective values at states of equilibrium coexistence of both phases

at planar interfaces, when xα = xright
b = 1 − xb and x = xb hold. Eq. (4.4) yields

σ̃ =
σ

(1 − 2xb)
2 . (4.22)

With Eq. (4.22), we arrive at the following set of values of σ̃: σ̃ = 0.019, 0.03,

0.04, 0.06, 0.083 J/m2. The scaling parameters (Eqs. (4.9) and (4.10)) get the values

Rσ/a = 0.176, 0.236, 0.354, 0.532, 0.708 and Gσ = 0.0114, 0.0275, 0.0929,

0.315, 0.743, respectively. The calculations were performed for particle numbers

in the cluster in the range n1,2 = 1, 2, . . . , N (N was chosen in a range 200

. . . 1600, depending on the interfacial tension, because the characteristic dimension,

nσ, grows according to Eq. (4.8) with σ), the composition of the initial clusters was
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chosen as n1(0) = n1i, n2(0) = 1, that is f (n1i, 1)|t=0 = 3.7 ∙ 1028n−1
m (which

corresponds to the interatomic distance a = 3 ∙ 10−10m) and f (n1, n2)|t=0 = 0 for

(n1, n2) 6= (n1i, 1). Here nm = 1 + n1i, n1i is equal to the integer part of (1 − x)/x.

For the calculations in the framework of classical nucleation theory (CNT) the same

set of kinetic equations, Eqs. (4.17), was used, but the interfacial tension was fixed,

that is σ = σ̃ (1 − 2xb)
2, and in addition, Δψ(n, x, xα) = 0 was set in Eq. (4.5).

In Fig. 4.2, results of computations of the nucleation rate, J , are shown.

It is illustrated how the steady-state nucleation rate is established in the system

Fig. 4.2. Establishment of the steady-state nucleation rate as determined by the

solution of the set of kinetic equations employing classical (left) and generalized

(right) Gibbs’ approaches for the description of the thermodynamics of cluster

ensembles.

employing both the classical (top) and generalized (bottom) Gibbs’ approaches for

the description of the thermodynamic potential of an ensemble of clusters in the

ambient phase. Hereby it is assumed that the state of the ambient phase is not changed,

i.e., the volume fraction of the cluster phase is small. In agreement with general

conclusions [22] we find for all computations performed including the one shown in

Fig. 4.2 that CNT underestimates the nucleation rate. It is also evident from this figure,

that the time-lag in nucleation – the characteristic time required to establish steady-

state conditions – is smaller in CNT as compared to the estimates obtained utilizing

the generalized Gibbs’ approach. Employing the connection between time-lag in
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nucleation and critical cluster size, τ ∝ n
4/3−κ
c (with κ = (2/3) for kinetic limited

growth [23, 24]) as obtained employing basic assumptions of CNT, this result could

be eventually treated as a consequence that in the generalized Gibbs’ approach the

critical cluster size is larger as compared to the respective value obtained employing

the classical Gibbs’ approach (c.f. Fig. 4.1). However, the basic mechanism is here

somewhat different: The time-lag in nucleation is smaller in CNT as compared to

the estimates obtained via the generalized Gibbs’ approach due to the fact, that in

the evolution of the cluster ensemble, when described via the generalized Gibbs’

approach, first homophase fluctuation type clusters [25] evolve (i.e., clusters with a

composition near to xα = x, which have a small work of formation, c.f. Fig. 4.3).

This process takes some time and increases the time-lag. So, here a more detailed

Fig. 4.3. The flux via the ridge of the thermodynamic potential surface: (a)-(b) In the

classical Gibbs’ approach, the flux is bounded to a narrow range near to the saddle

point. In contrast, such picture is realized in the generalized Gibbs’ description only

for initial states near to the binodal curve (c.f. Fig. 3c, x = 0.17). For initial states

corresponding to a higher supersaturation (c.f. Fig. 3d, x = 0.21), the flux via the

ridge is found in a wide interval, and has a maximum not at the saddle point.
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analysis is eventually required to give a final explanation to mentioned peculiarity.

Employing the classical Gibbs’ method of description, the trajectory of

evolution to the newly evolving phase proceeds always widely via the saddle point

of the thermodynamic potential surface (the calculated difference of the position of

maximum flux via the ridge from the saddle point is less then 0.05 percent when

the cluster radii at the saddle point and of the ridge clusters are compared, see also

Figs. 4.3a and b, x = 0.17, 0.21, σ = 0.028 J/m2). In contrast, such picture –

that the evolution to the new phase proceeds along a path near to the saddle point

– is realized in the generalized Gibbs’ description only for initial states near to the

binodal curve (c.f. Fig. 4.3c, x = 0.17, σ = 0.028 J/m2). For such parameters, when

the supersaturation is low, the flux via the ridge is found in a narrow interval and has

its maximum at the saddle point.

For initial states corresponding to a higher supersaturation (c.f. Fig. 4.3b, x =

0.21, σ = 0.028 J/m2), the situation becomes a different one: A flux via the ridge is

found in a wide interval, and has its maximum not at the saddle point but beyond it.

These results are further illustrated in more detail in Fig. 4.4 showing the

dependence of the flux on cluster size along the ridge. Here Rj specifies the size of the

ridge cluster with the maximum, Jmax, of the flux, R−
j and R+

j are the lower and upper

values of the ridge clusters in between which an intensive flow into the direction of

the new phase is observed (defined by J(R−
j ) = J(R+

j ) = Jmax/2). For small values

of the supersaturation, the flux is found in a narrow interval, and the parameters R−
j

and R+
j are not so different from the parameter Rj corresponding to the ridge cluster

of maximum flow (Fig. 4.4, x = 0.15). With increasing supersaturation, the flux

becomes significant in a broader range and is shifted to smaller cluster sizes (Fig. 4.4,

x = 0.17). The maximum of the width is reached near to the spinodal curve (Fig. 4.4,

x = 0.225). With an even further increase of the supersaturation, with values of x

in the unstable region, the range of significant fluxes becomes more narrow, again

(Fig. 4.4, x = 0.27).
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Fig. 4.4. Dependence of the flux via the ridge on the cluster size along the ridge

for different supersaturations. Employing the classical method of description, widely

independent on the initial supersaturation the flux is located near to the saddle

with its maximum at the saddle point. Employing the generalized Gibbs’ approach,

latter scenario is realized for low supersaturation, only. For moderate and large

supersaturations, the evolution to the new phase proceeds along a ridge path with a

maximum value of the flux, Rj , not located at the saddle of the Gibbs’ thermodynamic

potential surface. Here R−
j and R+

j are the lower and upper values of the size along

the ridge where intensive flow processes of clusters to the new phase are observed.

In Fig. 4.5, the region of intensive fluxes to the new phase is compared with

the critical cluster sizes as obtained via classical and generalized Gibbs’ approaches.

For weakly and moderately metastable states, the ridge cluster radius of maximal

flow, Rj , is equal to the critical size for the saddle point and decreases with an

increase of the supersaturation. Near to the spinodal curve, where the critical size,

corresponding to the saddle point, grows, the ridge critical radius decreases, similarly

to the critical radius as computed via the classical Gibbs’ approach and employed in

classical nucleation theory.

Fig. 4.6 shows the dependence of the parameters of the critical clusters on

supersaturation, x, for for different values of the interfacial energies σ = 0.014,

0.021, 0.028, 0.04, and 0.055 J/m2: Size (Fig. 4.6a), work of formation (Fig. 4.6b)

and composition (Fig. 4.6c). The dependencies are shown always employing three
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Fig. 4.5. Dependence of the ridge flux parameters Rj (location of the maximum of

the flux, full curve), R−
j and R+

j (lower and upper values of the size along the ridge

where intensive flow processes of clusters to the new phase are observed) on the

initial solute concentration, x. Critical cluster sizes, Rc, for nucleation via the saddle

point obtained via the generalized Gibbs’ approach (dotted curve), and RCNT for CNT

(dashed curve) are shown for comparison.

Fig. 4.6. Dependence of the parameters of critical clusters on the initial solute

concentration, x, for different surface energies, σ = 0.014, 0.021, 0.028, 0.04,

and 0.055 J/m2, computed by three different approaches, classical nucleation theory

(dashed lines), thermodynamical generalized Gibbs approach (nucleation proceeds

via saddle point, dotted lines), and kinetic generalized Gibbs approach (nucleation

can proceed via ridge, solid lines): (a) sizes (RCNT/Rσ, Rc/Rσ, and Rj/Rσ), (b)

work of formation (ΔGCNT/kBTGσ, ΔGc/kBTGσ, and ΔGj/kBTGσ) and (c)

composition (xα,CNT , xα,c, and xα,j). Recall that for the reduced variables, Rc/Rσ and

ΔGc/kBTGσ, and for composition, xα,CNT , xα,c, the critical parameters for CNT and

thermodynamical generalized Gibbs do not depend on the interfacial tension, σ [19].
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Fig. 4.7. Effective work of critical cluster formation and specification of the different

ranges of validity of the approaches discussed

different approaches, classical nucleation theory (dashed lines), thermodynamical

generalized Gibbs approach (nucleation proceeds via saddle point, dotted lines), and

kinetic generalized Gibbs approach (nucleation can proceed via the ridge, solid lines)

(recall that for the reduced variables, R/Rσ and ΔG/kBTGσ, and for the cluster

composition, xα, the critical parameters for CNT and thermodynamical generalized

Gibbs’ approach do not depend on the interfacial energy, σ [21]). We can see that the

nucleation path according to the kinetic approach is located always between CNT and

thermodynamical generalized Gibbs predictions. For large values of the interfacial

tension, the evolution path is moved to the path as predicted by the thermodynamical

generalized Gibbs’ method (nucleation proceeds via saddle point), for low values of

the interfacial tension the nucleation path is moved to the curves as expected from

CNT.

In Fig. 4.7, the effective work of critical cluster formation – for the different

trajectories of evolution of the cluster ensemble – is shown in dependence on

supersaturation and it is specified which of the theoretical approaches is most suitable

for the different ranges of the initial supersaturation. For weakly metastable states,

CNT and generalized Gibbs lead to the same results and both methods are valid.
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For moderately metastable states, CNT results in too high values of the work of

critical cluster formation, and the thermodynamic analysis in the framework of the

generalized Gibbs approach has to be applied. Here the evolution to the new phase

proceeds via the saddle of the thermodynamic potential surface. In the metastable

region near to the spinodal curve, nucleation proceeds via the ridge, but not via the

saddle point, and only the kinetically based analysis of nucleation in the framework

of generalized Gibbs approach is valid. This conclusion holds similarly in the region

of thermodynamically unstable initial states in the vicinity of the spinodal curve.

Finally, we would like to analyze why the transition from a path of evolution

via the saddle is switched with increasing supersaturation to evolution processes

proceeding via the ridge of the thermodynamic potential surface. The origin of

such kind of behavior is the following: As shown in detail in previous analysis

(c.f. [4]), the mechanism of nucleation in solutions does not consist – as assumed

in the classical picture – in the growth of the cluster in size with more or less given

composition. In contrast, nucleation is characterized by an initial amplification of

density fluctuations in a region of the ambient phase with a radius of the critical

cluster size. The nucleation rate of clusters evolving via the saddle can be represented

then consequently as being proportional to

J(Rc) ∝ Φc(Rc) = N(Rc) exp

(

−
Wc

kBT

)

=

(
Rσ

Rc

)3

exp

(

−
ΔG(Rc)

kBT

)

. (4.23)

Here N(Rc) is proportional to the number of nucleation sites in the system when

nucleation proceeds via the saddle of the thermodynamic potential surface.

With an increase of the supersaturation, the work of critical cluster formation

via the saddle, ΔG(Rc), decreases and the exponential term increases. However, the

pre-factor, 1/R3
c , in the expression of the steady-state nucleation rate overcompensates

this effect as soon as Rc as determined via the generalized Gibbs’ approach starts to

increase with increasing supersaturation. By this reason, assuming that the process
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Fig. 4.8. Illustration of the origin of deviation of the most probable path of cluster

evolution from the saddle point trajectory.

proceeds similarly via a ridge, the maximum ridge nucleation rate

J(Rj) ∝ Φj(Rj) = N(Rj) exp

(

−
Wc

kBT

)

=

(
Rσ

Rj

)3

exp

(

−
ΔG(Rj)

kBT

)

(4.24)

is larger and consequently this way of evolution represents the preferred trajectory of

cluster formation and growth (Fig. 4.8).

The switch from the saddle point evolution path to ridge crossing allows the

system to realize higher nucleation rates, and by this reason, higher rates of change

of the characteristic thermodynamic potential. This switch in the preferred path of

evolution can be considered in this way as a special realization of the principle of

maximum entropy production (or here the Gibbs’ free energy decrease) as formulated

in [26] as a criterion of selection of the most probable among several possible reaction

pathes. The switch position, xsw, can be estimated as the inflection point of J(Rc) as

given by Eq. (4.23), i.e., as a root of the equation

∂2

∂x2
Φ(Rc) = 0 . (4.25)
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Fig. 4.9. Dependence of the composition of the switching point, xsw, where ridge

cluster passage starts to become dominating, on interfacial tension, σ.

The dependence of xsw on interfacial tension, σ, determined via Eq. (4.25) is shown

in Fig. 4.9. For low values of the interfacial tension switching occurs at moderate

supersaturations, and the switching point shifts to the spinodal with growing values

of σ.

4.4. Conclusions

Employing the generalized Gibbs’ approach, the work of critical nucleus

formation in solutions is found generally to have lower values as compared with the

result obtained by the classical Gibbs’ approach when the capillarity approximation

is employed. Therefore the nucleation rate computed via the generalized Gibbs’

approach is, as a rule, considerably larger. These results are a consequence of

the possible variations of bulk properties of the critical clusters accounted for and

determined in the generalized Gibbs’ approach. For small supersaturation, the results

of the classical and generalized Gibbs’ approaches lead to widely equivalent results.

This is the range, where the classical Gibbs’ method underlying classical nucleation
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theory is directly applicable. For moderately metastable states, the thermodynamic

analysis in the framework of the generalized Gibbs approach can be applied in order

to determine the flux via the saddle point dominating here the nucleation process.

However, for both metastable and unstable initial states near to the spinodal curve

the evolution to the new phase can and will, as a rule, proceed not via the saddle

point, but via the ridge of the appropriate thermodynamic potential relief. In this

range of supersaturation, only the analysis of the kinetics of nucleation and growth

based on the solution of the set of kinetic equations employing for the thermodynamic

description the generalized Gibbs approach is valid. For low interfacial tension values,

the process of nucleation proceeds visually similar to CNT – critical size and work of

critical cluster formation are near to the values predicted by CNT. Nevertheless, the

physical nature of the process is very different: in the framework of CNT, nucleation

proceeds via the saddle point, but in the generalized Gibbs’ approaches (i) the saddle

point is as a rule located at another place, and (ii) nucleation proceeds via the ridge

of the thermodynamic potential relief.
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4.5. Висновки до роздiлу 4

Результати дослiджень, представлених у даному роздiлi, опублiковано

в статтi [4] (Додаток А. Список публiкацiй здобувача за темою дисертацiї).

Проведено детальний аналiз процесу нуклеацiї нової фази з за допомогою

чисельного моделювання на основi кластерної динамiки, проаналiзована ево-

люцiя функцiї розподiлу кластерiв за розмiром та складом. Показано, що можна

видiлити три областi залежно вiд ступеня нестабiльностi системи:

• У першiй областi, при малому значеннi пересичення, результати класи-
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чної теорiї нуклеацiї на основi капiлярного наближення та узагальненого методу

Гiббса майже iдентичнi, максимум потоку кластерiв нової фази в просторi

розмiрiв проходить через сiдлову точку.

• В другiй областi, при бiльшому значеннi пересичення, робота створе-

ння кластера нової фази помiтно менша, нiж в класичнiй теорiї нуклеацiї, що

призводить до iстотно бiльш високого значення швидкостi нуклеацiї. Максимум

потоку в просторi розмiрiв, як i в першiй областi, проходить переважно через

сiдло. У першiй i другiй областях можна використовувати для розрахунку

швидкостi нуклеацiї простi аналiтичнi вирази через активацiйний бар’єр.

• У третiй областi, поблизу спiнодалi, нуклеацiя вiдбуватиметься не

через сiдлову точку, але траєкторiєю, що проходить через гребiнь гiперповерхнi

термодинамiчного потенцiалу. Розрахунок швидкостi нуклеацiї у третiй областi

можливий тiльки на основi чисельного моделювання на основi кластерної

динамiки.
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РОЗДIЛ 5

УЗАГАЛЬНЕНИЙ МЕТОД ГIББСА ДЛЯ ГЕТЕРОГЕННОЇ НУКЛЕАЦIЇ

У п’ятому роздiлi дослiджено гетерогенне зародження кластерiв нової

фази (конденсацiя та кипiння) на плоских твердих поверхнях з урахуванням

змiни параметрiв стану критичних кластерiв (крапельок або бульбашок) залежно

вiд пересичення в однокомпонентнiй рiдина ван дер Ваальса. В узагальненому

пiдходi Гiббса об’ємнi параметри кластера залежать вiд ступеня пересичення

розчину, тому можна припустити, що при гетерогенної нуклеацiї на плоскiй

поверхнi контактний кут також буде змiнюватися i параметри критичного

кластера будуть не такими, як у гомогенному випадку. Це основна iдея даного

роздiлу.
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Heterogeneous nucleation (condensation and boiling) on planar solid surfaces

is described taking into account changes of the state parameters of the critical

clusters in dependence on supersaturation. The account of the variation

of the state parameters of the cluster phase on nucleation is performed in

the framework of the generalized Gibbs’ approach. One-component van der

Waals fluids are chosen as a model for the analysis of the basic qualitative
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characteristics of the process. The analysis is performed for both hydrophobic

and hydrophilic surfaces and similarities and differences between condensati-

on and boiling processes are discussed for the two different cases. It is shown

that, in the generalized Gibbs’ approach, contact angle and catalytic factor for

heterogeneous nucleation become dependent on the degree of metastability

(undercooling or superheating) of the fluid. For the case of formation of

a droplet in supersaturated vapor on a hydrophobic surface and bubble

formation in a liquid on a hydrophilic surface the solid surface has only

a minor influence on nucleation. In the alternative cases of condensation

of a droplet on a hydrophilic surface and of bubble formation in a liquid

on a hydrophobic surface, nucleation is significantly enhanced by the solid.

Effectively, the existence of the solid surface results in a significant shift

of the spinodal to lower supersaturations as compared with homogeneous

nucleation. Qualitatively the same behavior is observed now near the new

(solid surface induced) limits of instability of the fluid as compared with the

behavior near to the spinodal curve in the case of homogeneous nucleation.

c©2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4802201]

5.1. Introduction

In the interpretation of phase formation processes, two well-established

thermodynamic approaches are presently widely employed going back to Gibbs [1]

and van der Waals [2, 3]. Employing Gibbs’ theory for the description of critical

cluster formation it is, in addition, widely assumed in classical nucleation theory

that the bulk properties of the clusters of the newly evolving phase are to a large

extent similar to the properties of the respective macroscopic phases. As a second

additional assumption it is frequently supposed that the specific interfacial energy or

the surface (interfacial) tension is equal to the respective values for an equilibrium
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coexistence of both phases at planar interfaces (capillarity approximation). While the

first of these assumptions (similarity of the bulk properties of the critical clusters

with the parameters of the respective macroscopic phases) is to a large degree a

consequence of Gibbs’ theory, the second assumption can be and is often released by

introducing a curvature or size dependence of the surface tension or of the specific

interfacial energy. Latter approach is used (and it is the only possibility in Gibbs’

classical approach) in order to arrive at a better agreement between experimental

data on nucleation rates and the theoretical predictions [4, 5]. In such approach, the

surface tension serves to some extent (or fully) as a fit parameter in order to reconcile

experiment and theory with respect to the value of the nucleation rate. However, such

approach – employing the value of the specific interfacial energy as a fit parameter as

it is done generally by necessity in the description of crystallization processes – may

lead to other contradictions between theory and experiment and to internal problems

in the theoretical description itself [6].

However, there exists an alternative method to improve the agreement between

theory and experiment in the description of nucleation. Indeed, as it was shown for

the first time by Cahn and Hilliard [7] applying the van der Waals’ approach to the

description of the kinetics of phase formation, the properties of the critical clusters

may deviate significantly from the properties of the newly evolving macroscopic

phases. This deviation of the bulk properties of the critical clusters from the properties

of the macroscopic phases is not accounted for appropriately in Gibbs’ theory. As

shown by us in the last decade [8, 9], generalizing Gibbs’ approach such possible

changes of the bulk properties may be incorporated into the description allowing

one to reconcile Gibbs’ and van der Waals-type approaches in the description of

nucleation. The mentioned generalization of Gibbs’ approach consists basically in the

formulation of the thermodynamic theory by extending it from the very beginning

to the description of non-equilibrium states of clusters in the ambient phase. Only

after this task has been resolved the theory is applied then to the description of the
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properties of the clusters in nucleation and growth. The application of the generalized

Gibbs’ approach was shown to allow one a more correct description of nucleation

as compared with the classical theory: (i.) for model systems the results are in

agreement with density functional computations; (ii.) the approach allows one an

adequate theoretical description of a variety of experimental data which had not found

an adequate interpretation so far [10, 11].

The generalized Gibbs’ approach was applied by us so far in detail to the

description of condensation and boiling in one-component systems [12–14], boiling

in multi-component liquids [15], segregation processes in solutions [8, 17–20] and

crystallization of glass-forming melts [6,10,11]. Predictions of the generalized Gibbs’

approach have been compared, at part, in these papers with results of van der

Waals’ density functional computations [14–16] and experiment (e.g. [6, 11, 12, 15]).

However, in all these investigations we considered so far exclusively homogeneous

nucleation processes. On the other hand, in a huge variety of processes of phase

formation in nature, experiment and technological applications, the formation of the

newly evolving phase does not proceed via homogeneous nucleation but by involving

different types of heterogeneous nucleation cores [21–27]. These effects can be

treated straightforwardly in terms of Gibbs’ classical theory [4]. By this reason, a

generalization of the approaches as developed employing the classical Gibbs’ theory

but accounting for – in terms of the generalized Gibbs’ approach – for possible

changes of the bulk state parameters of the critical clusters of the new phase can

be expected to be possible in a straightforward way. In order to develop the theory in

this direction, with the present paper we start a series of investigations to demonstrate

how, in a similar way as in the classical treatment, heterogeneous nucleation can

be treated in terms of the generalized Gibbs’ approach. For the outline of the basis

ideas and differences as compared to the treatment in terms of the classical Gibbs’

approach, we start here the analysis with some of the simplest cases, the description

of condensation and boiling at planar interfaces as performed – in the framework of
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the classical treatment – e.g. by Volmer [21].

In brief, in the present article heterogeneous nucleation (condensation and

boiling of one-component fluids) at planar solid interfaces is described in the

framework of the generalized Gibbs’ approach. The van der Waals’ fluid [2, 28]

is chosen as a model for the analysis of the basic qualitative characteristics of the

process similarly as it was done in our previous analysis of homogeneous nucleation

(condensation and boiling in one-component van der Waals’ fluids) [12–14]. As in the

latter case, in the analysis we account for the fact that the state parameters (which is

density for a one-component system) of the newly evolving clusters and, in particular,

the critical clusters (drops or bubbles) may deviate in their values considerably from

the respective values of the macroscopic phases. This additional as compared to the

classical picture variation of the bulk parameters affects also the surface parameters

like surface tension and wetting angles and gives thus an additional contribution

to the activity factor of the respective heterogeneous nucleation core with respect

to nucleation. So, in order to determine the work of critical cluster formation the

dependence of the surface parameters on the density of the critical nuclei (drops,

bubbles) has to be determined. This program will be implemented here for four

cases: bubble formation in superheated (stretched) liquids and droplet formation

from the supersaturated (supercooled) vapor both for the cases of hydrophilic and

hydrophobic planar interfaces. Similarities and differences between condensation and

boiling processes are discussed as well.

The article is structured as follows: In Section 5.2, the van der Waals’ equation

of state is briefly discussed as far as required for the subsequent derivations, the

location of binodal and spinodal curves are specified, and the general expressions

are developed allowing us to determine the work of critical cluster formation for

condensation and boiling at planar interfaces. In Section 5.3, the expressions for the

contact angle and catalytic activity factor for critical droplet and bubble formation

are computed. Combining the results obtained in Sections 5.2 and 5.3, in Section 5.4
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heterogeneous condensation and boiling of a van der Waals gas on hydrophilic and

hydrophobic planar surfaces is analyzed. A summary of the results, conclusions and

of possible generalizations (Section 5.5) completes the paper.

5.2. Basic equations

5.2.1. Bulk properties of ambient and newly evolving phases, binodal and

spinodal curves

To describe the bulk properties of the ambient and newly formed phases the

van der Waals equation of state will be used. In dimensionless variables, this equation

has the form [2, 28]

Π(ω, θ) =
8θ

3ω − 1
−

3

ω2
, (5.1)

Π ≡
p

pc
ω ≡

v

vc
, θ ≡

T

Tc
, (5.2)

were v, p, and T are the molar volume, pressure, and temperature, by vc, pc and

Tc the values of the same parameters in the critical point are denoted. The chemical

potential of the van der Waals fluid can be written as [12]

μ(ω, θ) = −
8θ

3
ln(3ω − 1) +

8θω

3ω − 1
−

6

ω
. (5.3)

The position of the spinodal, the border between the thermodynamically metastable

and unstable states in the absence of heterogeneous nucleation centers (we will denote
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Fig. 5.1. Location of the binodal and spinodal curves for a van der Waals fluid. For

an illustration of the results, we will perform here the computations for a value of the

reduced temperature equal to θ = 0.7 (see also text).

it more specifically later also as "bulk spinodal"), is given by the equation

d

dω
Π(ω, θ) = 0 . (5.4)

For any value of temperature below the critical temperature (θ < θc = 1), Eq. (5.4)

yields two solutions which coincide at the critical point. The location of the binodal

curve is determined by the conditions of thermodynamic equilibrium of vapor (gas)

and liquid at a planar interface (equality of pressure and chemical potential) that is,

by the solution of the system of equations

Π(ωgas, θ) = Π(ωliq, θ) , μ(ωgas, θ) = μ(ωliq, θ) . (5.5)

Similarly to above discussed case, for any value of temperature in the range θ < θc =

1, Eq. (5.5) yields one solution for ωg and one for ωl. These two solutions coincide

at the critical point, again. The binodal and spinodal curves are given in terms of

reduced density, ρ = 1/ω, in Fig. 5.1.

Numerical computations will be performed here assuming the reduced



A. S. Abyzov and J. W. P. Schmelzer J. Chem. Phys. 138, 164504 (2013) 197

temperature to be equal to θ = 0.7. In such case, the values of the reduced volume at

the binodal (ωb) and spinodal (ωsp) curves are equal to

ω
(left)
b = 0.467 , ω

(right)
b = 7.811 , (5.6)

ω(left)
sp = 0.579 , ω(right)

sp = 2.376 . (5.7)

Accordingly, the equilibrium densities of liquid (ρl,0) and vapor (ρg,0) are

ρl,0 =
(
ω

(left)
b

)−1
= 2.14 , ρg,0 =

(
ω

(right)
b

)−1
= 0.128 , (5.8)

and the densities at the liquid (ρl,sp) and vapor branches (ρg,sp) of the spinodal curve

are

ρl,sp =
(
ω(left)

sp

)−1
= 1.727 , ρg,sp =

(
ω(right)

sp

)−1
= 0.421 . (5.9)

The non-equilibrium values of density of liquid and vapor will be denoted as ρl and

ρg, respectively. An illustration of these notations and results is also given in Fig. 5.1.

5.2.2. Work of critical cluster formation: General expression

Suppose that the system is instantaneously transferred into a metastable state

located in between the binodal and spinodal curves and that afterwards pressure and

temperature are kept constant (later-on we will consider also initial states beyond

these limits, i.e., unstable initial states in between both spinodal curves). As a first

step in the description, we determine the parameters of the critical clusters (drop or

bubble) formed on the planar solid surface.
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Fig. 5.2. Heterogeneous nucleation of a droplet (a, b) and a bubble (c, d) of radius R

on hydrophilic (a, d) and hydrophobic (c, b) planar solid surfaces.

The expression for the change of the thermodynamic potential (the Gibbs’

free energy, G) for a one-component system due to the formation of a drop of the

considered shape (segments of a sphere with a radius, R, cf. Fig. 5.2) in the vapor

phase can be written both in the classical and generalized Gibbs’ approaches then

as [4, 9, 15, 21]

ΔG = σlgAlg + (σls − σgs)Als + (p − pα)Vα + nα(μα − μβ) , (5.10)

and, for nucleation of a bubble in a liquid, as

ΔG = σlgAlg + (σgs − σls)Ags + (p − pα)Vα + nα(μα − μβ) . (5.11)

Here σls, σgs and σlg are the specific surface energies (surface tension) of the liquid-

solid, vapor-solid and vapor-liquid interfaces, respectively, Als, Ags and Alg are the
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respective interfacial areas (see Fig. 5.2), nα is the number of particles (atoms,

molecules) in the cluster. In both equations and furtheron, the index α always denotes

the parameters of the cluster (liquid phase in case of droplet formation or vapor phase

in boiling), and the index β refers to ambient phase parameters (vapor or liquid,

respectively). As independent variables, we use the radius, R, and the density of the

cluster, ρg (bubble) and ρl (drop), respectively.

The bulk contributions, ΔGV , to the Gibbs’ free energy change can be written

for the case of formation of a droplet with a radius, R, and a contact angle, γ

(cf. Fig. 5.2a and b), generally as [21]

ΔGV = (p − pα)Vα + nα(μα − μβ) , (5.12)

ΔGV =
4π

3
R3φ [(p − pα) + ρα(μα − μβ)] ,

where φ is determined via the contact angle, γ, as

φ =
1

4

(
2 − 3 cos γ + (cos γ)3

)
=

1

4
(2 + cos γ)(1 − cos γ)2 . (5.13)

The surface contribution, ΔGS , to the Gibbs’ free energy of cluster formation is given

according to Eq. (5.10) as

ΔGS = σlgAlg + (σls − σgs)Als , (5.14)

ΔGS = 2πR2(1 − cos γ)σlg + πR2(1 − cos2 γ)(σls − σgs) .

The condition of mechanical equilibrium along the line of contact where three phases



A. S. Abyzov and J. W. P. Schmelzer J. Chem. Phys. 138, 164504 (2013) 200

meet is given by Young’s equation [21]

σgs = σls + σlg cos γ . (5.15)

Once this relation is fulfilled, we can write the surface contributions to the Gibbs’

free energy as (cf. Eq. (5.13))

ΔGS = 4πR2σlg

[
1

4
(2 + cos γ)(1 − cos γ)2

]

= 4πR2σlgφ . (5.16)

Similarly to [4, 21], the work of droplet formation at heterogeneous nucleation on

planar solid surfaces can be written finally as

ΔGhet = φ

{
4π

3
R3 ((p − pα) + ρα(μα − μβ)) + 4πR2σlg

}

(5.17)

or

ΔGhet = φΔGhom . (5.18)

This relation holds generally for any values of the radius of the surface of the cluster

(bubble, drop) and any appropriate value of the contact angle, γ. Employing in

addition the thermodynamic equilibrium conditions at the liquid-vapor interface, the

parameter φ becomes equal to the catalytic activity of a given nucleation site (planar

surface in the case under consideration) with respect to nucleation. In the analysis

of heterogeneous nucleation in the framework of the generalized Gibbs approach the

factor φ becomes dependent on the density of both liquid and vapor phases (see

Sections 9.4 and 8.4 for the details). Similar considerations with identical results can

be performed straightforwardly also for the case of boiling.

A detailed derivation of the expression for the work of cluster formation in the

generalized Gibbs approach for homogeneous nucleation of a bubble in a liquid is
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given in [12] and for a droplet in vapor in [13]. Employing the results obtained there,

we can rewrite Eqs. (5.10)-(5.11) as

Δg(r, ρg, ρl, θ)

kBT
= φ(ρg, ρl)

[
3 (ρl − ρg)

δ r2 + 2f(ρg, ρl, θ)r
3
]

, (5.19)

where

Δg ≡
ΔG

Ω1
, Ω1 =

16π

3

1

p2
ckBTcθ

Θ3(θ) , (5.20)

r ≡
R

Rσ
, Rσ =

2

pc
Θ(θ) .

The factor Θ(θ) and the parameter δ are determined by the chosen relation for the

dependence of the surface tension on the state parameters of liquid and gas phases,

they are determined by (see [12, 13] and Section 6.3.1 for details)

σlg = Θ(θ) (ρl − ρg)
δ , δ = 2.5 . (5.21)

The expression for the work of critical cluster formation, Eq. (5.19), differs

from the one describing homogeneous nucleation [12, 13] by the nucleation-activity

factor, φ(ρg, ρl), which is equal to one in the case of homogeneous nucleation. It will

be determined below (see Section 8.4) for the different cases under consideration. The

expression in square brackets in Eq. (5.19) describes the work of cluster formation in

homogeneous nucleation, the function f in the second term of this expression can be

written for nucleation of a droplet in vapor [13] as

f(ρg, ρl, θ) = Π(ρl, θ) − Π(ρg, θ) + ρl

(
μ(ρg, θ) − μ(ρl, θ)

pcvc

)

, (5.22)
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and for the bubble formation in a liquid [12] as

f(ρg, ρl, θ) = Π(ρg, θ) − Π(ρl, θ) + ρg

(
μ(ρl, θ) − μ(ρg, θ)

pcvc

)

. (5.23)

where (with ρ = ω−1 and Eq. (5.3))

μ(ρ, θ) = −
8θ

3
ln

(
3

ρ
− 1

)

+
8θ

3 − ρ
− 6ρ . (5.24)

Critical cluster parameters, size (rcr), and density, (ρcr), are determined by the

solution of the system of equations

∂Δg(r, ρg, ρl, θ)

∂r
= 0 ,

∂Δg(r, ρg, ρl, θ)

∂ρl(g)
= 0 . (5.25)

In the second of latter equations, the derivative with respect to cluster density has

to be taken with respect to the density of the drop, ρl, for nucleation of the droplet

in vapor, respectively, with respect to the density of the bubble, ρg, for boiling. The

system of equations, Eqs. (5.15), (5.19) and Eq. (5.25), determines the work of critical

cluster formation at heterogeneous nucleation.

5.3. Contact angle and catalytic activity factor for nucleation at a

planar surface

5.3.1. Contact angle

In heterogeneous nucleation on a planar solid surface the work of cluster

formation is affected considerably by the value of the contact angle [4, 21, 27]. In

the terminology usually employed for water, if the contact angle has values less

than 90◦, the surface is denoted as hydrophilic, contact angles larger than 90◦ imply
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that the surface is hydrophobic. This terminology we will employ here similarly for

condensation and boiling of the considered van der Waals fluid. Since the contact

angle can be computed via Young’s equation, Eq. (5.15), as

cos γ =
σgs − σls

σlg
, (5.26)

for a hydrophilic surface σls < σgs holds while for a hydrophobic surface the

inequality σls > σgs is fulfilled. These different cases of nucleation are illustrated

in Fig. 5.2 showing a droplet (Fig. 5.2a and b) and a bubble (Fig. 5.2c and d) on a

hydrophilic (Fig. 5.2a and d) and hydrophobic (Fig. 5.2b and c) surfaces, respectively.

These four different cases of heterogeneous nucleation we consider here in detail

separately.

In the classical approach to heterogeneous nucleation, the bulk properties of the

cluster phase and the ambient phase fluid are considered commonly as given and fixed

and, by this reason, also the surface energy terms entering Eq. (5.15) can be treated

as constants. By this reason, the contact angle is a constant as well. Accounting, in

terms of the generalized Gibbs’ approach, for changes of the bulk state parameters of

the newly evolving phase leads to the consequence that the contact angle has to be

determined as a function of these state parameters as well affecting then finally also

the catalytic activity with respect to nucleation. By this reason, we first consider the

problem of determining the contact angle in dependence on the state parameters of

both ambient and newly evolving in the system phases.

According to Eq. (5.26) in order to determine the contact angle it is necessary

to know the specific energy of the liquid-solid, vapor-solid and liquid-vapor interfaces

for the case, when density of the ambient phase (by changing externally the

supersaturation) varies in a range from the equilibrium value of the vapor density,

ρg,0, to the equilibrium value of the liquid density, ρl,0 (determined by Eq. (5.8)), and

the density of the critical clusters varies accordingly in this range or takes over values

even beyond it. In order to have an expression for the fluid-solid specific interfacial
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energy, we proceed here as follows.

The specific energy of the solid-fluid interface, σfs, depends on the density

of the fluid (vapor or liquid), which is in contact with the solid surface, and in the

simplest (linear in the density of the fluid) approximation can be written as

σfs(ρ) =
σgs,0(ρl,0 − ρ) + σls,0(ρ − ρg,0)

ρl,0 − ρg,0
. (5.27)

Here σls,0 and σgs,0 are the specific energy of the liquid-solid and vapor-solid

interfaces for the equilibrium states of the liquid and vapor, respectively. The

corresponding parameters without index 0 refer to the current values of these

quantities for an arbitrary value of the density of the fluid.

This equation can be obtained from the following considerations: First, we write

down Taylor expansions of the fluid-solid specific interface energy, σfs(ρ), both in

the vicinity of the equilibrium density (ρl,0) of the liquid, σls(ρ), and the vapor (with

the equilibrium density, ρg,0), σgs(ρ),

σls(ρ) = σls,0 +
∂σls

∂ρ

∣
∣
∣
∣
ρ=ρl,0

(ρ − ρl,0) ,

(5.28)

σgs(ρ) = σgs,0 +
∂σgs

∂ρ

∣
∣
∣
∣
ρ=ρg,0

(ρ − ρg,0) .

In addition, we assume here linearity of the dependence of σfs(ρ) on density in the

whole interval leading to

∂σgs

∂ρ

∣
∣
∣
∣
ρ=ρg,0

=
∂σls

∂ρ

∣
∣
∣
∣
ρ=ρl,0

=
σls,0 − σgs,0

ρl,0 − ρg,0
. (5.29)

A combination of Eqs. (5.28) and (5.29) results immediately in Eq. (5.27).
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Eq. (5.27) yields then further

σgs − σls = σfs(ρg) − σfs(ρl) = (σgs,0 − σls,0)
ρl − ρg

ρl,0 − ρg,0
. (5.30)

We can see from Eq. (5.30) that the difference (σgs−σls) is linear in (ρl−ρg), positive

for hydrophilic ((σgs,0 − σls,0) > 0) and negative for hydrophobic ((σgs,0 − σls,0) <

0) surfaces in accordance with above given definition. The difference in the signs of

the mentioned specific surface energy terms is the main difference for the two types

of surfaces which is reflected also in the different types of behavior in heterogeneous

nucleation.

As a second parameter, we have to know the surface tension for liquid-vapor

coexistence. As it is discussed in detail in [5, 14], the surface tension of the liquid-

vapor interface, σlg, for the equilibrium coexistence of vapor and liquid is frequently

found experimentally to be proportional to some power law with respect to the

density differences of liquid and vapor. Extending this result to arbitrary values of

the densities of liquid and gas as performed also in the analysis of homogeneous

nucleation in [5, 14] with adequate results, we arrive at

σlg = σlg,0

(
ρl − ρg

ρl,0 − ρg,0

)δ

, δ = 2.5 . (5.31)

Here σlg,0 is the surface tension of the liquid-vapor interface for the equilibrium

coexistence states of the liquid and vapor. In this notation, the coefficient Θ in

Eq. (5.21) takes the form

Θ = σlg,0 (ρl,0 − ρg,0)
−δ . (5.32)

Equation (5.26), accounting for Eqs. (5.30) and (5.31), yields

cos γ(ρg, ρl) = cos γ0

(
ρl,0 − ρg,0

ρl − ρg

)δ−1

, (5.33)
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where

cos γ0 =
σgs,0 − σls,0

σlg,0
. (5.34)

The first factor in Eq. (5.33), cos γ0, can be considered as some property of

the solid surface with respect to the liquid under consideration, while the second

factor in Eq. (5.34) depends on the density of the fluid (liquid or vapor). Thus,

for the analysis of heterogeneous nucleation it is necessary to know the contact

angle for the equilibrium values of the density of vapor and liquid, γ0. For further

calculations we choose this value as equal to γ0 = 67◦ for a hydrophilic surface and

γ0 = (180◦ − 67◦) = 113◦ for a hydrophobic one (as will be shown below, this option

provides a certain symmetry between the processes of nucleation on hydrophilic

and hydrophobic surfaces). With respect to this term, the situation is similar to the

analysis as performed employing the classical Gibbs approach to the description of

heterogeneous nucleation. Generalizing this result to take into consideration changes

in the density of the fluid phase, we have here to account adequately also for the

second term in Eq. (5.33).

5.3.2. Catalytic factor for nucleation: Limiting cases

A straightforward analysis of heterogeneous nucleation in terms of the

generalized Gibbs’ approach shows that – similarly to the classical treatment [21] –

the work of critical cluster formation can be written in a form as given by Eq. (5.17),

i.e. as ΔGhet = φΔGhom, where for the case of droplet formation the nucleation

activity factor, φ, has the form

φ(ρg, ρl) =
1

4

(
2 − 3 cos γ + (cos γ)3

)
. (5.35)

For the case of nucleation of a bubble in a liquid (γ → π − γ), we obtain

φ(ρg, ρl) =
1

4

(
2 + 3 cos γ − (cos γ)3

)
. (5.36)
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The contact angles in Eqs. (5.35) and (5.36) are determined in our approach

by Eq. (5.33) and not via Eq. (5.34) as it is the case in Volmer’s classical and

subsequently performed similar analysis. The first general problem we have to analyze

consists in one particular feature of Eq. (5.33). It has real solutions only when the

inequality

ρl − ρg ≥ |cos γ0|
1/(δ−1) (ρl,0 − ρg,0) (5.37)

is fulfilled. First we have to find out therefore which kind of behavior can be expected

when Eq. (5.37) is not fulfilled.

As can be verified easily, in such cases the formation of a critically sized drop

or bubble in contact with the solid is excluded. Indeed, in the limiting case when

the contact angle approaches the boundaries of the interval, given by Eq. (5.37),

for nucleation of a droplet on a hydrophobic surface and for the nucleation of

a bubble on the hydrophilic surface, the contact angle approaches 180◦. In other

words, we have in this limit and beyond the situation that the droplet or bubble are

separated from the surface. In such cases, φ(ρg, ρl) = 1 holds and heterogeneous

nucleation is not more favorable as compared to homogeneous nucleation. For

nucleation of a droplet on a hydrophilic surface and a bubble on a hydrophobic

surface, the limiting value of the contact angle is equal to 0◦, and the catalytic activity

factor tends to zero, φ(ρg, ρl) = 0. In other words, heterogeneous nucleation may

proceed here not requiring the overcoming of a thermodynamic potential barrier,

i.e., proceeds similar via a non-threshold mechanism of phase formation similar

to the spinodal decomposition in unstable homogeneous states. The corresponding

“crossover densities” of the liquid in the critical droplet, ρlm, and of the vapor in the

critical bubble, ρgm, are given by the equations

ρlm = ρg + |cos γ0|
1/(δ−1) (ρl,0 − ρg,0) , (5.38)

ρgm = ρl − |cos γ0|
1/(δ−1) (ρl,0 − ρg,0) . (5.39)
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Thus, a contact angle in the range 0 < θ < π can be observed only when ρ > ρlm at

droplet nucleation and for ρ < ρgm at bubble nucleation.

We see that the factors affecting nucleation act in opposite directions, factors

which stimulate nucleation of the droplets inhibit the nucleation of bubbles, and vice

versa, in dependence on the type of solid surface. Thus, it follows that a change of the

contact angle (deviations from its equilibrium value γ0), as computed here in terms of

the generalized Gibbs’ approach, reduces the work of formation of droplets of critical

size on a hydrophilic surface and increases it on a hydrophobic one. For the nucleation

of bubbles the situation is opposite: the work of critical nucleus increases with a

change of the contact angle on a hydrophilic surface and decreases on a hydrophobic

one.

5.4. Heterogeneous condensation on planar solid surfaces: Results

5.4.1. Vapor condensation on a hydrophilic surface

For a hydrophilic surface (assuming, as it was mentioned earlier that the

classical (equilibrium) contact angle, γ0, is taken equal to γ0 = 67◦), the analysis of

Eqs. (5.19) and Eq. (5.35) leads to the conclusion that, for a moderate supersaturation

(initial states located near to the binodal curve with the density ρg,0 = 0.128), the

work of critical cluster (droplet) formation has a typical saddle shape in the (r, ρ)-

space near to the state corresponding to the parameters of the critical cluster, (rcr,

ρcr) (see Fig. 5.3a). In Fig. 5.3a, this kind of behavior is illustrated for a value of

the reduced temperature equal to θ = 0.7 and an initial density of the vapor equal to

ρg = 0.18.

Such kind of behavior is found with increasing density of the vapor up to an

upper limiting value equal to ρg,sh = 0.191 (which we denote as surface spinodal

to distinguish it from the bulk spinodal which is determined by Eq. (5.9)) for the
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chosen parameters (θ = 0.7, γ0 = 67◦). For larger values of the density of the vapor,

ρg > ρg,sh, there is opened now a new path of evolution to the newly evolving liquid

phase where no activation barrier has to be overcome. The critical cluster with the

radius rcr and a density ρcr corresponds in theses cases to a work of critical cluster

formation equal to zero. For droplet sizes larger than these critical cluster sizes, there

exists a path of evolution where its further growth leads to a decrease of the Gibbs free

energy. By this reason, we denote the respective cluster state also as critical cluster

with a critical cluster radius despite its different physical meaning as compared to

“normal"cases when the critical cluster corresponds to a maximum or a saddle point

of the thermodynamic potential surface. These results are illustrated in Fig. 5.3b (path

of evolution 1; θ = 0.7, ρg = 0.20).

Fig. 5.3. Landscape of Gibbs free energy of droplet formation in dependence on the

state parameters of the droplet for a metastable state with an initial density of the gas

equal to ρg = 0.18. For such case, the thermodynamic landscape in the vicinity of

the critical droplet size has a saddle-type shape (a). For values of the density of the

gas higher than an upper limit, ρg > ρg,sh, e.g., for a value ρg = 0.20, an evolution

path to the new phase is possible without overcoming of a thermodynamic potential

barrier (b).
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The limiting value of the density, ρg,sh, is determined by the solution of the

equation

ρlm(ρg,sh) = ρcr(ρg,sh) , (5.40)

where ρlm is given by Eq. (5.38) and ρcr is the solution of the system of equations

Eqs. (5.25), i.e., the droplet density of the critical cluster (drop in the considered

here case). The density of the critical cluster is equal to ρlm(ρg) for ρg > ρg,sh, and

equal to ρcr(ρg) for ρg < ρg,sh. The parameters of the critical cluster in dependence

on vapor density are illustrated in Fig. 5.4 ((a) density of the critical cluster, (b)

critical droplet radius, (c) work of critical droplet formation). With an increase of the

density of the vapor starting at initial states near the binodal curve, the density of the

critical droplet decreases and reaches the density of the vapor at ρg = ρg,sh. With a

Fig. 5.4. Dependence of the parameters of the critical droplet on the density of the

gas for vapor condensation on a hydrophilic planar solid surface: (a) density of critical

droplet, (b) critical radius, (c) work of critical cluster formation, (d) catalytic activity

factor.
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further increase of the density of the vapor, the density of the critical droplet linearly

grows with the density of the vapor (Fig. 5.4a and Eq. (5.38)). In agreement with

the classical picture, the size of the critical droplet tends to infinity for initial states

of the vapor in the vicinity of the binodal. With an increase of the density of the

gas, ρg, the critical droplet size decrease first. However, in contrast to the classical

picture, in the approach to the limiting value, ρg = ρg,sh, the critical cluster size

starts to increase again and reaches infinity at ρg = ρg,sh. For even higher values of

ρg, the critical cluster size decreases then again (Fig. 5.4b). Similarly, the work of

critical droplet formation decreases monotonically from infinity (for initial states at

the binodal curve) to a finite value Δgmin at ρg = ρg,sh. It becomes identically equal to

zero at ρg > ρg,sh (Fig. 5.4c). Note also that at ρg = ρg,sh the work of a critical cluster

formation has a discontinuity, Δgcr/kBT |ρg=ρg,sh
= Δgmin/kBT = 4.108. However,

at any values ρg > ρg,sh the work of critical cluster formation is identically equal

to zero, i.e., Δgcr = 0|ρg>ρg,sh
. Fig. 5.4d shows dependence of the catalytic activity

factor, φ(ρg) = φ(ρg, ρlc(ρg)), in the work of critical cluster formation, Eqs. (5.17)

and (5.38), on vapor density. It decreases with increasing density of the gas and is

equal to zero at ρg ≥ ρg,sh.

A similar behavior as found here and illustrated in Figs. 5.3-5.4 was earlier also

observed by us in the analysis of homogeneous condensation and boiling ( [12–15],

e.g. Figs. 1, 2, 5 in [14]) and of segregation processes in solutions in the absence of

heterogeneous nucleation cores ( [17, 18], e.g., Figs. 4-6 in [18]). In both cases, for

homogeneous phase formation a similar behavior as obtained here in the approach

to ρsh is found there in the approach of the classical spinodal curve (cf. Fig. 5.1).

Consequently, we may conclude that the existence of heterogeneous nucleation cores

may result effectively in a shift of the spinodal curve from the value computed

thermodynamically for the homogeneous systems (as illustrated in Fig. 5.1) to a

value affected in addition by the properties of the solid nucleation core (ρg = ρg,sh).

Therefore we can consider the range of gas densities, ρl,0 < ρg < ρg,sh, with respect
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to heterogeneous nucleation as the metastable region and the range ρg > ρg,sh as

thermodynamically unstable states, the value ρg = ρg,sh is to be treated consequently

as a part of the spinodal curve with respect to heterogeneous nucleation.

Summarizing briefly the results for the case under consideration, we can

conclude: Employing the generalized Gibbs approach to condensation of a droplet in

a supersaturated vapor on a hydrophilic surface leads effectively to a significant shift

of the spinodal to lower supersaturations as compared to the case of homogeneous

condensation. However, all basic features found for homogeneous nucleation like the

divergence of the critical radius or the approach of zero values of the work of critical

cluster formation near to the spinodal are retained in a qualitatively identical form.

5.4.2. Vapor condensation on a hydrophobic surface

The computations for the description of heterogeneous nucleation on a

hydrophobic surface can be performed similarly to the first case of condensation

on a hydrophilic surface. The resulting from the computations dependencies of the

parameters of the critical cluster on the vapor density for the case of nucleation on

hydrophobic surface are shown in Fig. 5.5 ((a) density of the droplet of critical size,

(b) critical radius of the drop, (c) work of critical droplet formation).

The analysis has been carried out for a value of the contact angle, γ0, equal to

γ0 = 113◦. For ρg,0 < ρg < ρg,sh (where ρg,sh is determined by Eq. (5.40), again),

nucleation occurs heterogeneously, size and work of critical cluster formation are

less than for the homogeneous case. However, for the considered case, the degree

of activation of nucleation by the planar solid surface is much less expressed than

for the hydrophilic case. This is seen from a comparison of full curves (representing

heterogeneous nucleation) with the dashed lines showing the respective parameters of

the critical droplet computed for the case of homogeneous nucleation (i.e. for φ = 1).

With an increase of the vapor density, at some upper limiting value of the density of
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the vapor, here ρg,sh = 0.254, nucleation becomes fully independent of the existence

of the solid surface.

Fig. 5.5. Dependence of the parameters of the critical droplet on the density of

the gas for vapor condensation on a hydrophobic planar solid surface: (a) density of

critical droplet, (b) critical radius, (c) work of critical cluster formation, (d) catalytic

activity factor. Dashed lines show the same dependencies for the case of homogeneous

nucleation, i.e., φ(ρg, ρl) = 1.

Fig. 5.5d shows the dependence of the catalytic activity factor, φ(ρg) =

φ(ρg, ρlc(ρg)), on the vapor density. It is less than one for ρg < ρg,sh. At ρg > ρg,sh

the relation φ = 1 is generally fulfilled, i.e., all parameters of the critical cluster are

the same as for homogeneous nucleation.
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5.4.3. Boiling on a hydrophobic surface

For the case of boiling catalyzed by a planar solid interface, we can proceed

similarly as in the case of condensation, however, now the density of the liquid, ρl,

is varied (decreased). For a hydrophobic surface (assuming, again, γ0 = 113◦), an

analysis of Eqs. (5.19) and (5.36) yields that in the interval between the binodal,

ρl,0 = 2.14, and some lower limiting density, ρl,sh (here ρl,sh = 2.01), the Gibbs

free energy in the space (r, ρ) near the critical point, (rcr, ρcr), has a characteristic

saddle-type shape (see Fig. 5.6a, ρl = 2.035). For ρ ≤ ρl,sh, there exists again a path

of evolution with a zero value of the work of formation of the critical bubble (see

Fig. 5.6b, ρl = 1.95; curve 1). The limiting density of the liquid, ρl,sh, is determined

Fig. 5.6. Landscape of Gibbs free energy for boiling in dependence on the state

parameters of the bubble starting from (a) a metastable, ρl = 2.035, and (b) an

unstable initial state, ρl = 1.95. Path 1 in figure (b) shows the energetically favored

path of evolution, curve 2 the real path.

by the solution of the equation

ρgm(ρl,sh) = ρcr(ρl,sh) , (5.41)
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Fig. 5.7. Dependence of the parameters of the critical bubble on the density of the

liquid gas for boiling on a hydrophobic planar solid surface: (a) density of the bubble

of critical size, (b) critical bubble radius, (c) work of critical bubble formation, (d)

catalytic activity factor.

where ρgm is determined by Eq. (5.39), ρcr is the the critical density of the bubble

given by the solution of the system of equations, Eq. (5.25). The density of the critical

bubble is equal to ρgm(ρl) at ρl < ρl,sh, and ρcr(ρl) at ρl > ρl,sh.

The dependence of the parameters of the critical bubble on the density of the

liquid are shown in Fig. 5.7 ((a) bubble density, (b) radius, (c) work of critical bubble

formation).

Fig. 5.7d shows the dependence of the catalytic activity factor, φ(ρl) =

φ(ρgc(ρl), ρl), on the density of the liquid. It is evident that Figs. 5.7 in essence are

mirrored versions of Figs. 5.4. Consequently, the conclusions drawn in Section 6.4.1

with respect to vapor condensation on a hydrophilic surface are fully applicable for

the considered in this subsection case of boiling on a hydrophobic surface.
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5.4.4. Boiling on hydrophilic surface

For a hydrophilic surface (assuming, again, γ0 = 67◦), the dependencies of the

parameters of the critical bubble on the density of the liquid are shown in Fig. 5.8 ((a)

density, critical bubble radius, work of critical bubble formation). Fig. 5.8d shows the

dependence of the catalytic activity factor, φ(ρl) = φ(ρgc(ρl), ρl), on the density of

the liquid. By dashed lines, the respective parameters are given calculated for the case

φ = 1, i.e., for the case of homogeneous nucleation. We can see that the Figs. 5.8 are

mirrored versions of Figs. 5.5, so that the conclusions derived in Section 6.4.2 with

respect to vapor condensation on a hydrophobic surface are fully applicable to the

case of boiling on hydrophilic surface considered in the present subsection.

Fig. 5.8. Dependence of the parameters of the critical bubble on the density of the

liquid gas for boiling on a hydrophilic planar solid surface: (a) density of the bubble

of critical size, (b) critical bubble radius, (c) work of critical bubble formation, (d)

catalytic activity factor. Dashed lines show the same dependencies for the case of

homogeneous nucleation, i.e., φ(ρg, ρl) = 1.
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5.4.5. Saddle-point versus ridge crossing

Let us finally briefly address also another point connected with the question to

what extent the parameters of the critical clusters determine the evolution to the newly

evolving phase. As discussed by us in detail for the case of (homogeneous) segregati-

on in solutions [17–20] – employing the generalized Gibbs’ approach – the evolution

to the new phase does not proceed necessarily via the the thermodynamically

preferable trajectory (passage of the saddle point) shown here in Figs. 5.3a and 5.6a,

respectively, in Figs. 5.3b and 5.6b by curves 1. For kinetic reasons, it may be more

appropriate for the system to select a trajectory of evolution where some potential

barrier has to be overcome even if a path without overcoming such barrier does exist.

A similar behavior is to be expected, of course, also for homogeneous condensation

and boiling near to the classical spinodal and for heterogeneous nucleation, discussed

here, near to the respective “heterogeneous"spinodal curves. For vapor condensation

on a hydrophilic surface, the evolution to the new phase will not proceed, as a rule,

via the saddle point (cf. Fig. 5.3b, curve 1) but via the ridge of the thermodynamic

potential surface (ridge crossing; cf. Fig. 5.3b, curve 2). A similar behavior can be

expected also for boiling on a hydrophobic surface (cf. Fig. 5.6b, curve 2).

5.5. Discussion and conclusions

Employing the generalized Gibbs approach to the description of condensation

of a droplet in a supersaturated vapor on a hydrophilic surface and to boiling of a

liquid on a hydrophobic surface we arrive widely at the same result: as compared

with homogeneous nucleation, a significant shift of the spinodal curve to lower

supersaturation occurs caused by the existence of the planar solid interface. This

result implies that the region of instability of the fluid is enlarged and the range of

initially metastable states is reduced. Such features – observed already in application
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of the generalized Gibbs’ approach to homogeneous condensation and boiling and

changing essentially the results obtained via the classical Gibbs’ treatment – like the

divergence of the critical radius in the approach of the spinodal and the possibility of

nucleation passing not the saddle but the ridge of the thermodynamic potential surface

analyzed in detail for homogeneous phase formation [17–20] are found here as well

for the new boundary of metastability.

For the case of condensation of a droplet on a hydrophobic surface and boiling

of liquid on a hydrophilic surface the catalytic activity factor, φ, increases with

increasing supersaturation, it reaches a value equal to one at a certain density of

the ambient fluid phase (ρg,sh or ρl,sh for the cases of droplet or bubble nucleation,

respectively). In this limiting case, all parameters of the critical cluster are the same as

for homogeneous nucleation. At ρg < ρg,sh and ρl > ρl,sh heterogeneous nucleation

occurs, the size and work of critical cluster formation are less than for the respective

homogeneous case. For all these cases (condensation of a droplet on a hydrophobic

surface and boiling of liquid on a hydrophilic surface), the account of changes of

the contact angle leads to an increase of the catalytic factor in nucleation and to a

lowering of the respective heterogeneous nucleation rate.

In order to develop the theory, in the present analysis Eqs. (5.30) and (5.31)

have been employed in order to describe the effect of density changes of the fluid on

phase formation. These equations can be modified if required as well as the relations

for the bulk properties of the fluid, Eq. (5.3), in order to describe more correctly a

given system of interest. Note, in particular, as well that the specific (linear) form

of Eq. (5.30), employed here in the analysis, can be easily generalized not changing

the basic results. For example, the same results are obtained when this dependence

is monotonous – positive for the hydrophilic surface and negative – for hydrophobic,

and has a linear expansion in the vicinity of equilibrium densities of liquid and vapor,

respectively. Then instead of Eq. (5.30) we will have two separate equations, one

for the condensation of liquid droplets from vapor phase and the second one for the
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description of the boiling of the liquid.

In the present study, we have considered the simple case of nucleation on planar

interfaces. The account of changes of the state parameters of the cluster phase on the

nucleation activity – as discussed here in detail for planar surfaces – is believed to be

of significance also in a variety of other cases of phase formation, for example, in a

variety of solid-solid or liquid-solid phase transformations. They are expected to be of

importance also in the analysis of the size-dependence of nucleation cores as analyzed

first, employing the classical Gibbs’ approach, by Krastanov [29] and Fletcher [30].

Another generalization of the present analysis could consist in the incorporation of

line tension effects [31–33]. All these topics can be addressed employing the general

methods as outlined in the present paper.
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5.6. Висновки до роздiлу 5

Результати дослiджень, представлених у даному роздiлi, опублiковано

в статтi [5] (Додаток А. Список публiкацiй здобувача за темою дисертацiї).

Дослiджено гетерогенне зародження кластерiв нової фази на плоских твердих

поверхнях з урахуванням змiни параметрiв стану критичних кластерiв залежно

вiд пересичення в однокомпонентнiй рiдинi ван дер Ваальса. Серед основних

результатiв у якостi висновкiв можна видiлити наступнi:

• Показано, що у випадку утворення крапельки в перенасиченiй парi на

гiдрофобнiй поверхнi та утворення бульбашок у рiдинi на гiдрофiльнiй поверхнi

ефект гетерогенностi незначний.

• В альтернативних випадках конденсацiї крапельки на гiдрофiльнiй

поверхнi та утворення бульбашок у рiдинi на гiдрофобнiй поверхнi передбачено

ефект зменшення кута змочування, i, таким чином, збiльшення каталiтичної

активностi поверхнi i швидкостi нуклеацiї.

• Розвинуто теоретичний опис цього ефекту у випадку утворення кла-

стерiв нової фази на поверхнi з низькою (контактний кут бiльше 90◦) та

високою змочуванiстю (контактний кут менше 90◦), показано, що у цьому

випадку iснування твердої поверхнi призводить до значного змiщення спiнодалi

до менших значень пересичення порiвняно з гомогенною нуклеацiєю, тобто

гетерогенна спiнодаль наближається до бiнодалi, а область метастабiльностi

звужується за рахунок розширення областi нестабiльностi.
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РОЗДIЛ 6

ГЕТЕРОГЕННА НУКЛЕАЦIЯ В РОЗЧИНАХ: УЗАГАЛЬНЕНИЙ

ПIДХIД ГIББСА

У шостому роздiлi дослiджено гетерогенне зародження кластерiв нової

фази у регулярному бiнарному розчинi на плоских твердих поверхнях.
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Heterogeneous nucleation in solutions on planar solid surfaces is modeled

taking into account changes of the state parameters of the critical clusters

in dependence on supersaturation. The account of the variation of the

state parameters of the cluster phase on nucleation is performed in the

framework of the generalized Gibbs’ approach. A regular solution is chosen

as a model for the analysis of the basic qualitative characteristics of the

process. It is shown that, employing the generalized Gibbs approach, contact

angle and catalytic activity factor for heterogeneous nucleation become

dependent on the degree of metastability (supersaturation) of the solution.

For the case of formation of a cluster in supersaturated solutions on a

surface of low wettability (the macroscopic equilibrium contact angles

being larger than 90◦) the solid surface has only a minor influence on

nucleation. In the alternative case of high wettability (for macroscopic
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equilibrium contact angles being less than 90◦) nucleation is significantly

enhanced by the solid surface. Effectively, the existence of the solid surface

results in a significant shift of the spinodal to lower supersaturations as

compared with homogeneous nucleation. Qualitatively the same behavior

is observed now near the new (solid surface induced) limits of instability

of the solution as compared with the behavior near to the spinodal curve

in the case of homogeneous nucleation. c©2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4884395]

6.1. Introduction

Nucleation of new-phase aggregates, the process of stochastic formation of

clusters of a newly evolving phase exceeding some critical size, and their subsequent

growth is one of the basic mechanisms of how first-order phase transitions may

proceed. These nucleation processes may be catalyzed by solid particles or planar

interfaces. Latter mentioned factors may result in a decrease of the so-called work of

critical cluster formation, the thermodynamic barrier which has to be overcome by

a new-phase aggregate to evolve to a viable nucleus capable of further deterministic

growth.

In the classical theory of nucleation and growth processes heterogeneous

nucleation is commonly treated – similarly to the theoretical analysis of homogeneous

nucleation – by assuming that the state parameters of the critical clusters (bulk

and surface properties) are widely identical to the respective parameters of the

newly evolving macroscopic phase [1–5]. This approach is supported by the classical

thermodynamic theory of cluster formation as developed by Gibbs [6]. However, in

reality this assumption is as a rule not fulfilled [2, 7–9].

As shown in preceding papers [8–11], the classical Gibbs approach to the

thermodynamic description of thermodynamically heterogeneous systems can be
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generalized to account appropriately for possible deviations of the properties of

critical clusters as compared to the properties of the respective macroscopic phases.

This (as denoted by us) generalized Gibbs’ approach was so far mainly employed

to describe different cases of homogeneous nucleation, i.e., nucleation in the

absence of heterogeneous nucleation cores. Problems of the theoretical description

of heterogeneous nucleation in terms of the generalized Gibbs’ approach were treated

by us for the first time in detail in [12]. In this analysis, we considered condensation

and boiling in one-components fluids in the presence of planar solid interfaces. As a

model system, we analyzed these processes for one-component van der Waals fluids.

It was shown in this analysis that, accounting for changes of the bulk properties

of the critical clusters in terms of the generalized Gibbs approach, contact angle

and catalytic factor for heterogeneous nucleation become dependent on the degree

of metastability of the ambient fluid. For the case of formation of a droplet in a

supersaturated vapor on a hydrophobic surface (the macroscopic equilibrium contact

angle being larger than 90◦) and bubble formation in a liquid on a surface of

high wettability (the macroscopic equilibrium contact angle being less than 90◦) the

solid surface has only a minor influence on nucleation. In the alternative cases of

condensation of a droplet on a hydrophilic surface and of bubble formation in a liquid

on a hydrophobic surface, nucleation is significantly enhanced by the presence of

the solid. As it turns out [12], effectively, the existence of the solid planar interface

results at otherwise identical conditions in a significant shift of the spinodal to lower

supersaturations as compared with homogeneous nucleation.

In the present paper we further advance these theoretical studies and analyze

heterogeneous nucleation in supersaturated solutions in the presence of planar solid

interfaces. As the method of description, we employ again the generalized Gibbs

approach. As a model system for the description of the properties of the system, a

two-component regular solution [13, 14] is chosen similarly as it was done in our

previous analysis of homogeneous nucleation in solutions [8, 15, 16]. The general
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qualitative conclusions are widely independent on this particular choice of the model

system. In addition, performing the analysis for the same model as done earlier for

the study of homogeneous nucleation allows us to directly specify the effect of the

considered heterogeneous nucleation sites on phase formation in solutions. The main

difference in our approach as compared with previous studies consists, again, in the

proper account of the fact that the state parameters of the newly evolving clusters

and, in particular, of the critical clusters may deviate considerably from the respective

values of the newly evolving macroscopic phases. We assume incompressibility of the

solutions, by this reason the appropriate state parameter for the description of both

ambient and newly evolving phase is the composition of the solution.

The accounted for in our analysis additional as compared to the classical picture

variation of the bulk parameters of the clusters affects also their surface properties like

surface tension and wetting angles and gives thus, again, an additional contribution

to the catalytic activity factor of the considered heterogeneous nucleation core with

respect to nucleation. Consequently, in order to determine the work of critical cluster

formation the dependence of these interface parameters on the composition of the

critical nuclei has to be specified. This program will be implemented here for two

cases of cluster formation in supersaturated solutions, both for the cases of high

wettability (the macroscopic contact angles have values less than 90◦) and low

wettability (the macroscopic contact angles are larger than 90◦).

The present article is structured as follows: In Section 9.2, the equation of

state of a regular solution is briefly discussed as far as required for the subsequent

derivations. In addition, the location of binodal and spinodal curves are specified,

and general relations are developed allowing us to determine the work of critical

cluster formation at solid planar interfaces. In Section 9.4, the expressions for the

contact angle and catalytic activity factor for critical cluster formation are evaluated.

Combining the results obtained in Sections 9.2 and 9.4, in Section 8.4 heterogeneous

nucleation in a regular solution on planar surfaces is analyzed. A summary of the
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results, conclusions, and of possible extensions (Section 8.5) completes the paper.

6.2. Basic equations

6.2.1. Bulk properties of ambient and newly evolving phases, binodal and

spinodal curves

Similarly to our previous analysis of homogeneous nucleation in solutions

[8, 15, 16], we consider now phase formation in a binary solid or liquid regular

solution catalyzed by the presence of a planar solid interface. Regular solutions can

be described by the following expressions for the chemical potentials μj of the two

components in the solution [13, 14],

μ1 = μ∗
1 + kBT ln(1 − x) + Ωx2 , (6.1)

μ2 = μ∗
2 + kBT ln x + Ω (1 − x)2 , (6.2)

where kB is the Boltzmann constant, T is the absolute temperature, and x is the molar

fraction of the second component (we denote it further – to some extent arbitrarily –

as the solute), Ω = 2kBTc is an interaction parameter describing specific properties

of the system under consideration, and Tc is the critical temperature of the system.

We assume that the external pressure is kept constant. In the (T, x)-phase

diagram, the binodal and spinodal curves are given then by the relations

ln

(
1 − x

x

)

= 2
Tc

T
(1 − 2x) , (6.3)



A. S. Abyzov and J. W. P. Schmelzer J. Chem. Phys. 140, 244706 (2014) 228

Fig. 6.1. Location of the binodal and spinodal curves for a regular solution. For

an illustration of the results, we will perform here the computations for different

values of the solute concentration, x, and a value of the reduced temperature equal

to T/Tc = 0.7. The left-hand (marked by (l)) and right-hand (marked by (r)) side

branches of the binodal (x(r)
b = 1− x

(l)
b ) and the spinodal (x(r)

sp = 1− x
(l)
sp ) curves are

specified in the figure as well (see also text).

x (1 − x) = 4
T

Tc
. (6.4)

The respective curves are shown in Fig. 6.1. They are symmetric with respect to

x = 1/2. Thus, if for a given value of temperature the composition x refers to one of

these curves, the composition (1 − x) gives the location of the respective alternative

branch.

Numerical computations will be performed here assuming the reduced

temperature to be equal to T/Tc = 0.7. The left-hand side branches of the binodal,

x
(l)
b , and the spinodal, x

(l)
sp , curves are located for this temperature at

x
(l)
b = 0.0857 , x(l)

sp = 0.2261 , (6.5)

respectively. The respective right-hand side values of the molar fractions for the
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binodal and spinodal curves are given by

x
(r)
b = 1 − x

(l)
b = 0.9143 , x(r)

sp = 1 − x(l)
sp = 0.7739 . (6.6)

An illustration of these notations and results is given in Fig. 6.1.

6.2.2. Work of critical cluster formation: General expression

Suppose that the system is instantaneously transferred into a metastable state

located in between the left-hand side binodal and spinodal curves (x(l)
b < x . x

(l)
sp )

and that afterwards composition and temperature are kept constant (later-on we will

extend the analysis to initial concentrations on the right-hand side of the phase

diagram as shown in Fig. 6.1, that is to the range x
(r)
sp . x < x

(r)
b ). As a first

step in the description, we determine the parameters of the critical clusters formed on

a planar solid interface in dependence on supersaturation (molar fraction of the solute,

x).

Cluster formation in a binary solution results from a redistribution of molecules

in space. Following Gibbs’ model approach [6], we consider a cluster as a spatially

homogeneous part of the system with a composition different from the ambient phase.

In the thermodynamic description we always employ the surface of tension [6,10,11]

as the dividing surface, separating the cluster from the ambient phase. The expression

for the change of the thermodynamic potential (the Gibbs free energy, G) for a two-

component system due to the formation of a cluster of the considered shape (segments

of a sphere with a radius, R, and a contact angle, γ (c.f. Fig. 6.2)) in the ambient

phase can be written both in the classical and generalized Gibbs’ approaches then

as [1–3, 12]
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Fig. 6.2. Model employed in the analysis of heterogeneous nucleation of a cluster on

a planar solid interface. Here R is the radius of curvature of the cap-shaped aggregate

with composition xα, xβ is the molar fraction of one of the components in the ambient

solid or liquid solution, γ is the contact angle, σαβ , σβs, and σαs are the respective

specific surface energies.

ΔG = σαβAαβ + (σαs − σβs)Aαs +
∑

j=1,2

nj (μjα − μjβ) . (6.7)

Here σαs, σβs, and σαβ are the specific surface energies (surface tension) of the

cluster-solid, ambient phase-solid and cluster-ambient phase interfaces, respectively,

Aαs and Aαβ are the respective interfacial areas (see Fig. 6.2), nα = n1α + n2α

is the number of particles (atoms, molecules) in the cluster, μjα and μjβ are the

chemical potentials of the different components in the cluster and ambient phase,

respectively (see Eqs. (6.1) and (6.2)). Here and further on, the index α always denotes

the parameters of the cluster, and the index β refers to ambient phase parameters. As

independent variables for the specification of the state of the clusters, we use n1

and n2 (the subscript α is omitted for n1 and n2 for convenience of the notations)

or the radius, R, and the molar fraction of the second component in the cluster,

xα = n2/ (n1 + n2).

In line with the basic assumptions underlying the model of binary regular

solutions [13, 14] and for simplicity of the notations, the volume per particle, ω,

is assumed to be the same for both components and independent of composition

(ωα = ωβ ≡ ω = a3, a is an interatomic distance parameter). Cluster radius, R (more
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precisely it is the radius of a segment of a sphere, but we will use the notation “cluster

radius"for simplicity, again), and particle number in a cluster, nα, are related then by

the following simple expression

ϕ
4π

3
R3 = nαω = nαa3 , (6.8)

where ϕ can be expressed via the contact angle, γ, as

ϕ =
1

4

(
2 − 3 cos γ + cos3 γ

)
=

1

4
(2 + cos γ)(1 − cos γ)2 . (6.9)

The bulk contributions, ΔGV , to the Gibbs free energy change can be written

for the case of formation of a cluster with a radius, R, and a contact angle, γ (c.f.

Fig. 6.2), generally as [3, 15, 16]

ΔGV =
∑

j=1,2

nj (μjα − μjβ) , (6.10)

or, equivalently, as

ΔGV = −ϕ

(
4π

3ω

)

R3Δμ = ϕ

(
4π

3ω

)

R3kBTf , Δμ = −kBTf . (6.11)

In this relation, terms reflecting the effect of depletion of the ambient phase due

to cluster formation are neglected. These terms are not relevant for the further

derivations. The function f (xα, x) is given by the following relation

f (xα, x) = (1 − xα)

{

ln
1 − xα

1 − x
+ 2

Tc

T

(
x2

α − x2
)
}

(6.12)

+ xα

{

ln
xα

x
+ 2

Tc

T

[
(1 − xα)2 − (1 − x)2

]}

.

As evident from its definition (Eq. (6.11)), the function Δμ ∝ (−f (xα, x)) has the
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meaning of the thermodynamic driving force for cluster formation.

The dependence of the function f (xα, x) on the independent state variables

x and xα is analyzed in detail in [8, 15, 16]. In particular, in Fig. 6.3(a) and (b)

this function is shown in dependence on the composition of the cluster phase, xα,

for different values of the supersaturation or the molar fraction of the segregating

component, x, in the ambient phase. Note that, for any value of the composition, x,

of the ambient solution, except for x = x
(l,r)
sp , the function f(xα) has one maximum

and two minima. In the metastable range of composition of the ambient phase (c.f.

Fig. 6.3(a)) in between left-hand side binodal and spinodal curves, x
(l)
b < x < x

(l)
sp ,

the first of these minima corresponds to the state of the ambient phase, xα = x, the

second one, xα = xB, to the minimum of the bulk contributions to the Gibbs free

energy. This is the final macroscopic state of the segregating phase the cluster would

evolve to for the given fixed value of the composition of the ambient phase, x. In

the considered range of x-values, xB is defined by the equation (c.f. Eqs. (6.11) and

(6.12))

∂f (xα, x)

∂xα

∣
∣
∣
∣
x=xB

= 0 . (6.13)

At the spinodal, x = x
(l)
sp , the function f(xα) has an inflection point at xα = x.

In the thermodynamically unstable range, x
(l)
sp < x < x

(r)
sp , the maximum of the

function f(xα) corresponds to the state of the initial phase, xα = x (c.f. Fig. 6.3(b)).

There exist now two values of the molar fraction of the cluster phase, xα = xA and

xα = xB, for which the bulk contributions to the Gibbs free energy have a local

minimum. These states are determined similarly to Eq. (6.13) by the relation

∂f (xα, x)

∂xα

∣
∣
∣
∣
x=xA or x=xB

= 0 . (6.14)

The dependencies of xA and xB on the initial composition, x, are shown in Fig. 6.3(c)
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Fig. 6.3. Dependence of the function f (xα, x) on the composition of the cluster

phase, xα, for different values of supersaturation or the molar fraction, x, of the

segregating component in the ambient phase: a) in the thermodynamically metastable

range, x
(l)
b < x < x

(l)
sp , b) in the unstable range, x

(l)
sp < x < x

(r)
sp . c) Composition

of the critical clusters, x = x
(hom)
α,cr (full red curves), its minimal value, xα,ll (dashed

curve), and xA, xB (full blue curves) in dependence on initial supersaturation for the

case of homogeneous nucleation in solutions.



A. S. Abyzov and J. W. P. Schmelzer J. Chem. Phys. 140, 244706 (2014) 234

in the whole range of possible initial compositions of the ambient solution. Let us note

that all data are symmetric with respect to x = 1/2 and xα = 1/2. By this reason,

we analyze them in detail only for the range x 6 1/2.

At given pressure and temperature macroscopic evolution processes in

thermodynamic systems are accompanied by a decrease of the Gibbs free energy [19].

By this reason, the necessary condition for formation of aggregates of a new phase can

be written as f (xα, x) < 0 (the thermodynamic driving force for cluster formation

has to be positive, in such case cluster evolution leads to a decrease of the bulk

contributions to the Gibbs free energy). Consequently, for the metastable range of

x-values the composition of the critical clusters has to exceed a lower limiting value,

xα,ll, determined by the relation

f (xα,ll, x) = 0 . (6.15)

The dependence of xα,ll on the initial composition, x, is shown in Fig. 6.3(c) by

dashed curves.

For comparison, the composition of the critical cluster, x
(hom)
α,cr , in homogeneous

nucleation (c.f. [8, 15, 16] and the subsequent discussion) is shown in Fig. 6.3(c)

by full curves. Latter parameter is determined by the interplay between bulk and

surface contributions to critical cluster properties. A possible path of evolution (O →

C → B: arrows originating at the initial state and proceeding via the critical cluster

composition to xB), starting from metastable initial states, is shown in Fig. 6.3(c). For

the given value of the concentration of the ambient phase, x, the new phase attains

first the composition of the critical cluster and then evolves to a state characterized

by xB. For metastable initial states, one path of evolution exists while for unstable

initial states two such pathes are accessible proceeding into the direction of either xA

or xB.

Generally, the relation xα,ll ≤ x
(hom)
α,cr holds. The inequality is reduced to the

identity xα,ll = x
(hom)
α,cr only for x = x

(l)
b and x = x

(l)
sp . In the latter of these special
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cases, this particular value of the cluster composition, xα,ll = x
(hom)
α,cr , determines the

composition of a cluster which can be formed without the necessity of overcoming a

potential barrier but, despite that, is capable of a further deterministic growth. As will

be shown shortly, a similar situation may occur also in heterogeneous nucleation but

for different values of the initial composition (less than x
(l)
sp ) as compared with the

case of homogeneous nucleation (c.f. Eq. (6.46) and the discussion of it).

The surface contributions, ΔGS , to the Gibbs free energy of cluster formation

are given according to Eq. (6.7) by

ΔGS = σαβAαβ + (σαs − σβs)Aαs , (6.16)

or, equivalently, by

ΔGS = 2πR2(1 − cos γ)σαβ + πR2(1 − cos2 γ)(σαs − σβs) . (6.17)

The condition of mechanical equilibrium along the line of contact where three phases

meet is expressed by Young’s equation (e.g. [1–5])

σβs = σαs + σαβ cos γ . (6.18)

Once this relation is fulfilled, we can write the surface contributions to the Gibbs free

energy as (c.f. Eq. (6.9))

ΔGS = 4πR2σαβ

[
1

4
(2 + cos γ)(1 − cos γ)2

]

= 4πR2σαβϕ . (6.19)

Similarly to [2,3], the work of cluster formation at heterogeneous nucleation on planar
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solid surfaces can be written finally as

ΔGhet = ϕ

{
4π

3ω
R3Δμ + 4πR2σαβ

}

(6.20)

or

ΔGhet = ϕ(γ)ΔGhom . (6.21)

This relation holds generally for any values of the radius, R, of the surface of the

cluster and any appropriate value of the contact angle, γ. Employing in addition

the thermodynamic equilibrium conditions at the cluster-ambient phase interface, the

parameter ϕ becomes equal to the catalytic activity of a given nucleation site (planar

solid interface in the case under consideration) with respect to nucleation.

A detailed derivation and discussion in terms of the generalized Gibbs approach

of the expression for the work of cluster formation and, in particular, the work of

critical cluster formation for homogeneous nucleation in a regular solution is given

in [9, 15, 16]. Employing the notations introduced and the results obtained there, we

can rewrite Eqs. (6.20)-(6.21) as

ΔG (R, xα, x)

kBT
= ϕ(γ)

4π

3ω

[
3

2
RσR

2 (xα − x)2 + R3f(xα, x)

]

, (6.22)

where

Rσ =
2σαβ,0a

3

kBT

(
x

(r)
b − x

(l)
b

)−2
. (6.23)

Here the interfacial tension between two macroscopic phases with compositions xα
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and x, respectively, is expressed following Becker [13] (see also [14]) via

σαβ = σαβ,0

(
xα − x

x
(r)
b − x

(l)
b

)2

. (6.24)

In Eq. (6.24), σαβ,0 is the specific surface energy of the cluster-ambient phase interface

for the case, when ambient and newly evolving phases are in equilibrium state (that

is for x = x
(l)
b and xα = x

(r)
b ).

We further introduce reduced variables via the relations

r ≡
R

Rσ
, Δg ≡

ΔG

Gσ
, (6.25)

Gσ =
16π

3

(
σαβ,0a

2
)3

(kBT )2

(
x

(r)
b − x

(l)
b

)−6
. (6.26)

In these variables, Eq. (6.22) can be written in the form

Δg (r, xα, x) = ϕ(γ)
[
3r2 (xα − x)2 + 2r3f(xα, x)

]
. (6.27)

The dependence of Δg on the value of the interfacial tension is reflected here by the

term (xα − x)2.

Critical cluster parameters, i.e. its size, rcr, and composition, xcr, are determi-

ned by the solution of the system of equations

∂Δg (r, xα, x)

∂r
= 0 ,

∂Δg (r, xα, x)

∂xα
= 0 , (6.28)

where Δg is given by Eq. (6.27). Substituting the respective values into Eq. (6.27),

we may determine the work of critical cluster formation at heterogeneous nucleation.

Note, however, that for a cluster of the considered shape (segments of a sphere) its
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radius, R (or r), is the radius of curvature of the cluster surface. Its value does not

define unambiguously the number of atoms in the cluster (see Eq. (6.8)). By this

reason, the numbers of atoms in the cluster, (n1, n2), are more convenient variables

as compared to the set (r, xα).

Introducing similarly to the radius reduced particle numbers as

n
′

1 ≡
n1

nσ
, n

′

2 ≡
n2

nσ
, nσ ≡

4π

3

(
Rσ

a

)3

, (6.29)

and omitting primes for simplicity of the notations, we can rewrite Eq. (6.27) as

Δg (n1, n2, x) = 3 [ϕ (γ)]1/3 n2/3
(n2

n
− x
)2

+ 2nf (x, n2/n) , (6.30)

where

n ≡ n1 + n2 = ϕr3 (6.31)

is the reduced total number of atoms in the cluster. Similarly to Eq. (6.28), critical

cluster parameters, (n1,cr, n2,cr), are determined by the solution of the system of

equations

∂Δg (n1, n2, x)

∂n1
= 0 ,

∂Δg (n1, n2, x)

∂n2
= 0 , (6.32)

where Δg is now given by Eq. (6.30). With account of Eq. (6.25), the work of critical

cluster formation, ΔGcr, is determined by Eq. (6.30) reducing it to a relation of the

form (ΔGcr/Gσ) ≡ Δgcr (x) = Δg (n1,cr, n2,cr, x).

In heterogeneous nucleation on a planar solid surface the work of cluster

formation is affected considerably by the value of the contact angle [2–4]. The

expression for the work of critical cluster formation, Eq. (6.27), differs from the

one describing homogeneous nucleation [15, 16] by the nucleation-activity factor,
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ϕ(γ). This factor is equal to one in the case of homogeneous nucleation, its value in

heterogeneous nucleation on planar interfaces determines, consequently, its nucleation

activity. As evident from Eqs. (6.9) and (6.21), the nucleation activity is determined

basically by the value of the contact angle, γ. In the analysis of heterogeneous

nucleation in the framework of the generalized Gibbs approach, primarily the contact

angle becomes dependent on the composition of both ambient and cluster phases and

determines then the catalytic activity and, finally, the work of critical cluster formation

in heterogeneous nucleation as will be shown now in Sections 9.4 and 8.4.

6.3. Contact angle in heterogeneous nucleation at a planar solid surface

6.3.1. Contact angle

In the classical approach to heterogeneous nucleation, the bulk properties of

the cluster phase are considered commonly as given and fixed and, by this reason,

also the surface energy terms entering Young’s equation, Eq. (6.18), can be treated

as constants. By this reason, the contact angle is a constant as well. Accounting, in

terms of the generalized Gibbs approach, for changes of the bulk state parameters

of the cluster of the newly evolving phase leads to the consequence that the contact

angle, γ, has to be determined as a function of these state parameters as well affecting

then finally also the catalytic activity factor with respect to nucleation, ϕ(γ). By

this reason, we first consider here the problem of determining the contact angle in

dependence on the state parameters of both ambient and newly evolving in the system

phases.

For the case of high wettability the contact angle has values less than 90◦,

contact angles are larger than 90◦ for the case of low wettability. Since the contact
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angle can be computed via Young’s equation, Eq. (6.18), as

cos γ =
σβs − σαs

σαβ
, (6.33)

for a high wettability σαs < σβs holds while for a low wettability the inverse

inequality σαs < σβs is fulfilled. These two different cases of heterogeneous

nucleation we consider here in detail separately. However, in order to proceed with

this task, we have to specify first the specific surface energy of the solid-liquid

interface.

6.3.2. Specific energy of the solid-liquid interface

According to Eq. (6.33) in order to determine the contact angle it is necessary to

know the specific energy of the cluster-solid, ambient phase-solid and cluster-ambient

phase interfaces. This knowledge is required for all compositions of the ambient and

cluster phases varying in a range from the equilibrium value at the left binodal, x
(l)
b ,

to the equilibrium value at the right binodal, x
(r)
b (determined by Eq. (6.6)). Both of

these phases we will denote as “fluids"for simplicity, but the results hold similarly

also for segregation of a solid solution at a planar interface.

In order to have at our disposal an expression for the fluid-solid specific

interfacial energy, we proceed here as follows. The specific energy of the fluid-

solid interface, σfs, depends on the composition of the fluid (cluster or ambient

phase), which is in contact with the solid surface, and in the simplest (linear in the

composition of the fluid) approximation can be written as

σfs(x) =
σβs,0

(
x

(r)
b − x

)
+ σαs,0

(
x − x

(l)
b

)

x
(r)
b − x

(l)
b

. (6.34)
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Here σβs,0 and σαs,0 are the specific energy of the ambient phase-solid and cluster-

solid interfaces for the case, when ambient and newly evolving phases are in an

equilibrium state (that is for x = x
(l)
b and xα = x

(r)
b ). The corresponding parameters

without the subscript 0 refer to the current values of these quantities for an arbitrary

value of the composition of the fluid (ambient phase or cluster).

This equation can be obtained from the following considerations: First, we

write down Taylor expansions of the fluid-solid specific interface energy, σfs(x),

both in the vicinity of the equilibrium composition (x(r)
b ) of the cluster, σαs(x), and

the ambient phase (with the equilibrium composition, x
(l)
b ), σβs(x),

σαs(x) = σαs,0 +
∂σfs

∂x

∣
∣
∣
∣
x=x

(r)
b

(
x − x

(r)
b

)
,

(6.35)

σβs(x) = σβs,0 +
∂σfs

∂x

∣
∣
∣
∣
x=x

(l)
b

(
x − x

(l)
b

)
.

where

σαs,0 = σfs

(
x

(r)
b

)
, σβs,0 = σfs

(
x

(l)
b

)
. (6.36)

In addition, we assume here linearity of the dependence of σfs(x) on composition x

in the whole interval leading to

∂σfs

∂x

∣
∣
∣
∣
x=x

(l)
b

=
∂σfs

∂x

∣
∣
∣
∣
x=x

(r)
b

=
σαs,0 − σβs,0

x
(r)
b − x

(l)
b

. (6.37)

A combination of Eqs. (6.35) and (6.37) results immediately in Eq. (6.34). Eq. (6.37)

yields then further

σβs − σαs = σfs(x) − σfs(xα) = (σβs,0 − σαs,0)

(
xα − x

x
(r)
b − x

(l)
b

)

. (6.38)
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We can see from Eq. (6.38) that the difference (σβs − σαs) is linear in (xα − x),

positive for high wettability (σβs,0 > σαs,0) and negative for low wettability (σβs,0 <

σαs,0) in accordance with above given definition. The difference in the signs of the

mentioned specific surface energy terms is the main difference distinguishing the two

types of solid surfaces. This difference is the basic origin of the different types of

catalytic activity in heterogeneous nucleation.

6.3.3. Some first consequences

The surface tension for cluster-ambient phase coexistence is determined by

Eq. (6.24). Equation (6.24), accounting for Eqs. (6.18), (6.38) and (6.33), yields

cos γ(x, xα) = cos γ0

(
x

(r)
b − x

(l)
b

xα − x

)

, (6.39)

where

cos γ0 =
σβs,0 − σαs,0

σlg,0
. (6.40)

The first factor on the right-hand side of Eq. (6.39), cos γ0, can be considered as some

given property of the solution (liquid or solid) under consideration in a macroscopic

equilibrium state with the planar solid surface. Thus, for the analysis of heterogeneous

nucleation it is necessary to know the contact angle, γ0, for the case, when ambient

and newly evolving phases are in a macroscopic equilibrium state. In the present

study, we assign here to γ0 different values analyzing, on one hand, quantitative

changes of the behavior in dependence on the value of γ0 and reflecting, on the other

hand, the two considered qualitatively different cases of high and low wettability.

Employing the classical Gibbs approach, the contact angle is determined
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exclusively by this first term cos γ0 and determines in this classical approach the

catalytic activity. The second factor in Eq. (6.39) depends on the composition of the

both fluids (ambient and cluster phases). Generalizing the classical Gibbs approach

to heterogeneous nucleation, this term accounts for changes in the composition of the

cluster and the ambient phases, we have here to incorporate into the determination of

the catalytic activity via Eqs. (6.9) and (6.39). Eq. (6.39) implies that, at

xα,0 =
(
x

(r)
b − x

(l)
b

)
cos γ0 + x , (6.41)

the contact angle is equal to γ = 0. At

xα,π = −
(
x

(r)
b − x

(l)
b

)
cos γ0 + x , (6.42)

the contact angle is equal to γ = π.

In the ranges of values of the cluster compositions

xα < xα,π , xα > xα,0 at γ0 <
π

2
, (6.43)

xα < xα,0 , xα > xα,π at γ0 >
π

2
,

nucleation at a planar solid interface proceeds heterogeneously with cluster shapes as

shown in Fig. 6.2. In the range

x < xα ≤ xα,0 at γ0 <
π

2
, (6.44)

xα,0 ≤ xα < x at γ0 >
π

2
,
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the contact angle is equal to γ = 0. In this limit, we have perfect wetting, ϕ = 0,

and the work of cluster formation Eq. (6.10) is determined here only by the bulk

contribution defined by the thermodynamic driving force, Eq. (6.21). In the range

xα,π ≤ xα < x at γ0 <
π

2
, (6.45)

x < xα ≤ xα,π at γ0 >
π

2
,

the contact angle equals γ = π. For these clusters nucleation proceeds

homogeneously, i.e. it becomes fully independent of the existence of the solid surface.

For a macroscopic equilibrium contact angle equal to γ0 = 90◦ we get ϕ = 1/2. In

this case, the cluster is a hemisphere, so it has a twice smaller size (volume) and free

energy of cluster formation as compared to the case of homogeneous nucleation.

6.4. Nucleation activity and heterogeneous nucleation on planar solid

interfaces: Results

6.4.1. Case of high wettability

For the case of high wettability, the analysis of Eqs. (6.9) and (6.27) leads to

the conclusion that, for a moderate supersaturation (for initial states located in the

central part of the interval x
(l)
b < x < x

(l)
sp ), the hypersurface modeling the work of

cluster formation has a typical saddle shape in the (n1, n2)-space near to the state

corresponding to the parameters of the critical cluster, (n1,cr, n2,cr).

As an example, such kind of behavior is shown on Fig. 6.4(a) for a macroscopic

equilibrium contact angle equal to γ0 = 90◦ (T/Tc = 0.7, x = 0.17). The behavior

is here quite similar to the case of homogeneous nucleation. In this case, i.e. for

γ0 = 90◦ (Fig. 6.4(a)), the Gibbs potential profile corresponds to the one obtained
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Fig. 6.4. Gibbs’ free energy landscape of cluster formation for different values of the

macroscopic equilibrium contact angle, γ0: a) γ0 = 90◦, b) γ0 = 80◦, c) γ0 = 77◦,

d) γ0 = 76.228◦, e) γ0 = 74.4◦, f) γ0 = 72◦ at otherwise identical conditions. The

reduced temperature is taken equal to T/Tc = 0.7 in all these cases, the initial

composition of the ambient phase is chosen equal to x = 0.17. The range with a

value of the catalytic activity factor, ϕ, equal to zero is especially distinguished.
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for the case of homogeneous nucleation multiplied by a factor of 0.5 (as the cluster

is a hemisphere in the case under consideration, it has, as already mentioned, a twice

smaller size and free energy of formation), with the valley at xα = x = 0.17 and the

saddle at the point corresponding to the critical cluster. Latter state is determined by

the system of equations, Eqs. (6.32).

The situation changes significantly as compared to the case shown in Fig. 6.4(a)

when γ0 decreases. This variation of the type of behavior is illustrated in Figs. 6.4(b-

f), which show the Gibbs free energy surface of cluster formation for different values

of the equilibrium contact angle ( b) γ0 = 80◦, c) γ0 = 77◦, d) γ0 = 76.228◦, e)

γ0 = 74.4◦, f) γ0 = 72◦) at otherwise identical conditions. The reduced temperature

is taken equal to T/Tc = 0.7 in all these cases, the initial composition of the ambient

phase is chosen equal to x = 0.17.

When the contact angle decreases, the work of critical cluster decreases as well,

and a region with a cluster composition in the range x < xα < xα,0 appears, where

ϕ = 0 holds. Such type of behavior is shown in Fig. 6.4(b) for a value of γ0 equal to

γ0 = 80◦. As discussed in the previous section, the boundary of this region, i.e., the

value of xα,0 is determined by Eqs. (6.41). This region with a value of the nucleation

activity ϕ = 0 expands with decreasing values of the parameter γ0 (Fig. 6.4(c-f)). In

this range defined by ϕ = 0, the interfacial contributions to the Gibbs free energy are

equal to zero. The work of cluster formation given by Eq. (6.10) is determined here

exclusively by the bulk contribution defined by the thermodynamic driving force,

Eq. (6.30) (note that in this case r → ∞ according to Eq. (6.31), see Fig. 6.6b as

well).

In case the composition of the ambient phase approaches the value x =

x
(hw)
ss (γ0) (superscript hw means high wettability), the work of critical cluster

formation at xα = xα,0 becomes equal to zero (for the given value of x = 0.17

it takes place at γ0 = 76.228◦, see Fig. 6.4(d)). Here x
(hw)
ss (γ0) is a root of the

equation
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xα,0

(
x(hw)

ss (γ0), γ0

)
= xα,ll

(
x(hw)

ss (γ0)
)

, (6.46)

where xα,0 is determined by Eq. (6.41) and xα,ll by Eq. (6.15).

For even smaller values of the equilibrium contact angle, the evolution of

the clusters with compositions close to xα,0 can proceed without the necessity of

overcoming of a potential barrier i.e. by a scenario of phase formation similar to

spinodal decomposition (Figs. 6.4(e and f)). For these clusters with a composition

xα ≈ xα,0, the contact angle is very small or equal to zero (see Fig. 6.5 as well).

In this limiting case, line tension effects may gain importance [20–22]. The range

Fig. 6.5. Dependence ϕ (xα) (right axis), and cross-sections of the Gibbs free energy

surface, Δg(n, xα)|n=const (left axis), for different fixed values of n specified by the

numbers at the respective curves (at x = 0.17 and γ0 = 72◦).

xα,ll < xα ≤ xα,0, where the contact angles vanishes, represents perfect wetting

[23, 24] In this composition range, clusters are more appropriately treated as flat

islands and not as the spherical segments, which are formed in the range xα > xα,0.

For the qualitative analysis of such clusters, the model used here is expected to remain

valid, however, for a quantitative description of the nucleation behavior in this limit

the model should be further advanced taking into account mentioned effects. However,
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such task is beyond the scope of the present analysis, these effects will be analyzed

in more detail in a future study.

Fig. 6.5 presents the dependence ϕ(xα) and the cross-sections of the Gibbs

free energy surface, Δg(n, xα)|n=const, for x = 0.17, γ0 = 72◦ (which was shown

in Fig. 6.4(f) as well), at different values of n given in the figure as numbers to the

respective curves. As evident from the figure, there exist two minima of Δg along

these cross sections. One of them is located at x = xα,0, it refers to the case of

flat island formation (ϕ = 0). The minimum work of flat island phase formation,

Δg (n, xα,0), is determined by Eq. (6.30) at ϕ = 0, equal to

Δg (n, xα,0) = 2nf (x, xα,0) . (6.47)

It is linear in n and decreases for the parameters under consideration. The dashed-

dotted curve in Fig. 6.5 shows the position of the second minimum for clusters of

spherical segments shape. With increasing cluster size the minimum deepens and the

composition of the clusters tends to the value xB, determined by Eq. (6.14).

The parameters of the critical cluster in dependence on initial supersaturation

are illustrated in Fig. 6.6 [a) composition of the critical cluster xα,cr, b) critical cluster

size, ncr, c) work of critical cluster formation, Δgcr] for different values of the contact

angle, γ0, equal to γ0 = 60◦, 70◦, 80◦, 90◦, and 180◦ (the latter one corresponds to

the case of homogeneous nucleation). With an increase of the supersaturation starting

at initial states near to the binodal curve, the concentration of the atoms of the second

component in the critical cluster, xα,cr, decreases first and reaches its minimum, xα,0

(the dotted curve in Fig. 6.6(a)), at x = x
(hw)
ss (γ0). With a subsequent further increase

of the supersaturation, xα,cr grows linearly (see Eq. (6.41)).

In agreement with the classical picture, the size of the critical cluster tends to

infinity for initial states of the ambient phase in the vicinity of the binodal, and with

an increase of the supersaturation the critical size decreases first. However, in contrast

to the classical picture, in the approach to the limiting value, x = x
(hw)
ss , the critical
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Fig. 6.6. The parameters of the critical cluster in dependence on initial supersaturati-

on: a) composition xα,cr, b) critical cluster size ncr, c) work of critical cluster

formation, Δgcr, for different values of the macroscopic equilibrium contact angle,

γ0 = 60◦, 70◦, 80◦, 90◦, and 180◦.
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cluster size starts to increase again and reaches infinity at x = x
(hw)
ss .

At x > x
(hw)
ss , a critical cluster in the classical sense does not exist.

Thermodynamically cluster evolution starts at n = 0 (or, in physical terms, from

one structural unit) and proceeds via a valley at x = xα,0 (see Figs. 6.4f and 6.5).

This valley is separated from the final state (which is shown by the dashed-dotted

curve in Fig. 6.5) by some barrier. Based on this picture, we can expect that the

phase transition will proceed at such states in two-stages: first, by the formation of a

flat island phase followed by the second stage, the formation of the final state phase

with clusters of spherical segments shape. Details of such path of evolution can be

derived based on the solution of an appropriate set of kinetic equations employing

the generalized Gibbs approach for the thermodynamic description. In application to

homogeneous nucleation, such approach was developed in [17, 18].

For the considered variations of the composition of the ambient phase, the work

of critical cluster formation decreases monotonically from infinity (for initial states at

the binodal curve) till, at x = x
(hw)
ss , it exhibits a discontinuity. It has a finite value

Δgcr(x
(hw)
ss ) = Δgmin (the dotted curve in Fig. 6.6(c)) at x = x

(hw)
ss , however, at any

values x > x
(hw)
ss the work of critical cluster formation is identically equal to zero, i.e.,

Δgcr|x>x
(hw)
ss

= 0. The scenario of phase evolution for the thermodynamically unstable

initial states in the range x
(l)
sp < x < x

(r)
sp will be analyzed in detail in Section 6.4.3.

Note that the minimal values, xα,0 and Δgmin, shown by the dotted curves in Fig. 6.6(a

and c), have no real physical meaning. They correspond to clusters of infinite size,

which cannot be realized in the system. Instead of forming a very large (critical)

cluster, for both metastable and unstable initial states near to the spinodal curve the

evolution to the new phase will, as a rule, proceed via the ridge of the appropriate

thermodynamic potential relief and not via the saddle point (see [17, 18] for details).

Note as well that heterogeneous nucleation at γ0 = 90◦ proceeds similarly to

homogeneous nucleation characterized by γ0 = 180◦ [15, 16]. Indeed, in this case

the contact angle does not depend on the cluster parameters (composition), γ =
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γ0 = 90◦ (see Eq. (6.39)). In this case, clusters formed at the planar interface have

a hemispherical shape. This is also the reason for why the dependencies xα,cr(x)

are identical for both heterogeneous and homogeneous cases, but the work of critical

cluster formation and its size, ncr, are by a factor of 1/2 smaller than for homogeneous

nucleation.

A similar behavior, as found here and illustrated, in particular, in Figs. 6.4

and 6.6, was observed earlier by us in the analysis of condensation and boiling at

planar interfaces (c.f. Figs. 3 and 4 in [12]) and in the analysis of homogeneous

nucleation in solutions [15, 16]. So, similarly to [12], we may conclude that the

existence of heterogeneous nucleation cores may result effectively in a shift of the

spinodal curve from the value for homogeneous systems (x = x
(l)
sp as illustrated

in Fig. 6.1) to a value x = x
(hw)
ss ≤ x

(l)
sp affected in addition by the properties of

the solid nucleation core. Therefore we can consider the range of supersaturations,

x
(l)
b < x < x

(hw)
ss , with respect to heterogeneous nucleation as the metastable region

and the composition range x > x
(hw)
ss as thermodynamically unstable states. The value

of the composition of the ambient phase x = x
(hw)
ss is to be treated consequently as

a part of the spinodal curve with respect to heterogeneous nucleation. Full spinodal

curves x
(hw)
ss (T ) are presented in the left part of Fig. 6.10 for different values of the

macroscopic equilibrium contact angle, γ0 = 60◦, 70◦, 80◦, and 90◦.

Summarizing briefly the results for the case under consideration, we arrive at

the following consequences: Employing the generalized Gibbs approach to nucleation

of a new phase in a supersaturated regular solution on a surface of high wettability

it is concluded that the existence of the planar solid interface leads effectively to a

significant shift of the spinodal to lower supersaturations as compared to the case

of homogeneous nucleation. However, all basic features found for homogeneous

nucleation like the divergence of the critical cluster radius or the approach of zero

values of the work of critical cluster formation near to the spinodal curve are retained

in a qualitatively identical form.
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6.4.2. Case of low wettability

The computations for the description of heterogeneous nucleation for the case

of low wettability can be performed similarly to the first case of phase formation

on a highly wettable surface. The resulting from the computations dependencies of

the parameters of the critical cluster on the initial supersaturation for the case of low

wettability are shown in Fig. 6.7 [a) composition of the critical cluster, b) particle

number in the critical clusters, c) work of critical cluster formation]. The analysis has

been carried out, again, for different values of the macroscopic equilibrium contact

angle, γ0, equal to γ0 = 90◦, 100◦, 110◦, 120◦, and for homogeneous nucleation,

γ0 = 180◦. For x
(l)
b < x < x

(lw)
ss , where the boundary of heterogeneous nucleation,

x
(lw)
ss , is determined similarly to Eq. (6.46) as a root of the equation

xα,π

(
x(lw)

ss (γ0), γ0

)
= x(hom)

α,cr

(
x(lw)

ss (γ0)
)

, (6.48)

nucleation occurs heterogeneously, size and work of critical cluster formation are less

than for the homogeneous case (here xα,π is determined by Eq. (6.42), and x
(hom)
α,cr is

the composition of the critical cluster in homogeneous nucleation [8, 15, 16], i.e. for

ϕ = 1, superscript lw means low wettability). However, for the considered case, the

degree of activation of nucleation by the planar solid surface is much less expressed

than for the case of high wettability. This is seen from a comparison of full curves

(representing heterogeneous nucleation) with the dashed lines showing the respective

parameters of the critical cluster computed for the case of homogeneous nucleation

(i.e. for γ0 = 180◦). With an increase of the supersaturation, at some upper limiting

value of the composition of the ambient phase, x
(lw)
ss (γ0), nucleation becomes fully

independent of the existence of the solid surface. Dependencies x
(lw)
ss (T ) are presented

in the right part (x > 0.5) of Fig. 6.10 for different values of the contact angle,

γ0 = 90◦, 100◦, 110◦, and 120◦, for the range x < 0.5 it is needed only to replace x

by (1 − x) (see Section 6.4.4 for more details).
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Fig. 6.7. Parameters of the critical cluster in dependence on initial supersaturation

for the case of low wettability: a) composition of the critical cluster xα,cr, b) critical

cluster size ncr, c) work of critical cluster formation, Δgcr, for different values of the

contact angle, γ0 = 90◦, 100◦, 110◦, 120◦, and 180◦.
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6.4.3. Segregation in thermodynamically unstable initial states

In the unstable region, x
(l)
sp < x < x

(r)
sp , in the case of homogeneous nucleation

(γ0 = 180◦) and for heterogeneous nucleation at γ0 = 90◦, the surface modeling the

work of cluster formation in vicinity of the critical cluster state has a very particular

shape corresponding to a third-order saddle point. Clusters with a composition xα = x

are stable against variation of its composition (∂2Δg/∂x2
α < 0) for n < ncr and

unstable (∂2Δg/∂x2
α > 0) for n > ncr. This particular critical size parameter, ncr, is

determined here by the equation

∂2Δg (ncr, xα)

∂x2
α

∣
∣
∣
∣
xα=x

= 0 . (6.49)

Note that the work of formation of such particular aggregates – unlike to the case of

critical cluster formation in metastable initial states – is equal to zero (its origin is

discussed in detail in [16, 17]).

The Gibbs potential profile for a macroscopic equilibrium contact angle equal

to γ0 = 90◦ is shown on Fig. 6.8(a) for x = 0.5 and on Fig. 6.8(b) for x = 0.35.

Cluster evolution proceeds here first in the vicinity of the line O → C, and then via

the path C → A or C → B, approaching finally either the composition xα = xB

or xα = xA, respectively (xA,B are determined by Eq. (6.14)). The thermodynamic

potential relief for x = 0.5 is symmetric with respect to the change n1 ↔ n2, and the

path O → C → A is equivalent to the path O → C → B. For x = 0.35 symmetry

breaking takes place, and the path O → C → B becomes thermodynamically more

favorable as compared to O → C → A. Note that the states with γ0 = 90◦ are

degenerated. Really, at γ0 = 90◦ the catalytic factor is always equal to ϕ = 1/2

for any cluster (see Eq. (6.9)), but Eq. (6.40) has a discontinuity at xα = x, and ϕ

changes from 0 to 1 at small variation of xα in the vicinity of x. This is the reason

why for γ0 6= 90◦ the Gibbs potential profile changes significantly, and the critical

cluster size vanishes (see Fig. 6.8(c,d)).
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For the case of high wettability (γ0 = 88◦, Fig. 6.8(c)), at the thermodynami-

cally preferred path O → B the work of cluster formation decreases with cluster size.

Initially along this path the cluster composition equals xα = xα,0 > x (where xα,0

is determined by Eq. (6.41)), and with an increase of cluster size it approaches the

composition xα = xB. The path of cluster evolution O → C → A becomes here

more difficult, since the critical size is doubled due to the growth of the catalytical

factor from ϕ = 0.5 to ϕ = 1.

Fig. 6.8. Gibbs’ free energy landscape of cluster formation for different values of the

macroscopic equilibrium contact angle, γ0: a) γ0 = 90◦, b) γ0 = 80◦, c) γ0 = 100◦, at

otherwise identical conditions. The reduced temperature is taken equal to T/Tc = 0.7

in all these cases, the initial composition of the ambient phase is chosen equal to

x = 0.35.

For the case of low wettability (γ0 = 92◦, Fig. 6.8(d)), the path O → A is
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preferred at xα = xα,0 < x approaching the final composition xα = xA. The path

of cluster evolution O → C → A becomes more difficult, since the critical size is

doubled (as compared to the case γ0 = 90◦) due to the growth of the catalytical factor

from ϕ = 0.5 to ϕ = 1. Fig. 6.9(a) presents the dependence ϕ(xα) and the cross-

sections of the Gibbs free energy surface, Δg(n, xα)|n=const, for the low wettability

case (x = 0.35, γ0 = 100), at different values of n given in the figure as numbers to

the respective curves. At n < 4.71 the function Δg(xα) has only one minimum, at

Fig. 6.9. Dependence ϕ (xα) (right axis), and cross-sections of the Gibbs free energy

surface, Δg(n, xα)|n=const (left axis), for different fixed values of n specified by the

numbers at the respective curves (at x = 0.35 and a) γ0 = 100◦, b) γ0 = 110◦).
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xα = xα,0, for n > 4.71 a second minimum appears, at n > 6.855 it becomes deeper

than the first one. At large values of n, i.e. at n > 83.2, near to the first minimum

appears a new one, which tends to the final state composition xα = xB at high n (see

the dashed curves in Fig. 6.9(a)). For γ0 > γA, where γA(x) is determined by the

intersection of the xA(x) and xα,0(x) lines, that is by the root of the equation

xα,0(x, γA) = xA(x) , (6.50)

the inequality xα,0 < xA is valid, and in the range xα < x only one minimum exists,

xα = xA (see Fig. 6.9(b)).

Consequently, in thermodynamically unstable initial states the work of critical

cluster formation is always equal to zero, but there are two critical sizes, which

correspond to different modes of evolution. For the first mode, the critical size is

equal to zero, corresponding to a cluster composition xα,cr = xα,0, for the second one

the critical size is determined by Eq. (6.49), and xα,cr = x holds. The critical cluster

parameters, composition and size, are shown in Fig. 6.10 for different contact angles.

For the case of high wettability (γ0 < 90◦), the critical size ncr = 0 for

the “favorable”mode with increasing concentration, xα → xB, and ncr > 0 for the

“unfavorable”mode with decreasing concentration, xα → xA. For the low wettability

case (γ0 > 90◦) an opposite behavior is found: ncr > 0 for the “favorite”mode

with increasing concentration, xα → xB, and ncr = 0 for the “unfavorable”mode

with decreasing concentration, xα → xA: latter mode will have more possibilities to

advance. Nevertheless, at it was mentioned already, thermodynamics yields only a

qualitative description of such processes. A more detailed analysis has to be based on

the solution of the set of kinetic equations employing the generalized Gibbs approach

for the thermodynamic description, as it was performed in [17, 18] for homogeneous

nucleation.
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Fig. 6.10. Parameters of the critical cluster in dependence on initial supersaturation:

a) composition of the critical cluster xα,cr, b) critical cluster size ncr for the case of

low wettability (γ0 = 90◦, 100◦, 110◦, 120◦, and 180◦), c) critical cluster size ncr for

the case of high wettability (γ0 = 60◦, 70◦, 80◦, 90◦) .
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6.4.4. Alternative case: Segregation at solute concentrations x > 0.5

The choice of the independent variable in the description of the solutions under

consideration is arbitrary. By this reason, the process of formation of a new phase

cluster, wherein the concentration of the second component, x, increases from a value

in the range x
(l)
b < x < x

(l)
sp to x

(r)
b , can be interpreted as the formation of the cluster

in which the concentration of the first component decreases from a value in the range

x
(r)
sp < x < x

(r)
b to the value x

(l)
b . Considering also that the equation of state for binary

regular solutions is symmetric with respect to x = 1/2 (see Fig. 6.1), one is attempted

to suppose that the segregation behavior in such solution with the composition, for

example, x = 0.8, will be similar to that at x = 0.2, and to describe such a process

it is needed only to replace x by 1 − x (and, correspondingly, x
(l)
b → 1 − x

(l)
b = x

(r)
b

and x
(l)
sp → 1 − x

(l)
sp = x

(r)
sp ).

However, this symmetry is broken when a catalytic surface appears. Indeed, if

at x < 0.5 the equilibrium contact angle is determined by Eq. (6.40), where σαs,0 and

σβs,0 are determined by Eq. (6.37), i.e., at the left and right binodal, respectively, then

for x > 0.5 the binodal molar fractions have to be interchanged in their places in the

equation i.e. x
(l)
b � x

(r)
b . By this reason, Eq. (6.40) takes form

cos γ0 =
σαs,0 − σβs,0

σlg,0
. (6.51)

Thus, the cosine of the contact angle changes its sign to the opposite one and γ0 →

180 − γ0, so if for x < 0.5 the surface was of high wettability, then for x > 0.5 it

becomes a poorly wettable one and vice versa. This asymmetry is demonstrated in

Figs. 6.11 and 6.12.

Fig. 6.11 presents the location of the binodal and spinodal curves, dependencies

of the heterogeneous interface induced spinodal, x
(hw)
ss , and of the heterogeneous

nucleation border, x
(lw)
ss , for different values of the contact angle, (1) γ0 = 90◦,

(2) γ0 = 80◦(100◦), (3) γ0 = 70◦(110◦), (4) γ0 = 60◦(120◦), the contact angle values
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Fig. 6.11. Location of the binodal and spinodal curves, dependencies of the

heterogeneous interface induced spinodal, x
(hw)
ss , and of the heterogeneous nucleation

border, x
(lw)
ss , for different values of the contact angle, (1) γ0 = 180◦, (2) γ0 = 90◦,

(3) γ0 = 80◦(100◦), (4) γ0 = 70◦(110◦), (5) γ0 = 60◦(120◦) (see text for details).

Fig. 6.12. The dependence of the composition of the critical clusters, xα,cr, in the

whole range of possible initial compositions of the ambient solution, for different

values of the specific interfacial energy. The curves for the contact angle values

γ0 = 40◦, 50◦, 60◦, 70◦, 80◦, which for x < 0.5 correspond to the case of the high

wettability, at x > 0.5 correspond to the case of the low wettability with the contact

angle values γ0 = 140◦, 130◦, 120◦, 110◦, 100◦, respectively.
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are given for x < 0.5 (x > 0.5), respectively. Fig. 6.12 shows the dependence of the

composition of the critical clusters in the whole range of possible initial compositions

of the ambient solution, for different values of the specific interfacial energy, the

curves for the contact angle values γ0 = 40◦, 50◦, 60◦, 70◦, 80◦, which for x < 0.5

correspond to the case of the high wettability, at x > 0.5 correspond to the case of

the low wettability with the contact angle values γ0 = 140◦, 130◦, 120◦, 110◦, 100◦,

respectively, and T/Tc = 0.7 holds as before. As we can see, Fig. 6.12 is actually

a compilation of Figs. 6.6(a) and 6.7(a). Work of formation and size of the critical

clusters can be obtained similarly.

6.4.5. Effect on the steady-state nucleation rate

Employing the notations introduced in the present paper, the steady-state

nucleation rate (see, e.g., [1, 2]) can be written as

J = J0 exp

(

−
ΔgcrGσ

kBT

)

. (6.52)

The pre-exponential term, J0, is proportional to the number of heterogeneous

nucleation cores per unit surface times the characteristic vibration frequency. The

scaling factor, Gσ, in the exponent is determined by Eq. (6.26).

Fig. 6.13 presents a comparison of the reduced nucleation rates, J/J0, as

determined via the generalized Gibbs approach (solid curves) and the classical Gibbs

approach utilizing, in addition, the capillarity approximation (dashed curves) for

different values of the contact angle, γ0 = 60◦, 70◦, 80◦, and 90◦. The calculations

were performed for Tc = 1143 K , T = 0.7Tc and a = 3.65 ∙ 10−10 m,

σαβ,0 = 0.08 J/m2, for such parameters Gσ = 61.6 kBT and Rσ = 3.087 a. As

we can see, nucleation rates determined according to the generalized Gibbs’ approach

increase with supersaturation and reach its maximal value, J0, at x ≥ x
(hw)
ss (γ0).
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Fig. 6.13. Comparison of the the reduced nucleation rates, J/J0, as determined

via the generalized Gibbs’ approach (solid curves) and the classical Gibbs’ approach

utilizing, in addition, the capillarity approximation (dashed curves) for different values

of the contact angle, γ0 = 60◦, 70◦, 80◦, and 90◦.

The classical nucleation rates are significantly less for all values of the macroscopic

equilibrium contact angle.

6.5. Discussion and conclusions

Employing the generalized Gibbs approach to the description of segregation

in a binary regular solution in the presence of a planar interface we arrive widely

at the same result as obtained for heterogeneous nucleation for a one-component

van der Waals fluid [12]: as compared with homogeneous nucleation, a significant

shift of the spinodal curve to lower supersaturations occurs caused by the existence

of the high wettable planar solid interface. This result implies that the region of

instability of the fluid is enlarged and the range of initially metastable states is

reduced. Such features – observed already in application of the generalized Gibbs

approach to homogeneous condensation and boiling and changing essentially the
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results obtained via the classical Gibbs treatment – like the divergence of the critical

radius in the approach of the spinodal and the possibility of nucleation passing not

the saddle but the ridge of the thermodynamic potential surface analyzed in detail for

homogeneous phase formation [8, 13, 17, 18, 25] are found here as well for the new

boundary of metastability. Similarly to condensation and boiling the present results

can be extended straightforwardly to account for finite size effects in the catalytic

activity of heterogeneous nucleation cores [26, 27]. The respective generalization of

the present results to account for such finite size effects will be presented in future

contributions.
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6.6. Висновки до роздiлу 6

Результати дослiджень, представлених у даному роздiлi, опублiковано

в статтi [6] (Додаток А. Список публiкацiй здобувача за темою дисертацiї). До-

слiджено гетерогенне зародження кластерiв нової фази у регулярному бiнарному

розчинi на плоских твердих поверхнях. Серед основних результатiв у якостi

висновкiв можна видiлити наступнi:

• Показано, що контактний кут та каталiтичний фактор для гетерогенної

нуклеацiї стають залежними вiд ступеня метастабiльностi (пересичення) розчи-

ну.
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• У випадку утворення кластерiв нової фази на поверхнi з низькою

змочуванiстю (контактний кут бiльше 90◦) каталiтична активнiсть твердої

поверхнi мала.

• В альтернативному випадку високої змочуваностi (контактний кут

менше 90◦) iнтенсивнiсть зародження значно посилюється твердою поверхнею.

• Таким чином, у цьому випадку, як i у рiдинi ван дер Ваальса (яку було

проаналiзовано в попередньому роздiлi), гетерогенна спiнодаль наближається до

бiнодалi, а область метастабiльностi звужується за рахунок розширення областi

нестабiльностi.
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РОЗДIЛ 7

ГЕТЕРОГЕННА НУКЛЕАЦIЯ НА ДЕФЕКТНИХ ПОВЕРХНЯХ:

УЗАГАЛЬНЕНИЙ ПIДХIД ГIББСА

У сьомому роздiлi дослiджено гетерогенне зародження (конденсацiя)

крапель рiдини з пари (газу) на дефектнiй твердiй поверхнi в моделi флюїду

ван дер Ваальса, як поверхневий дефект обрана конiчна пора.
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Heterogeneous nucleation (condensation) of liquid droplets from vapor (gas)

on a defective solid surface is considered. The vapor is described by the

van der Waals equation of state. The dependence of nucleating droplet

parameters on droplet size is accounted for within the generalized Gibbs

approach. As a surface defect, a conic void is taken. This choice allows us

to simplify the analysis and at the same time to follow the main aspects of

the influence of the surface roughness on the nucleation process. Similarly

to condensation on ideal planar surfaces, contact angle and catalytic factor

for heterogeneous nucleation on a rough surface depend on the degree of

vapor overcooling. In case of droplet formation on a hydrophilic surface of

a conic void the nucleation rate considerably increases in comparison with

the condensation on a planar interface. In fact, the presence of a defect on

the hydrophilic surface leads to a considerable shift of the spinodal towards
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lower supersaturation in comparison with heterogeneous nucleation on a

planar interface. With the decrease in the void cone angle the heterogeneous

spinodal approaches the binodal, and the region of metastability is diminished

at the expense of the instability region. Published by AIP Publishing.

https://doi.org/10.1063/1.5006631

7.1. Introduction

Processes of formation of a new phase are of great scientific and technological

importance. The starting stage of this process is the nucleation of microvolumes of a

new phase. It may proceed both homogeneously and heterogeneously.

Homogeneous nucleation takes place under special conditions when any

catalysing foreign surfaces are absent in the sample where the phase formation

proceeds. In practice these conditions are rarely met and homogeneous nucleation

is supplemented by heterogeneous nucleation. In particular, at low supersaturation,

nucleation takes place predominately at the external surfaces or on surfaces of the

existing in media solid phase inclusions (e.g. nanoparticles) and should be considered

as heterogeneous.

The effect of foreign, respectively, internal surfaces and its wettability on

nucleation are the topic of many papers dealing with heterogeneous nucleation (see,

e.g. [1]). The first analyses in this direction dealt with planar surfaces [2–4]. They

were supplemented by extensions accounting for the value and sign (positive or

negative) of the surface curvature [5–7] with application to nucleation, in particular,

on aerosol particles [7,8]. Simultaneously it was realized that a uniform flat substrate

is not a good approximation to practical conditions. Solid surfaces are always more or

less rough. Such surface structures may be modelled by assuming surface cavities of

particular shape and size. The possibility that embryos may nucleate in such surface

cavities was first pointed out by Volmer in 1939 [9] and studied by many others,
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e.g. [10–13].

Generally, for the interpretation of processes of formation of a new phase two

conventional thermodynamic approaches are widely applied developed by Gibbs [14]

and van der Waals [15, 16], respectively. Applying Gibbs theory to the description

of critical cluster formation in the classical theory of nucleation, one assumes in line

with Gibbs theory that the bulk properties of new phase clusters are widely similar

to the properties of the corresponding macroscopic phases. Another condition which

is frequently supposed to be fulfilled is that the specific surface energy (or surface

tension) is the same as for the flat boundary under equilibrium between both phases

(capillary approximation). If the first supposition (the similarity of bulk properties of

critical clusters to the corresponding macroscopic phases) is intrinsically a corollary

of Gibbs theory, the latter one can be replaced by the introduction of the dependence

of the surface tension on the interphase surface curvature or on the cluster size

as also suggested already by Gibbs. This approach is used commonly in classical

nucleation theory to achieve a better agreement between the theoretical predictions

and the experimentally measured rate of cluster formation [17, 18]. In such approach

the surface tension value is used as the only possible fitting parameter for improving

conformity of the theory with the experiment. However, the application of the surface

tension as the only fitting parameter in the description of the new phase nucleation (as

it usually done) can result in other inconsistencies between the theory and experiment,

and may also lead to intrinsic problems in the theoretical description itself [19].

Going beyond the application of the size dependence of the surface tension,

there exists an alternative method to improve the correlation of theory and experiment

in the description of the newly evolving phase. Indeed, as was shown for the first

time by Cahn and Hilliard [20,21], when applying the van der Waals approach to the

description of the phase formation kinetics, one may find that properties of critical

clusters differ considerably from the properties of the evolving macroscopic phase.

Such deviations of bulk properties of critical clusters from the macroscopic phase
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properties cannot be properly accounted for in Gibbs’ classical theory. However, as

we have shown in the last decade [22, 23], such deviation of bulk properties can be

accounted for performing a generalization of Gibbs’ description. This generalization

allows one "to reconcile"the approaches of Gibbs and van der Waals in the description

of nucleation.

The mentioned generalization of the Gibbs approach demanded the

development of the thermodynamic description of non-equilibrium states of clusters

in a surrounding medium. Such approach was applied by us then to the description

of properties of clusters in processes of nucleation and growth in various applications

[24, 25]. As shown in these analyses, the generalized Gibbs approach allowed us to

describe nucleation more correctly as compared to the classical theory, namely: (1) for

model systems the results are in agreement with the calculations by density functional

methods and computer simulation (e.g. molecular dynamics); (2) the generalized

approach gives an adequate theoretical interpretation of various experimental data,

which was difficult, if not impossible, to achieve in the classical theory of nucleation

[24, 25].

The generalized Gibbs approach is applicable both for the description of

homogeneous and heterogeneous nucleation. With respect to the latter problems, the

generalized Gibbs approach was applied so far to the description of condensation

and boiling in van der Waals liquids [26] and new phase nucleation in a regular

solution [27], restricting the considerations of heterogeneous nucleation so far to phase

formation on a flat rigid smooth interface.

However, in a huge variety of nucleation processes in nature, in experiment,

and in technological applications the formation of the evolving phase takes place at

various heterogeneous nucleation centers and at surface defects [28–33]. Aiming at a

further development of the theory of heterogeneous nucleation, the present paper starts

the research on the application of the generalized Gibbs approach to heterogeneous

nucleation at surface imperfections.
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In particular, we concentrate below on the heterogeneous nucleation of a liquid

drop in a supersaturated vapor (gas) in a conic cavity employing the generalized Gibbs

approach. The van der Waals equation [15, 34] is chosen as a model for the analysis

of principal quantitative characteristics of the heterogeneous process considered,

similarly as it was performed for homogeneous nucleation [26]. In the analysis we

account appropriately for the fact that the state parameters of new phase clusters (for

a one-component system it is the density) can differ considerably from those for the

corresponding macroscopic phase. In such approach, beyond the parameters involved

in the classical treatment, an additional parameter must appear accounting for its

effects on the surface tension and wetting angles and, thus, on the catalytic activity of

the surface. Therefore, for the correct determination of the work of formation of the

critical cluster the dependence of surface tension and wetting angle on the density of

a critical size droplet has to be established.

The article is structured as follows: In Section 7.2, briefly, as far as it is

necessary for the following analysis, the van der Waals equation of state is discussed,

the binodal and spinodal curves are determined, the general expression for the

work of formation of the critical cluster in a conic void on a hydrophilic rigid

surface is obtained, as well as the expressions for the contact angle and factor of

catalytic activity for critical size droplets are found. In Section 7.3 the heterogeneous

condensation of the van der Waals gas on a hydrophilic rigid surface is analyzed. The

paper is completed with Section 7.4 containing a brief summary of results, conclusions

and possible generalizations.

7.2. Work of the formation of a critical cluster in the generalized Gibbs

approach

For the description of the bulk properties of the ambient and evolving phases

we use the van der Waals equation of state. In dimensionless variables this equation
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reads [15, 34]

Π (ω,θ) =
8θ

3ω−1
−

3

ω2
, (7.1)

Π ≡
p

pc
, ω ≡

v

vc
, θ ≡

T

Tc
, (7.2)

where v, p and T are molar volume, pressure, and temperature, vc, pc and Tc are the

same parameters in the critical point. The chemical potential of van der Waals gas

(normalized to pcvc) can be written as [35, 36]

μ (ω,θ) = −
8θ

3
ln (3ω−1) +

8θω

3ω−1
−

6

ω
. (7.3)

The spinodal curve in phase space defines the boundary between

thermodynamically metastable and unstable states. In the absence of the centers of

heterogeneous nucleation it is defined by the equation (we will name it further as a

“bulk spinodal”),

d

dω
Π (ω,θ) = 0 . (7.4)

At any temperature below the critical one (θ<θc= 1), Eq. (7.4) has two solutions

which merge in the critical point.

The position of the binodal curve is defined by the condition of thermodynamic

equilibrium between vapor (gas) and liquid on a planar interface (equality of pressure

and chemical potential); thus, the binodal is defined by the solution of the following

set of equations

Π (ωgas,θ) =Π (ωliq,θ) , μ (ωgas,θ) =μ (ωliq,θ) . (7.5)
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Fig. 7.1. Spinodal and binodal curves for the van der Waals gas. As an example the

curves are shown for a reduced temperature equal θ = 0.7 (for the notations, see

text).

In the temperature range θ<θc= 1 Eqs. (7.5) have two solutions describing the

state of the gas and the liquid. Like for the spinodal, these two solutions merge in

the critical point. Spinodal and binodal curves are shown in dimensionless variables

θ and ρ= 1/ω in Fig. 7.1.

To provide an illustration the calculations were carried out for a temperature

θ= 0.7. The corresponding dimensionless volumes on binodal, ωb, and spinodal, ωsp,

curves are

ωl,0 = 0.467, ωg,0 = 7.811, (7.6)

ωl,sp = 0.579, ωg,sp = 2.376. (7.7)

Respectively, the equilibrium densities of liquid, ρl,0, and vapor, ρg,0, on the binodal

possess the values

ρl,0 = (ωl,0)
−1 = 2.14, ρg,0 = (ωg,0)

−1 = 0.128, (7.8)
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Fig. 7.2. Heterogeneous nucleation of a droplet in a conic void on a hydrophilic rigid

surface.

and the densities of liquid, ρl,sp, and vapor, ρg,sp, on the spinodal are

ρl,sp = (ωl,sp)
−1 = 1.727, ρg,sp = (ωg,sp)

−1 = 0.421. (7.9)

Current values of liquid and vapor densities we will denote, respectively, as ρl and

ρg.

Let us assume that the gas is instantly transferred to a metastable state in a

region between the binodal and spinodal and after that the pressure and temperature

are kept constant (below we consider also unstable initial states, i.e. the states between

the left and right branches of the spinodal curve, Fig. 7.1). After such transition

the vapor (gas) is supersaturated and nucleation of liquid droplets may proceed.

Considering heterogeneous nucleation on a rough surface we analyze here as an

example nucleation of a critical droplet in a conic void on a hydrophilic rigid surface

(Fig. 7.2). Note, that in the terminology used for the description of processes in

water, the surface is called as hydrophilic if the contact angle is less than 90◦, and

hydrophobic if the contact corner is larger than 90◦. We will use this terminology for

condensation processes in a van der Waals gas also.

As a first step in this analysis, we define the parameters of a critical size droplet

created in a conic void on a hydrophilic rigid surface (Fig. 7.2).
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The change of the thermodynamic potential (Gibbs’ free energy, G) for a one-

component system due to the formation of a droplet of the considered shape (Fig. 7.2)

in the vapor phase both in classical, and in generalized Gibbs’s approaches can be

written as [17, 23, 27]

ΔG=σlgAlg+ (σls−σgs) Als+ (pg − pl) Vl + nl (μl − μg) . (7.10)

Here σls, σgs, and σlg, are the specific surface energies (surface tension) between

liquid and solid, vapor and solid, and vapor and liquid, respectively (Fig. 7.3); Als,

Ags, and Alg,are the areas of the corresponding interfaces, and nl is the number of

particles (atoms, molecules) in the new phase cluster. In the above equations and

below the index l always specifies the parameters of a cluster (liquid droplet), and

the index g the surrounding vapor (gas). As independent variables the density of the

liquid droplet ρl and the radius R of its surface are commonly used.

Fig. 7.3. Definition of contact angle for (a) hydrophilic and (b) hydrophobic surfaces.

The bulk contribution ΔGv to the change of the Gibbs free energy for the case

of formation of a droplet with a radius R and a contact angle γ (see the Fig. 7.2) can

be presented in the form [26]

ΔGV = (pg − pl) Vl + nl (μl − μg) =
4π

3
R3ϕ [(pg − pl) + ρl (μl − μg)] . (7.11)
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Here the factor of catalytic activity, ϕ, is determined by contact angle γ and cone

angle β as

ϕ = 1
4

(
2 − 3 cos α + cos3α + ctg βsin3α

)
,

α = γ + β − π
2 .

(7.12)

The surface contribution ΔGS to the change of the Gibbs free energy in cluster

formation is defined, according to Eq. (7.10), as

ΔGS = (7.13)

= σlgAlg + (σls − σgs)Als = 2πR2(1 − cos α)σlg + πR21 − cos2 α

sin β
(σls − σgs).

For small enough cone angles, β < π
2 − γ (for hydrophilic surfaces γ < π

2 ),

the droplet surface becomes concave and the surface term in free energy becomes

negative. In this case a droplet may arise in undersaturated vapor as well. We consider

below only the case β ≥ π
2 − γ, presented in Fig. 7.2.

The requirement of mechanical balance on the contact line of all three phases

is defined by the Young equation [26] (Fig. 7.3)

σgs=σls+σlgcosγ . (7.14)

Assuming this requirement satisfied and accounting for Eq. (7.12), it is possible

to write down a surface term in Gibbs free energy in the following form

ΔGS= 4πR2σlg

[
1 − cos α

2
−

cosγ
(
1−cos2α

)

4 sin β

]

= 4πR2σlgϕ . (7.15)

Therefore, similarly to [17, 26], the work of a droplet formation at the heterogeneous
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nucleation in a cone void can be written as

ΔGhet = ϕ

{
4π

3
R3 ((p − pl) + ρl (μl − μg)) +4πR2σlg

}

, (7.16)

or

ΔGhet = ϕΔGhom . (7.17)

This relation is satisfied for any value of the radius of the cluster (droplet) surface

and for any admissible values of the contact angle γ. Deviations from nucleation on

planar interfaces are connected exclusively with the term sin β, equal to unity for

planar surfaces. In the analysis of heterogeneous nucleation within the generalized

Gibbs approach, the factor ϕ becomes dependent on liquid and vapor density already

for condensation on planar interfaces. The respective effect in conic voids is amplified

by smaller values of sin β affecting also the value of the angle α for the critical

clusters.

In order to determine the parameters of the critical cluster, we can rewrite

Eq. (7.16) in the following form [26]

Δg (r, ρg, ρl)

kBT
= ϕ (ρg, ρl)

[
3(ρl−ρg)

δr2+2f (ρg, ρl) r3
]
, (7.18)

where

Δg ≡ ΔG
Ω1

, Ω1=
16π
3

1
p2

ckBTcθ
Θ3 (θ) ,

r ≡ R
Rσ

, Rσ=
2
pc

Θ (θ) .

(7.19)

The factor Θ(θ) and the parameter δ are determined from the dependence of the
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surface tension on the state parameters of liquid and vapor phases (see [26]):

σlg=Θ (θ) (ρl−ρg)
δ , δ= 2.5 . (7.20)

The function f in the second term in Eq. (7.18) can be written in the form [26]

f (ρg, ρl) =Π (ρl,θ)−Π (ρg,θ) +ρl

(
μ (ρg,θ)−μ (ρl,θ)

pcvc

)

, (7.21)

where (with the account of Eq. (7.3) and ρ=ω−1)

μ (ρ) = −
8θ

3
ln

(
3

ρ
−1

)

+
8θ

3−ρ
−6ρ . (7.22)

In agreement with Eqs. (7.16) and (7.17), the expression for the work of cluster

formation (7.18) differs from that for homogeneous nucleation due to the presence

of the catalytic activity factor ϕ. This factor equals unity in case of homogeneous

nucleation (the factor ϕ(ρg, ρl) as a function of ρg and ρl will be specified below).

Expression in square brackets in Eq. (7.18) describes the work of formation of a

droplet in the process of homogeneous nucleation.

Note that in the studied case of the droplet nucleated at a surface defect (a conic

void) using of the curvature radius as an independent parameter presents difficulties

because for hydrophilic surface at β → π
2−γ the outside surface of the droplet become

flat and the curvature radius tends to infinity while the droplet volume remains finite.

Therefore, instead of curvature radius we will use the normalized number of particles

(atoms, molecules) in the droplet,

n ≡
nl

nσ
= ϕr3, nσ =

4π

3

(
Rσ

a

)3

, (7.23)

where r and Rσ are defined in Eq. (7.19) and a is a mean interatomic distance. In
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this case Eq. (7.18) takes the form

Δg (n, ρg, ρl)

kBT
= 3 [ϕ (ρg, ρl)]

1/3 n2/3(ρl − ρg)
δ + 2nf (ρg, ρl) . (7.24)

Parameters of the critical cluster (its size ncr, and density ρcr) are determined

by the solution of the set of equations

∂Δg (r, ρg, ρl,θ)

∂r
= 0 ,

∂Δg (r, ρg, ρl,θ)

∂ρl
= 0 . (7.25)

This set of equations, Eqs.(7.25), together with Eqs. (7.14) and (7.18) defines also the

work of formation of the critical cluster in heterogeneous nucleation.

At heterogeneous nucleation the work of formation of the critical size cluster

essentially depends on the value of the contact angle [17,28,33], which, according to

Young’s equation (7.14), is defined as

cosγ=
σgs−σls

σlg
. (7.26)

Therefore for a hydrophilic surface the inequality σls<σgs, is fulfilled, and for a

hydrophobic one σls>σgs (see Fig. 7.3). In the present analysis we consider only

nucleation on hydrophilic surfaces, where the catalyzing effect of the surface on

droplet nucleation is much more significant.

In the classical approach to heterogeneous nucleation the bulk parameters of a

cluster and surrounding media are generally considered as certain fixed characteristics

(see, e.g. [37]). In this case the cluster surface energy (7.15) depends only on the size

of the cluster surface, the same as for the homogeneous nucleation. For this reason

the contact angle in the classical approach is also fixed. In contrast, in the generalized

Gibbs approach the assumption of changes in bulk parameters of the new phase cluster

results in the dependence of the contact angle on these parameters and considerably

affects the catalytic activity of the surface. Therefore, as the next step we determine
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the dependence of the contact angle on gas temperature and state parameters of the

new phase [26].

According to Eq. (7.26) for the determination of the contact angle it is necessary

to know the specific energies of liquid-solid, vapor-solid, and liquid-vapor interfaces

for the cases, when the medium density changes (owing to the change in overcooling

of vapor) in a range from equilibrium vapor density, ρg,0, to equilibrium liquid density,

ρl,0 (Eq. (7.8)). Accordingly, the density of the critical cluster changes in the same

range.

The specific energy of the fluid-solid interphase σfs, depends on fluid density

(we will use the term "fluid"for the medium described by the van der Waals equation

as a general name of gas and liquid) which is in contact to a solid surface, and in the

simplest approach (linear on density) it can be written down in a form

σfs (ρ) =
σgs,0 (ρl,0−ρ) +σls,0 (ρ−ρg,0)

ρl,0−ρg,0
. (7.27)

Here σls,0 and σgs,0 are the specific energies of liquid-solid and vapor-solid surfaces

for equilibrium conditions of liquid and vapor, respectively. The corresponding

parameters without index 0 refer to current values of these quantities at any density

of the fluids.

This equation can be obtained in the following way: interface energy of a fluid

in contact with a solid, σfs(ρ), can be expanded in a Taylor series in the vicinity of

the equilibrium densities of liquid ρl,0, and gas ρg,0:

σfs (ρ) =σls,0+
∂σls

∂ρ

∣
∣
∣
ρ=ρl,0

(ρ−ρl,0) ,

σfs (ρ) =σgs,0+
∂σgs

∂ρ

∣
∣
∣
ρ=ρg,0

(ρ−ρg,0) .

(7.28)

Besides, we will assume a linear dependence σfs(ρ) on density in the whole studied
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range, so

∂σgs

∂ρ

∣
∣
∣
∣
ρ=ρg,0

=
∂σls

∂ρ

∣
∣
∣
∣
ρ=ρl,0

=
σls,0−σgs,0

ρl,0−ρg,0
. (7.29)

Substituting Eq. (7.28) into Eq. (7.29) we obtain Eq.(7.27), from which it follows

σgs−σls=σfs (ρg) − σfs (ρl) = (σgs,0−σls,0)
ρl−ρg

ρl,0−ρg,0
. (7.30)

From Eq. (7.30) we see that the difference σgs−σls is linear with respect to

ρl−ρg and is positive for hydrophilic (σgs,0−σls,0> 0) and negative for hydrophobic

(σgs,0−σls,0< 0) surfaces according to the definition given above. This main

distinction determines different behavior of the heterogeneous nucleation for these

two types of surfaces.

As it was studied in detail in [18], the surface energy of vapor-liquid, σlg at

equilibrium coexistence of vapor and liquid is proportional to certain power of the

difference between liquid and vapor densities. Extending this result to any values of

liquid and gas densities, we obtain

σlg=σlg,0

(
ρl−ρg

ρl,0 − ρg,0

)δ

, δ= 2.5 . (7.31)

Here σlg,0 is the surface tension of the liquid-vapor interface at equilibrium

coexistence of liquid and vapor. In these notations the factor Θ in Eq. (7.20) becomes

Θ=σlg,0(ρl,0−ρg,0)
−δ. (7.32)

Equation (7.26) with the account of Eqs. (7.30) and (7.31) gives

cosγ (ρg, ρl) = cosγ0

(
ρl,0−ρg,0

ρl−ρg

)δ−1

, (7.33)
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where

cosγ0=
σgs,0−σls,0

σlg,0
. (7.34)

The first factor in Eq. (7.33), cos γ0, can be considered as a characteristic of

the liquid surface while the second one depends on fluid density (liquid or vapor).

Thus, for the analysis of heterogeneous nucleation in the considered linear approach

(Eq. (7.29)) it is sufficient to know only the contact angle for the equilibrium condition

of liquid and its vapor, γ0. For illustration the calculations below will be carried out

for a hydrophilic surface with γ0= 67◦. Note that the first factor in Eq. (7.33) is the

same as in the classical description of the heterogeneous nucleation, while the second

factor appears as the result of the generalization of Gibbs’ approach.

In the case of droplet nucleation on a hydrophilic surface under consideration

the angle α, defining the factor of catalytic activity (7.12), will be greater than zero

only at ρl>ρlm where

ρlm=ρg+ (ρl,0−ρg,0)

∣
∣
∣
∣
cos γ0

sin β

∣
∣
∣
∣

1
δ−1

. (7.35)

At smaller liquid droplet density the contact angle α turns out to be equal to zero and

the factor of catalytic activity also becomes equal to zero ϕ(ρg, ρl) = 0. That is, at

ρl < ρlm the formation of a new phase can occur spontaneously, without any barrier,

like spinodal decomposition of an unstable homogeneous system.

We see that in terms of the generalized Gibbs’ approach the account of

variations of the contact angle (deviations from the equilibrium value γ0) due to the

changes in the droplet density, leads to the decrease (under certain conditions tending

to zero) of the work of formation of the critical size droplet on the hydrophilic surface.
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7.3. Vapor condensation on a hydrophilic surface

An analysis of Eq. (7.18) for a planar interface (β= 90◦) and a conic void

(β= 60◦), reveals that at a certain moderate (initial supersaturation close to the binodal

curve, ρg,0= 0.128) a profile of the Gibbs free energy in the (r,ρ)-space near to the

critical cluster has a characteristic saddle-shaped form (Fig. 7.4a, c; θ = 0.7; ρg =

0.17).

Such behavior of the system is characteristic for vapor densities up to the

value ρg,sh situated on a curve which we will call “surface spinodal” in contrast to

bulk spinodal, defined by Eq. (7.9), for the chosen calculation parameters (θ= 0.7,

γ0= 67◦) ρg,sh= 0.191 at β= 90◦ and ρg,sh= 0.178 at β= 60◦.

For large densities, ρg>ρg,sh, there is a path of evolution to the new phase

without activation barrier (Fig. 7.4b, d, θ= 0.7, ρg= 0.205).

The critical density ρg,sh is determined from the solution of the following

equation

ρlm (ρg,sh) =ρcr (ρg,sh) , (7.36)

where ρlm is defined by Eq. (7.35), ρcr is the liquid density in a droplet of the critical

size determined as the solution of Eqs. (7.25). The density of the critical droplet is

equal to ρlm(ρg) at ρg > ρg,sh and ρcr(ρg) at ρg<ρg,sh. Parameters of the critical

droplet as functions of the vapor density are presented in Fig. 7.5 (a – droplet density;

b – critical size, c – work of formation and d – catalytic factor for β= 90◦ and

β= 60◦). With the increase of vapor density starting on the binodal curve, the critical

droplet density decreases down to ρl = ρcr (ρg,sh) (Fig. 7.5a).

Similar to the classical picture, the size of the critical droplet tends to infinity

close to the binodal; the increase in vapor density, ρg, decreases the critical size, and

at ρg ≥ ρg,sh the critical size equals zero (Fig. 7.5b). Note, however, that the curvature

radius of the droplet goes to infinity with the increase in vapor density to the value
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Fig. 7.4. (a, b) Profiles of Gibbs free energy of droplet formation on a planar interface

(β= 90◦) and (c, d) in a conic void (β= 60◦) in dependence on state parameters. (a, c)

metastable conditions with initial density of vapor ρg= 0.17; (b, d) unstable conditions

with ρg= 0.205.
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ρg=ρg,sh and the gas-liquid interface becomes flat as it has to be the case according

to density functional computations [20, 21] and the generalized Gibbs approach [17,

22, 23, 26, 27]. The work of formation of the critical cluster decreases from infinity

on binodal to zero at ρg=ρg,sh (Fig. 7.5c). Fig. 7.5d shows the dependence of the

catalytic factor on vapor density, ϕ(ρg) =ϕ(ρg, ρcr(ρg)), (see Eqs. (7.16) and (7.25)).

We see that it decreases steadily, reaching zero at ρg=ρg,sh. Note that at ρg>ρg,sh the

concept of critical parameters of a droplet has no physical sense any more because

the critical size is equal to zero.

Fig. 7.5. Dependence of critical droplet parameters on vapor density for condensation

on a hydrophilic surface: (a) density, (b) critical size, (c) work of formation,

(d) catalytic factor for β = 90◦, 75◦, 60◦, 45◦, and 30◦.
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A behavior similar to the one obtained above at the approach to ρsh (Fig. 7.5),

was observed also in the analysis of heterogeneous nucleation at a planar interface

at processes of the condensation and boiling [26] and segregation in solutions [27].

Therefore, one can conclude that the presence of the heterogeneous nucleation centers

leads to the shift of the spinodal from its values calculated thermodynamically

for a homogeneous system (Fig. 7.1) to the value ρg=ρg,sh which depends on the

properties of the nucleation centers. In the case under consideration of a cone-shaped

void the value ρg,sh decreases with the decrease of the cone angle β to ρg,0 at

β = π/2− γ0 (Fig. 7.6). Consequently, a system state can be considered in the range

ρg,0<ρg<ρg,sh as metastable with respect to heterogeneous nucleation, and at ρg>ρg,sh

as thermodynamically unstable (see Fig. 7.7). The gas density value ρg=ρg,sh can be

viewed as belonging to the spinodal curve for heterogeneous nucleation.

Fig. 7.6. Dependence of the heterogeneous surface spinodal ρg,sh on the cone angle

β.

Thus, the account of the dependence of the contact angle on the liquid

density in an evolving droplet in the generalized Gibbs model actually leads to an

appreciable shift of the spinodal in the direction of smaller supersaturations. The

shifting magnitude depends on the cone angle β of the droplet. At the displaced
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Fig. 7.7. Dependence of work of critical droplet formation on vapor density and cone

angle for condensation on the hydrophilic surface.

spinodal curve the work of critical cluster formation turns, as it should be, to zero.

7.4. Conclusion

The generalized Gibbs approach makes it possible to account for the

dependence of a contact angle of the nucleating cluster on its density. In the case

of liquid nucleation from vapor on a hydrophilic surface of a cone-shaped void such

account leads to the shift of the spinodal towards smaller values of metastability

(in comparison with homogeneous nucleation). As the cone angle decreases the

heterogeneous spinodal comes nearer to the binodal, the area of metastability is

narrowed, and the area of instability is extended.

Only a simple case of liquid droplet nucleation from supersaturated vapor

in a conic void was studied above. However, the influence of the change of state
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parameters of a new phase cluster on intensity of the nucleation as observed here

can be expected to occur on surface defects of various form, i.e., on cracks, spherical

voids, and also for a case of boiling of liquids. These problems, as well as applications

of more realistic equations of state applied for specific liquid or gas media [38, 39],

can be considered on the basis of the general approach formulated above.
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7.5. Висновки до роздiлу 7

Результати дослiджень, представлених у даному роздiлi, опублiковано

в статтi [7] (Додаток А. Список публiкацiй здобувача за темою дисертацiї).

Дослiджено гетерогенне зародження крапель рiдини з пари (газу) на дефектнiй

твердiй поверхнi в моделi газу ван дер Ваальса. Серед основних результатiв у

якостi висновкiв можна видiлити наступнi:

• Показано, що контактний кут та каталiтичний фактор для зародження

на дефектнiй поверхнi залежать вiд ступеня переохолодження пари. У разi утво-

рення крапель на гiдрофiльнiй поверхнi конiчної пори швидкiсть зародження

значно збiльшується порiвняно з конденсацiєю на планарнiй поверхнi.

• Наявнiсть дефекту на гiдрофiльнiй поверхнi призводить до значного

зсуву спiнодалi порiвняно з гетерогенним зародженням на планарнiй поверхнi: зi

зменшенням кута конуса пори гетерогенна спiнодаль наближається до бiнодалi,

i область метастабiльностi звужується за рахунок розширення областi нестабiль-

ностi.

• Iснує граничний кут конуса пори, менше якого формування нової фази

проходить безбар’єрно.
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РОЗДIЛ 8

ГЕТЕРОГЕННА НУКЛЕАЦIЯ У РОЗЧИНАХ НА ДЕФЕКТНИХ

ТВЕРДИХ ПОВЕРХНЯХ: УЗАГАЛЬНЕНИЙ ПIДХIД ГIББСА

У восьмому роздiлi дослiджена гетерогенна нуклеацiя кластерiв нової

фази в регулярному бiнарному розчинi на дефектнiй твердiй поверхнi, як i в

попередньому роздiлi, як дефект поверхнi обрана конiчна пора. Розрахована

швидкiсть нуклеацiї кластера нової фази у залежностi вiд кута конуса пори i

ступеня пересичення розчину.
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Abstract: Heterogeneous nucleation of new phase clusters on a rough

solid surface is studied. The ambient phase is considered to be a regular

supersaturated solution. In contrast to existing studies of the same problem,

the possible difference between the state parameters of the critical cluster

and the corresponding parameters of a newly formed macroscopic phase

is accounted for. This account is performed within the framework of

the generalized Gibbs approach. Surface imperfections are chosen in the

form of cones. The model allows us to simplify the analysis but also to

obtain the basic results concerning the defect influence on the nucleation
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process. It is shown that the catalytic activity factor for nucleation of

the cone depends both on the cone angle and the supersaturation in the

solution determining the state parameters of the critical clusters. Both factors

considerably affect the work of critical cluster formation. In addition, they

may even lead to a shift of the spinodal curve. In particular, in the case of

good wettability (macroscopic contact angle is less than 90◦) the presence

of surface imperfections results in a significant shifting of the spinodal

towards lower values of the supersaturation as compared with heterogeneous

nucleation on a planar solid surface. With the decrease of the cone pore

angle, the heterogeneous spinodal is located nearer to the binodal, and the

metastability range is narrowed, increasing the range of states where the

solution is thermodynamically unstable.

Keywords: heterogeneous nucleation; kinetic theory; rough surface; gibbs

theory; surface tension

PACS: 64.60.Bd General theory of phase transitions; 64.60.Q Nucleation

in phase transitions; 82.60.Nh Thermodynamics of nucleation; 68.35.Md

Surface energy of surfaces and interfaces; 64.60.an Phase transitions in

finite-size systems; 68.35.Md Thermodynamic properties of surfaces and

interfaces.

8.1. Introduction

The nucleation of new phase clusters can be catalyzed by solid or liquid

particles dissolved in the ambient phase, by planar Surfaces, and, in particular,

by defects of such surfaces. In all these cases of heterogeneous nucleation the

thermodynamic barrier – the work of formation of the critical cluster which must

be overcome for a nucleus for consequent deterministic growth – is reduced as
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compared to homogeneous nucleation when the surface or particles dissolved in the

ambient phase are absent. Such effects are intensively studied in the framework of

classical nucleation theory [1–6]. However, the classical theory of nucleation (both

homogeneous, and heterogeneous) commonly relies on the assumption that the state

parameters of the critical cluster are widely identical to the corresponding parameters

of the macroscopic phase to be formed. However, in practice this assumption, as

a rule, is not met [7–10]. The significance of such changes of the state parameters

of the critical clusters in heterogeneous nucleation was demonstrated by us for the

first time in Refs. [11–13]. In [11, 12], we studied such processes for condensation

and boiling on planar interfaces, in [13], we considered condensation and boiling on

rough interfaces. This analysis is extended here considering heterogeneous nucleation

in solutions catalyzed by rough solid interfaces.

In detail, in the present paper a theoretical analysis of heterogeneous nucleation

in a binary regular solution on a rough solid surface is conducted employing the

generalized Gibbs approach. The main difference of the proposed approach from

theoretical treatments performed so far consists, as already noted above, is in the

consistent account of the difference between the state parameters of the critical

cluster and the corresponding parameters of the macroscopic phase to be formed.

Surface imperfections are chosen in form of cones that allows us to simplify the

analysis and at the same time to obtain the main results of the defect influence on the

nucleation process. The general qualitative conclusions do not depend widely on the

specific model employed for the description.

The thermodynamic analysis of nucleation in terms of the generalized Gibbs

approach supplies us with the work of formation of the aggregates of the newly

evolving phase in dependence on size and shape. This dependence we analyze here.

The knowledge of such dependence is a precondition for modeling the kinetics of

both nucleation and growth processes. In nucleation and growth, the clusters may

change both their shape and size and both parameters may even fluctuate. However,
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this analysis refers to a different topic and will be addressed in a future study.

8.2. Basic Equations

We consider theformation of a new phase cluster on a rough rigid surface. For

the description of the bulk properties of the ambient and the newly formed phases we

use the model of a binary solid or liquid regular solution. The chemical potentials μj

of each of the two components (j = 1, 2) of a regular solution can be written in the

form [14]

μ1 = μ∗
1 + kBT ln(1 − x) + Ωx2 , (8.1)

μ2 = μ∗
2 + kBT ln x + Ω(1 − x)2 , (8.2)

where kB is the Boltzmann constant, T is the absolute temperature, x and (1 − x)

are the molar fractions of the second and first components, correspondingly (for

unambiguity we consider the solvent as the first component and the dissolved

substance as the second component), Ω = 2kBTc is the interaction parameter

describing specific properties of the considered system, and Tc is the critical

temperature of the system.

In thermodynamics, the binodal curve is the locus of phase states (in (T, x)-

diagram) where two distinct phases may coexist in equilibrium. This coexistence

curve is defined by the condition at which the chemical potentials of solution

components are equal in each phase. The extremum of the binodal curve in

temperature is known as a critical point. At this point, the binodal curve coincides

with the extremum of the spinodal curve. The spinodal curve in its turn is the locus of

the phase states where the system’s local stability with respect to small fluctuations is
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Fig. 8.1. Binodal (dark blue) and spinodal (green) curves as functions of the

composition of a regular solution. The left and right binodal (x(l)
b , x

(r)
b ) and spinodal

(x(l)
sp , x

(r)
sp ) values are shown for temperature T = 0.7Tc.

broken and is defined by the condition that the second derivative of Gibbs free energy

(with respect to concentration x) is zero. Therefore, in our case at constant external

pressure the positions of the binodal and spinodal on the phase diagram (T, x) are

determined by the following equations,

ln

(
1 − x

x

)

= 2
Tc

T
(1 − 2x) , (8.3)

x(1 − x) =
T

4Tc
. (8.4)

They are shown in Figure 8.1.

The values of the left binodal (x(l)
b ) and spinodal (x(l)

sp ) branches, calculated at

temperature T = 0.7Tc, are, correspondingly

x
(l)
b = 0.1857 , x(l)

sp = 0.2261 . (8.5)

Both curves are symmetric with respect to x = 1/2; therefore, the correspondi-
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ng values for the right-hand side branches are

x
(r)
b = 1 − x

(l)
b = 0.9143 , x(r)

sp = 1 − x(l)
sp = 0.7739 . (8.6)

These values are especially distinguished in Figure 8.1.

Let us assume that due to the change in temperature or composition, the

system is transferred into a metastable state somewhere between left binodal and

spinodal (x(l)
b < x < x

(l)
sp , see Figure 8.1). After this sudden transfer, temperature

and composition are maintained unchanged. For this system first we define the

parameters of the critical cluster nucleated in a conic pore depending on the created

supersaturation (i.e., the molar concentration of the dissolved substance, x). We

remind that as an example of surface imperfections we choose a conic pore. This

approach allows us to simplify the analysis and at the same time to receive main

results of the defect influence on the nucleation process.

In a binary solution a new phase will be nucleated as a result of the

redistribution of molecules (atoms) in space. Following Gibbs model [6], we

consider a new phase cluster as a spatially homogeneous part of the system with

a composition, however, different from the ambient phase. The boundary is modeled

by a mathematical surface of zero thickness with a corresponding value of the tension

surface [1, 6, 12]. The change of the thermodynamic potential (Gibbs free energy G)

of the binary system owing to the creation of a cluster in form of a spherical cone

with the radius R in a conic pore (Figure 8.2) can be given by [1–3, 11]

ΔG = σαβAαβ + (σαs − σβs)Aαs +
∑

j=1,2

nj(μjα − μjβ) . (8.7)

Here specific interphase energies (surface tensions) of the corresponding

boundaries are denoted as: σαs (cluster (α)–pore (s)), σβs (outer solution (β)–

pore (s)), and σαs (cluster (α)–outer solution (β)). Next, Aαs and Aαβ are the
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Fig. 8.2. Model used in the analysis of heterogeneous nucleation of a new phase

cluster in a conic pore. Here R is the curvature radius of the cluster outer surface, γ

is the contact angle, and 2β is the cone angle.

boundary surface area between the cluster and pore, and the outer solution,

correspondingly (Figure 8.2), μjα and μjβ are the chemical potentials of both

components (j = 1, 2) in the cluster and outside it (see Equations (8.1) and (8.2)).

The indices α and β denote the parameters of the cluster and the ambient phase,

accordingly. For the description of the cluster state the numbers of atoms of a kind 1

and 2 are used as independent variables, n1 and n2 (the index α in n1 and n2 is omitted

to simplify the notations). The total number of atoms in a cluster is nα = n1 + n2.

For simplification, similarly to [10, 12], the particle volume ω is supposed not

to depend on composition (ωα = ωβ ≡ ω = a3, where a is the interatomic distance).

The radius of curvature, R, of the spherical cone (for simplicity we will name

it “cluster radius”) is determined by the number of particles in the cluster, nα, via

ϕ
4π

3
R3 = nαω = nαa3 , (8.8)

where ϕ is expressed through the contact angle, γ, and the cone angle, 2β, as

ϕ =
1

3
(2 − 3 cos α + cos3 α + ctg β sin3 α) , α = γ + β −

π

2
. (8.9)
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The change in Gibbs free energy due to cluster creation is determined in

correspondence with Equation (8.7) as [2, 3, 11]

ΔG = ΔGV + ΔGS , (8.10)

ΔGV = −ϕ

(
4π

3ω

)

R3Δμ = ϕ

(
4π

3ω

)

R3kBTf , Δμ = −kBTf , (8.11)

ΔGS = 2πR2(1 − cos α)σαβ + πR21 − cos2 α

sin β
(σαs − σβs) . (8.12)

For a wettable surface (γ < π/2) at low cone angle of β < π/2 − γ the

cluster outer surface becomes concave, the contribution of the surface component

in the work of its formation becomes negative, and the cluster can start to grow in

the range x > xb at any initial size. However, this conclusion is correct only for

a conic pore which has a sufficiently large depth. Indeed, when the cluster grows

up to a flat surface surrounding the pore its surface becomes convex, and, actually,

one must consider nucleation on a flat surface [12]. If a pore is not deep, the cluster

does not succeed to grow up to a critical size, and the effect of the pore decreases.

This particular case is beyond the scope of the present work, therefore we shall limit

ourselves here to the range of angles β > π/2 − γ (see Figure 8.2).

In the derivation of Equation (8.11) we have neglected possible modifications of

the solution composition caused by the nucleation process. This effect is not essential

at an early stage of nucleation for sufficiently large systems. An analysis of the effect

of such changes in systems of small sizes is given in [10,15]. At such conditions, the

function f(xα, x) in Equation (8.11) has the meaning of the thermodynamic driving
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force of cluster formation. It is determined by the relation [2, 3, 11],

f(xα, x) = (1 − xα)

{

ln
1 − xα

1 − x
+ 2

Tc

T
(x2

α − x2)

}

(8.13)

+xα

{

ln
xα

x
+ 2

Tc

T

[
(1 − xα)2 − (1 − x)2

]
}

.

The dependence of function f(xα, x) on cluster composition, xα, for different

values of the supersaturations, x, is shown in Figure 8.3.

Fig. 8.3. Dependence of the function f(xα, x) on cluster composition, xα, at different

supersaturations x = x
(l)
b , 0.1, 0.13, x

(l)
sp in the region of metastability x

(l)
b < x <

x
(l)
sp of the ambient solution.

The regions of metastability are in composition ranges x
(l)
b < x < x

(l)
sp (between

the left branches of the binodal and spinodal) and x
(r)
sp < x < x

(r)
b (between the right

branches of the spinodal and binodal). The function f(xα) has one maximum and two

minima (for x 6= x
(l,r)
sp ). The first minimum, xα = x, corresponds to the state of the

ambient phase. The second minimum, xα = xB, corresponds to the final macroscopic

state of the precipitating phase, to which a cluster evolves at fixed composition of the

surrounding solution, x. It is determined by the minimum of the bulk contribution to
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the Gibbs free energy (Figure 8.3),

∂f(xα, x)

∂xα

∣
∣
∣
∣
x=xB

= 0. (8.14)

At the spinodal, x = x
(l)
sp , the function f(xα) has an inflection point

corresponding to xα = x, ∂2f(xα,x)
∂x2

α

∣
∣
∣
xα=x

= 0. The range x
(r)
sp < x < x

(l)
sp is

thermodynamically unstable. The maximum of the function f(xα) in this region

corresponds to the initial state, xα = x, there are also two local minima of the

function f(xα) at xα = xA < x and xα = xB > x. Similar to Equation (8.14) they

are determined by the equation

∂f(xα, x)

∂xα

∣
∣
∣
∣
x=xA or x=xB

= 0 . (8.15)

Figure 8.4 illustrates the dependence of the concentrations xA and xB on

the initial composition x of the surrounding solution in the whole possible range

of compositions. Taking into account the symmetry with respect to the substitution

x ↔ 1 − x, we consider only initial states with a composition x ≤ 1/2.

At any given pressure and temperature, the thermodynamic driving force for

cluster formation should be positive, i.e., f(xα, x) < 0 (the bulk contribution to Gibbs

free energy is decreased in this case [11]). This condition holds for

xα < xα,ll, (8.16)

where xα,ll is the solution of the equation

f (xα,ll, x) = 0. (8.17)

The function xα,ll(x) is represented in Figure 8.4 by a dashed line, and the
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Fig. 8.4. Composition x
(hom)
α,cr of the critical cluster (red lines), its minimum value xα,ll

(dotted line), and concentrations xA, xB (continuous dark blue lines) in dependence

on the initial composition, x, of the solution. These results refer to the case of

homogeneous nucleation.

composition of the critical cluster for homogeneous nucleation x
(hom)
α,cr is shown by a

solid line. The evolution of an initially metastable state proceeds along the following

path: O → C → B. It starts at the initial state xα = x and propagates through a

critical cluster (C) to xB. For an initially unstable state two variants of evolution are

possible, first O → A, with a decrease of the cluster concentration to xA, and second

O → B, with an increase in the concentration up to xB. Generally, the inequality

xα,ll ≤ x
(hom)
α,cr holds, it goes over to an equality only at x = x

(l)
b and x = x

(l)
sp .

In the latter case, when xα,ll = x
(hom)
α,cr , the cluster can evolve without overcoming

a potential barrier. This process corresponds to spinodal decomposition. As will be

shown below, at heterogeneous nucleation in a conic pore a similar situation can arise

even at appreciably smaller supersaturations x < x
(l)
sp .

The Young equation determines the mechanical equilibrium at the contact line

of three phases [1–5]

σβs = σαs + σαβ cos γ . (8.18)



Entropy 2019, 21, 782 304

Assuming that this condition is fulfilled and taking into account Equation (8.9)

we obtain from Equation (8.12) the interfacial contribution of a new phase cluster to

the Gibbs free energy as

ΔGS = 4πR2σαβ

[
1 − cos α

2
−

cos γ(1 − cos2 α)

4 sin β

]

= 4πR2σαβϕ . (8.19)

Thus, the work of cluster formation at heterogeneous nucleation in a conic pore

can be written as

ΔGhet = ϕΔGhom , (8.20)

where

ΔGhom

kBT
=

4π

3ω

[
3

2
RσR

2(xα − x)2 + R3f(xα, x)

]

, (8.21)

Rσ =
2σαβ,0a

3

kBT
(x

(r)
b − x

(l)
b )−2 , (8.22)

and the catalytic factor ϕ is determined by Equation (8.9). Equations (8.19)–(8.21) are

fulfilled at all possible values of the cone pore angle β, contact angle γ, and radius R

(note, however, that here we do not consider the case of a concave outer surface of the

cluster, when R < 0). Equation (8.19) is similar to that obtained for heterogeneous

nucleation on a smooth planar surface [11] and differs only by the factor sin β (which

equals unity for a flat surface, when β = 90◦). The catalytic factor ϕ within the

framework of the generalized Gibbs approach becomes dependent not only on the

angles γ and β, but also on the compositions of the initial phase and the critical

cluster. The specific interfacial energy between two phases with compositions xα and
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x, can be expressed according to Becker [14] (see also [16]) as

σαβ = σαβ,0

(
xα − x

x
(r)
b − x

(l)
b

)2

. (8.23)

Here σαβ,0 is the respective value, when a new phase cluster and the solution

surrounding it are in equilibrium, i.e., x = x
(l)
b and x = x

(r)
b .

For further analysis it is convenient to introduce the dimensionless variables

r ≡
R

Rσ
, Δg ≡

ΔG

Gσ
, (8.24)

Gσ =
16π

3

(σαβ,0a
2)3

(kBT )2
(x

(r)
b − x

(l)
b )−6 . (8.25)

In these variables Equation (8.20) takes the form

Δg(r, xα) = ϕ(γ, β)[3r2(xα − x)2 + 2r3f(xα, x)]. (8.26)

As already was noted above, R is the radius of the cluster surface contacting

with the ambient solution, and it can have positive, infinite, and negative values.

Therefore, it is more convenient to use as independent variables for the description of

the cluster state the numbers of atoms in the cluster (n1, n2) instead of (r, x). Also is

convenient to normalize these quantities to nσ as

n′
1 ≡

n1

nσ
, n′

2 ≡
n2

nσ
, nσ ≡

4π

3

(
Rσ

a

)3

. (8.27)

To simplify the notations we omit primes, then Equation (8.26) takes the form

Δg(n1, n2, x) = 3[ϕ(γ, β)]
1
3n

2
3

(n2

n
− x
)2

+ 2nf
(
x,

n2

n

)
, (8.28)
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where n ≡ n1 + n2 = ϕr3. The parameters of the critical cluster, (n1,cr, n2,cr), are

determined by a solution of the set of equations

∂Δg(n1, n2, x)

∂n1
= 0 ,

∂Δg(n1, n2, x)

∂n2
= 0 . (8.29)

The work of formation of the critical cluster is determined by

(
ΔGcr

Gσ

)

≡ Δgcr(x) = Δg(n1,cr, n2,cr, x) . (8.30)

Above relations are the basic for the subsequent analysis of surface roughness

on the properties of critical clusters in heterogeneous nucleation on rough surfaces.

This analysis we will start with the discussion of the contact angle.

8.3. Determination of the Contact Angle

In classical nucleation theory the parameters of a cluster are taken to be widely

equal to the properties of the newly evolving macroscopic phase. By this reason,

the values of the specific surface energies in Young’s equation, Equation (8.18),

are constants for some given values of pressure and temperature. Consequently, the

contact angle is also constant. In the generalized Gibbs approach, parameters of a new

phase cluster are functions of the supersaturation, therefore the contact angle γ and,

consequently, the catalytic factor ϕ(γ, β) also depend on supersaturation.

For the case when the surface tension of the cluster boundary with the pore

surfaces is less than that between solutions and the same surfaces (σαs < σβs), and

the contact angle determined by Young Equation (8.18), as

cos γ =
σβs − σαs

σαβ
, (8.31)

is less than 90◦, the surface is well wettable (Figure 8.5a). Otherwise, σαs < σβs,
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the contact angle is larger than 90◦, the surface is badly wettable (Figure 8.5b). In

the present work we consider only the first case, when wettability is good and the

influence of surface defects becomes most apparent.

Fig. 8.5. Contact angle γ for well (a) and badly (b) wettable surfaces. The

corresponding specific interface energies are σαβ, σβs, and σαs.

For the determination of the contact angle one must know the specific

interfacial energies of all boundaries as functions of the cluster and surrounding

solution compositions (for unification of the notations we shall use the term “fluid”

both for cluster and solution and denote it with a subindex “f”) in the whole range

from the left binodal, x
(l)
b , up to the right binodal, x

(r)
b . It is easy to show that in

a simple linear approximation the specific interfacial energy of the fluid-surface

interphase can be expressed as (details see [13])

σfs(ρ) =
σβs,0(x

(r)
b − x) + σαs,0(x − x

(l)
b )

x
(r)
b − x

(l)
b

. (8.32)

Here, as above (see Eq. (8.23)), the index “0” relates to the case, when a new

phase cluster and surrounding solution are in equilibrium, i.e., x = x
(l)
b and xα =

x
(r)
b , and the quantities without index “0” denote parameters for current composition

(cluster or solution). From Equation (8.32) it follows that

σβs − σαs = σfs(x) − σfs(xα) = (σβs,0 − σαs,0)

(
xα − x

x
(r)
b − x

(l)
b

)

. (8.33)

It is evident that the difference (σβs−σαs) is a linear function of (xα−x). It is
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positive when σβs,0 > σαs,0 (good wetting) and is negative when σβs,0 < σαs,0 (bad

wetting) in correspondence with above-stated definition. This difference determines

the degree of catalytic activity of the solid surface at heterogeneous nucleation.

From Equation (8.23) with allowance for Equations (8.31) and (8.33) we obtain

an expression determining the contact angle γ as a function of the compositions of

the cluster, xα, and of the surrounding solution, x,

cos γ(x, xα) = cos γ0

(
x

(r)
b − x

(l)
b

xα − x

)

, (8.34)

where

cos γ0 =
(σβs,0 − σαs,0)

σαβ,0
. (8.35)

Thus, for the further analysis there is no need in the knowledge of the specific

interfacial energies; it merely required to know the equilibrium contact angle γ0.

In the considered case of cluster nucleation on a well-wettable surface the

angle α, defining the catalytic activity factor Equation (8.9), has values larger zero

only when xα < xα,0 where xα,0 is determined by the equation

xα,0 = (x
(r)
b − x

(l)
b )

cos γ0

cos (π/2 − β)
+ x . (8.36)

Intersection of the plots xα,0(x) and xα,ll(x) (see Equations (8.16) and (8.17)

and Figure 8.6) determines the position of the spinodal xsh for heterogeneous

nucleation

xα,0(xsh) = xα,ll(xsh) . (8.37)

At x > xsh the catalytic activity factor equals zero, ϕ(γ, β) = 0, i.e., in this

case the nucleation of a new phase cluster in a pore proceeds in a mode when the

energy barrier is absent, like spinodal decomposition of the unstable homogeneous

system. Figure 8.7 presents the dependence of the heterogeneous spinodal position
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xsh on cone angle β and contact angle γ0.

Fig. 8.6. Dependence of function f(xα, x) on cluster composition xα at different

supersaturations x = x
(l)
b , 0.1, 0.13, x

(l)
sp in the region of metastability x

(l)
b < x <

x
(l)
sp .

Fig. 8.7. Dependence of the spinodal position xsh for heterogeneous nucleation on

cone angle, β, (left) and equilibrium contact angle, γ0 (right).

Is evident that the spinodal for heterogeneous nucleation is located nearer to

the binodal as both the pore cone angle β (Figure 8.7a) and the macroscopic contact

angle γ0 (Figure 8.7b) yield its shift to decreasing values of x. If the equilibrium

contact angle is equal to γ0 = 90◦, the heterogeneous spinodal coincides with the

macroscopic one, i.e., xsh = x
(l)
sp , like in the case of the homogeneous nucleation.
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8.4. Heterogeneous Nucleation in a Conic Pore: Results

For a metastable state of the initial solution, x
(l)
b < x < x

(l)
sp , the work of critical

cluster formation in the space (n1, n2) has characteristic saddle points properties

near to the parameters of the critical cluster, (n1,cr, n2,cr). The surface is shown in

Figure 8.8 for the case of nucleation of a new phase cluster in a pore with an angle

β = 60◦ and for an equilibrium contact angle γ0 = 60◦ and at the composition of the

ambient phase equal to x = 0.15. The “valley” at xα = x = 0.15 corresponds to the

initial state, and the saddle point to the critical cluster. Its parameters are determined

by Equations (8.29). In the course of its growth, the new phase cluster passes through

a saddle point. Finally, its composition tends to an equilibrium value nearly equal to

the respective value on the right binodal xα → x
(r)
b ≈ 0.91.

Fig. 8.8. Shape of the Gibbs free energy of cluster formation in a metastable regular

solution with x = 0.15 (x < xsh ≈ 0.178) in a conic pore with the angle β = 60◦.

The equilibrium contact angle is chosen equal to γ0 = 80◦.

The composition of a critical cluster, xα,cr, is shown in Figures 8.9 and 8.10 in

dependence on the initial supersaturation for the case of nucleation in a conic pore

with various angles β = 40◦, 50◦, 60◦, 70◦, 80◦, 90◦ and two different values
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of the equilibrium contact angle γ0 = 60◦ (Figure 8.9) and γ0 = 80◦ (Figure 8.10).

With an increase of the supersaturation from an initial value close to the binodal the

concentration of the second component in the critical cluster, xα,cr, decreases down to

the minimum value xα,0 at x = xsh(γ0) (Figures 8.9 and 8.10). If the supersaturation

increases further, xα,cr grows linearly (see Equation (8.36) and Figure 8.6).

Fig. 8.9. Composition of the critical cluster, xα,cr, in dependence on supersaturation

for nucleation in a conic pore with various angles β = 40◦, 50◦, 60◦, 70◦, 80◦, and

90◦. The equilibrium contact angle is chosen equal to γ0 = 60◦.

Fig. 8.10. Composition of the critical cluster, xα,cr, in dependence on supersaturation

for nucleation in conic pores with various angles β = 40◦, 50◦, 60◦, 70◦, 80◦, and

90◦. Here the equilibrium contact angle is chosen equal to γ0 = 80◦.

According to the classical nucleation theory the size of a critical cluster tends

to infinity for initial phase composition approaching the binodal. With an increase of

the supersaturation grows the critical cluster size decreases. At x > xsh, the critical
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size in its classical interpretation does not exist anymore because cluster growth can

proceed without overcoming a thermodynamic potential barrier starting from n = 0

(or, in a more precise formulation, starting with one structural unit). However, in terms

of the generalized Gibbs approach, in contrast to the classical theory and in agreement

with density functional computations [7, 8], this decrease in size may be followed by

an increase with a further increase of the supersaturation (Figures 8.11 and 8.12).

Consequently, the transition from metastable to thermodynamically unstable states

proceeds here in a quite different way. As one consequence it follows that near to

the spinodal the formation of critical clusters will, in general, not proceed via the

saddle point of the thermodynamic potential surface but via a ridge point (for details

see [17, 18]).

Fig. 8.11. Critical cluster size, ncr, as a function of the concentration for nucleation in

conic pores with different angles β = 40◦, 50◦, 60◦, 70◦, and 90◦. The equilibrium

contact angle is taken as γ0 = 60◦. For comparison, the dashed line shows the

dependence ncr(x) for homogeneous nucleation.

For the equilibrium contact angle γ0 = 60◦ and small values of the cone pore

angles β = 40◦, 50◦, 60◦, along with the increase of the supersaturation the critical

cluster size decreases monotonically from infinity at the binodal up to values of x at

the spinodal for heterogenous nucleation x = xsh (Figure 8.11). Then it exhibits a

discontinuity and becomes equal to zero at further increase of the supersaturation. For
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planar solids surfaces β = 90◦, the decrease of the critical cluster size with increasing

supersaturation is followed by its further increase. This increase is then also followed

by a similar discontinuity at x = xsh.

When the equilibrium contact angle equals γ0 = 80◦ and the cone pore angle

has values in the range β = 40◦ . . . 90◦ the dependence of the critical cluster size

on supersaturation is non-monotonic: first ncr decreases from infinity at the binodal,

then the decrease is followed by its growth up to x = xsh, and for x ≥ xsh the critical

cluster size becomes equal to zero (Figure 8.12).

Fig. 8.12. Critical cluster size, ncr, as a function of the concentration for nucleation

in conic pores with different angles β = 40◦, 50◦, 60◦, 70◦, and 90◦. Here the

equilibrium contact angle is taken equal to γ0 = 80◦. For comparison, the dashed line

shows the dependence ncr(x) for homogeneous nucleation.

Figures 8.13 and 8.14 illustrate the normalized work of formation of a critical

cluster, Δgcr = (ΔGcr/Gσ), in dependence on supersaturation for nucleation in conic

pores with various angles β = 40◦, 50◦, 60◦, 70◦, 80◦, and 90◦, the equilibrium

contact angle is γ0 = 60◦ (Figure 8.13) and γ0 = 80◦ (Figure 8.14). The work of

formation of a cluster decreases from infinity at the binodal, and for x ≥ xsh it

becomes equal to zero. The less the cone pore angle β and the contact angle γ0 are,

the faster the work of a critical cluster formation decreases.

The work of critical cluster formation determines widely the steady-state
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Fig. 8.13. Normalized work of formation of a critical cluster, Δgcr, as function

of the concentration for nucleation in conic pores with various angles β =

40◦, 50◦, 60◦, 70◦, 80◦, and 90◦; the equilibrium contact angle is γ0 = 60◦. For a

comparison, the dotted lines show the function Δgcr(x) calculated via the classical

nucleation theory for conic pores.

Fig. 8.14. Normalized work of formation of a critical cluster, Δgcr, as function

of the concentration for nucleation in conic pores with various angles β =

40◦, 50◦, 60◦, 70◦, 80◦, and 90◦; the equilibrium contact angle is γ0 = 80◦. For

comparison, the dotted lines show the function Δgcr(x) calculated via the classical

nucleation theory for conic pores.
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nucleation rate, J . It can be expressed generally as (see, for example [1, 4])

J = J0 exp

(

−
ΔgcrGσ

kBT

)

. (8.38)

The pre-exponential factor, J0, is determined by the diffusion coefficients of the

solution and by the number of possible nucleation centers per unit area. The quantity

Gσ is determined by Equation (8.25).

Figures 8.15 and 8.16 supply us with a comparison of the normalized nucleation

rates, J/J0, in conic pores with various angles β = 40◦, 50◦, 60◦, 70◦, and 90◦

determined within the generalized (solid lines) and via the classical Gibbs (dotted

line) approaches in the case of good wettability (γ0 = 60◦ and 80◦). The calculations

were performed for a temperature T = 0.7Tc with Tc = 1143 K and the parameters

Gσ = 61.6 kBT and Rσ = 3.087a with a = 3.65 × 10−10 m. The nucleation

rate calculated via the generalized Gibbs approach is much higher than the results

obtained via the classical theory. With the increase of the supersaturation it reaches

the maximum value, J0, at x ≥ xsh(γ0, β).

Fig. 8.15. Comparison of the normalized steady-state nucleation rates, J/J0,

computed via the generalized Gibbs approach (solid lines) and using classi-

cal nucleation theory (dotted line) in conic pores with various angles β =

40◦, 50◦, 60◦, 70◦, and 90◦. The equilibrium contact angle is taken as γ0 = 60◦.
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Fig. 8.16. Comparison of the normalized nucleation rates, J/J0, determined via the

generalized Gibbs approach (solid lines) and in terms of the classical nucleation theory

(dotted lines) in conic pores with various angles β = 40◦, 50◦, 60◦, 70◦, and 90◦.

The equilibrium contact angle is taken here γ0 = 80◦.

8.5. Conclusions

The generalized Gibbs approach applied to the description of the precipitation

in a binary regular solution on a rough solid surface (conic pore) results as

a whole in similar conclusions as obtained by us earlier in the analysis of

heterogeneous nucleation in a one-component van der Waals liquid [13]: the presence

of heterogeneous nucleation centers can effectively result in a shift of the spinodal

from the value x = x
(l)
sp , as shown in Figure 8.7, to smaller values of the concentration,

x = xsh ≤ x
(l)
sp . Therefore, the concentration range x

(l)
b < x < xsh of the initial

solution we can consider as metastable with respect to heterogeneous nucleation,

and the concentration range x > xsh as thermodynamically unstable. This result has

the consequence that the range of metastable states decreases at the expense of an

increase of the instability region, resulting in intensification of the nucleation rate.

This effect became stronger with a decrease of the cone angle of the pore and the

equilibrium contact angle. In line with the general result obtained in [19] for the case

of homogeneous nucleation, also in heterogeneous nucleation the generalized Gibbs

approach yields lower values of the work of critical cluster formation and higher

values of the steady-state nucleation rates as compared to the results obtained via
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Gibbs classical treatment.

Actually, the surface roughness is not uniform. In frame of the studied approach

the roughness state of a surface may differ in depth of the cones and their cone

angles. Its account may be approximated as a spread in these parameters within

some model distribution. As can be seen from the comparison of plots in Figure 8.7

the differences in cone angle do influence the cluster critical size and with it the

nucleation probability. The lesser the cone angle is the more important is the role

of heterogeneous nucleation. In addition, the dependence of the nucleation rate on

cone parameters is exponential. It means that the nucleation preferentially proceeds in

pores with the lowest cone angle. The cone depth may also influence the nucleation

when it is too low to form a viable cluster in it. This situation can happen on rather

smooth surfaces. As it follows from Figure 8.7 more influential is the change of

the equilibrium contact angle but it is rather the case of different surface materials,

say composites or metamaterials.
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8.6. Висновки до роздiлу 8

Результати дослiджень, представлених у даному роздiлi, опублiковано

в статтi [8] (Додаток А. Список публiкацiй здобувача за темою дисертацiї).
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Дослiджена гетерогенна нуклеацiя кластерiв нової фази в регулярному бiнарно-

му розчинi на дефектнiй твердiй поверхнi. Серед основних результатiв у якостi

висновкiв можна видiлити наступнi:

• Вплив дефектiв поверхнi проявляється також, як i для газу ван дер

Ваальса, тобто

1) наявнiсть дефекту призводить до значного зсуву спiнодалi порiвняно з гете-

рогенним зародженням на планарнiй поверхнi: зi зменшенням кута конуса пори

гетерогенна спiнодаль наближається до бiнодалi, i область метастабiльностi

звужується за рахунок розширення областi нестабiльностi;

2) iснує граничний кут конуса пори, менше якого формування нової фази

проходить безбар’єрно.

• Розрахована швидкiсть нуклеацiї кластера нової фази у залежностi вiд

кута конуса пори i ступеня пересичення розчину.
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РОЗДIЛ 9

МЕЖА ГОМОГЕННОЇ НУКЛЕАЦIЇ БУЛЬБАШОК РТУТI ЗА

НОРМАЛЬНИХ УМОВ РОБОТИ ЗАПЛАНОВАНОГО

ЄВРОПЕЙСЬКОГО ДЖЕРЕЛА НЕЙТРОНIВ, ЩО ПРАЦЮЄ НА

РЕАКЦIЇ СКОЛЮВАННЯ

У дев’ятому роздiлi теоретично дослiджено процес закипання ртутi у

iмпульсних джерелах нейтронiв, що працюють на реакцiї сколювання (Spallation

Neutron Source). При адсорбуваннi протонного пучка ртуть пiддається великим

термiчним ударам та ударам тиску. Цi локальнi змiни стану ртутi можуть

спричинити утворення в рiдинi нестабiльних бульбашок, якi можуть пошкодити

при їх кавiтацiї конструкцiйнi матерiали (стiнка труби).
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Abstract. In spallation neutron sources, liquid mercury, upon adsorbing the

proton beam, is exhibited to large thermal and pressure shocks. These local

changes in the state of mercury can cause the formation of unstable bubbles
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in the liquid, which can damage at their collapse the enclosing the liquid solid

material. While there are methods to deal with the pressure shock, the local

temperature shock cannot be avoided. In our paper we calculated the work of

the critical cluster formation (for mercury micro-bubbles) together with the

rate of their formation (nucleation rate). It is shown that the homogeneous

nucleation rates are very low at the considered process conditions even after

adsorbing several proton pulses, therefore, the probability of temperature

induced homogeneous bubble nucleation is negligible.

9.1. Introduction

Irradiating liquid metals (usually mercury) with proton beams is one of the best known

methods to produce highintensity, multi-purpose neutron beams. This method has been

used in various existing facilities and it is planned to be employed in the European

spallation source (ESS), too. Unfortunately upon adsorbing the high-intensity proton

beam in the liquid the neutrons are not the only particles emitted; an unavoidable

heat and pressure wave will be emitted simultaneously from the adsorption region.

The increase of the temperature and (in the negative period of the pressure wave) the

decrease of the pressure can cause cavitation in the liquid. The metal vapor bubbles

then will flow with the liquid and upon reaching high pressure and low temperature

regions, they will collapse, causing eventually some severe damage in nearby solid

structures. This phenomenon is known as cavitation erosion and one of the main

factors which (due to pitting and weight loss) significantly may shorten the lifetime

of structural materials. To our present knowledge, four mercury targets are needed at

the Oak Ridge spallation neutron source (SNS) at 1 mW power per year. Therefore to

avoid cavitation is one of the main challenges of the design of the spallation source

target [1–7].

It should be mentioned here that, along the methods to minimize cavitation
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itself, there are two other ways to minimize the damage. One of them consist in

the various ways of surface treatments (plasma nitriding, plasma carbonizing, etc.),

which makes the surface more resistant to the damaging pressure wave emitted by the

collapsing bubble [8,9]. The other one is the addition of helium micro-bubbles, which

is a proven way to soften up and to reduce the damage by absorbing the expansion

of liquid mercury and mitigating the pressure waves [8–12]. Considering this method

as a successful one to deal with the pressure-drop induced cavitation, in our paper

we focused our attention mainly on the temperature increase induced cavitation and

allowed only small pressure changes to occur (down to −5 bar). Our main aim is

to find out whether the conditions discussed here are able to cause cavitation or not.

We approached the problem in three steps. In the first step (Sect. 2), we calculated

the phase equilibrium properties, the stability limit and various other properties of

mercury by using a slightly modified version of the equation of state proposed by

Redlich and Kwong [13], Morita et al. [14–16]. In the next step (Sect. 3), we made an

estimation for the magnitude of pressure and temperature changes by using single and

repeated proton pulses. In the final step (Sect. 4), we calculated the work of critical

bubble formation in mercury as well as the rate of homogeneous nucleation in the

pressure-temperature range defined according to the results of the previous section.

The paper is completed by a short summary and discussion (Sect. 5).

9.2. Model system

9.2.1. Location of binodal and spinodal curves

For the description of mercury (Hg) in both the liquid and gas phases, we will

apply a slightly modified thermal equation of state as compared to the expression

proposed by Morita et al. (see [13, 14], and, in particular, Eq. (15) in [15])

p =
RT

K(T )(v − b)
−

a(T )

v(v + c)
, (9.1)
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a(T ) = ac

(
T

Tc

)n

at T ≤ Tc , (9.2)

where R = 8.314 J ∙ mol−1 is the universal gas constant, p is pressure, v is molar

volume, T is temperature, ac, b, c and n are the model parameters specific for the

substance considered, Tc is critical temperature. The correction coefficient K(T ) is

dependent on temperature only, it was introduced in the repulsive term instead of the

parameter xd, which is a function of T and p (see [16], in such case Eq. (9.1) becomes

an equation for definition of p(v, T ), and has no analytical solution).

We employ further dimensionless variables

Π =
p

pc
, ω =

v

vc
, θ =

T

Tc
, (9.3)

where vc is the molar volume, pc the pressure both at the critical point with the critical

temperature, Tc. These parameters can be determined from Eq. (9.1) in the common

way via
(

∂p

∂v

)

T

=

(
∂2p

∂v2

)

T

= 0 at T = Tc . (9.4)

The equation of state in reduced variables is given by

Π(θ, ω) =
θ

χc(θ)(ω − β)
−

α(θ)

ω(ω + δ)
. (9.5)

Here

χc(θ) =
pcvc

RTc
K(θ) (9.6)

is the reduced critical compressibility, and

K(θ) = 1.106697 − 0.106697 ∙ exp

(
θ − 1

0.17026

)

, (9.7)

α(θ) =
acθ

n

pcv2
c

= αθn , β =
b

vc
, ξ =

c

vc
. (9.8)
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According to [15] we have then

α = 2.5272 , β = 0.3952 , ξ = −0.16567 , n = −0.0284127 . (9.9)

From Eqs. (9.1) and (9.4) we get [15]

vc = 1.797 ∙ 10−4 m3/kg , ρc = 5566 kg/m3 , (9.10)

pc = 158 ∙ 106 Pa , Tc = 1762 K .

The location of the classical spinodal curve can be found via the determination

of the extrema of the thermal equation of state, Π(θ, ω) (Eq. (9.5)) considering the

temperature θ as constant. By taking the derivative of Π(θ, ω) with respect to ω, we

obtain from equation (9.5) the result

∂

∂ω
Π(θ, ω) =

α(θ)(2ω + ξ)

ω2(ω + ξ)2
−

θ

χc(ω − β)2
= 0 . (9.11)

For θ < 1, this equation has two positive solutions ω
(left)
sp and ω

(right)
sp for ω

corresponding to the specific volumes of the both macrophases at the spinodal curves

(or at the limits of metastability).

Similarly, the binodal curves give for θ ≤ 1 the values of the specific volumes

of the liquid and the gas phases coexisting in thermal equilibrium at a planar interface.

From the left branch of the binodal curve, we get the specific volume of the liquid

phase (ω (eq)
l (θ) = ω

(left)
b (θ)), from the right branch of the binodal curve, we obtain

the specific volume of the gas (ω(eq)
g (θ) = ω

(right)
b (θ)). For θ = 1, both solutions

coincide in the critical point (ω(eq)
l = ω

(eq)
g = ωc = 1), again. Consequently, in order

to determine the specific volumes of the liquid and the gas at some given temperature

in the range θ ≤ 1, we have to specify the location of the binodal curve.
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The location of the binodal curve may be determined from the necessary

thermodynamic equilibrium conditions (for planar interfaces) – equality of pressure

and chemical potentials – via the solution of the set of equations

Πl(ωl, θ) = Πg(ωg, θ) , μl(ωl, θ) = μg(ωg, θ) . (9.12)

Here by μ the chemical potential of the atoms or molecules in the liquid (l) and

the gas (g) are denoted. Having at our disposal already the equation for the reduced

pressure (c.f. Eq. (9.5)), we have now to determine in addition the chemical potential

in dependence on pressure and temperature (see Sect. 2.2).

Isotherms for mercury Eq. (9.5) for different values of the reduced temperature

θ = 0.4, 0.65, 0.8, 0.891 and 0.92 are shown in Fig. 9.1, dashed and dashed-dotted

curves present binodal and spinodal, correspondingly. One can see, that there are two

classes of isotherms: for the first one (θ ≥ θs) p ≥ 0, and for the second class (θ < θs)

pressure may be both positive and negative. Only in this temperature range, cavitation

Fig. 9.1. (Color online) Isotherms of mercury as described via equation (9.5) for

different values of the reduced temperature, from θ = 0.4 (bottom curve) to θ = 1

(upper curve).
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Fig. 9.2. (Color online) Comparison of experimental data (according to [17, 18]) for

the vapor-liquid coexistence properties of mercury with the theoretical results (full

curve determined via Eq.(9.5)) obtained in this work.

processes may occur. The parameter θs is determined via the equation

Πl(ωsp(θs), θs) = 0, (9.13)

for mercury θs ≈ 0.891 and Ts ≡ Tcθs ≈ 1570 K. A comparison of experimental data

[17,18] for the vapor–liquid coexistence properties of mercury with results obtained in

this work are shown in Fig. 9.2 and Fig. 9.3 for T, ρ and p, T−1 variables, respectively.

Fig. 9.3. (Color online) Comparison of experimental vapor pressure for mercury

(according to [17, 18]) with theoretical results (full curve determined via Eq.(9.5)).
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9.2.2. Determination of the chemical potential and the interfacial tension

For isothermal processes, the change of the Helmholtz free energy, F , may be

expressed as

dF = −pdV + μdn . (9.14)

Here V is the volume of the system and n the number of moles in it. For a given

fixed mole number, n, of the substance (n = constant), we have, in particular,

dϕn = −pdv , ϕn =
F

n
, v =

V

n
, (9.15)

or, in reduced variables,

d

(
ϕn

pcvc

)

= −Πdω . (9.16)

Employing in the integration of Eq. (9.16) the equation of the state, Eq. (9.5), we

obtain

(
ϕn

pcvc

)

= −

[
α(θ)

ξ
ln

(

1 +
ξ

ω

)

+
θ

χc(θ)
ln(ω − β)

]

. (9.17)

Alternatively, the change of the Helmholtz free energy – provided the volume

V is fixed – is given at constant temperature by

dF = μdn . (9.18)

From Eq. (9.18), we arrive at

dϕv = −
μ

v2
dv , ϕv =

F

V
. (9.19)
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On the other side, the functions ϕv and ϕv are connected by

F = ϕnn = ϕvV , ϕv =
ϕn

v
. (9.20)

With Eq. (9.17), we have then

ϕv =
pc

ω

[
α(θ)

ξ
ln

(

1 +
ξ

ω

)

+
θ

χc(θ)
ln(ω − β)

]

. (9.21)

With Eqs. (9.19) and (9.21), the expression for the chemical potential of a HLM can

be obtained then via

μ = −v2∂ϕv

∂v
= −vcω

2∂ϕv

∂ω
. (9.22)

This relation yields

μ

pcvc
= −

[
α(θ)

ω + ξ
+

θω

χc(θ)(ω − β)
+

α(θ)

ξ
ln

(

1 +
ξ

ω

)

+
θ ln(ω − β)

χc(θ)

]

.(9.23)

In addition to the bulk properties of the system under consideration, we have to know

the value σ of the surface tension for a coexistence of both phases at planar interfaces

in dependence on the parameters describing the state of both phases. The following

form was chosen for our calculation [19–22])

σ (ωg, ωl, θ) = Θ(θ)

[
1

ωl
−

1

ωg

]δ

, δ = 2.5 , (9.24)

where

Θ(θ) = A

[
1

ω
(left)
b

−
1

ω
(right)
b

]n−δ

, (9.25)
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and A and n are constant parameters. Comparison of Eqs. (9.24) and (9.25) with

experimental data [23]

σ(T ) = 0.5446544 − 0.000204917 ∙ T (9.26)

(here the temperature is given in Kelvin and the surface tension in J/m2) at ωl = ω
(left)
b

and ωg = ω
(right)
b yields

A = 0.033253 J/m2 , n = 3 . (9.27)

In Fig. 9.4 dependence of the surface tension on temperature is shown, solid

curve presents Eq. (9.24) at ωl = ω
(left)
b , ωg = ω

(right)
b , and dashed curve – Eq. (9.26).

Fig. 9.4. Dependence of the surface tension on temperature, solid curve presents

Eq. (9.24) at ωl = ω
(left)
b , ωg = ω

(right)
b , and dashed curve – Eq. (9.26)



The European Physical Journal B 331

9.3. Determination of the pressure and temperature change after

proton adsorption

For the determination of the pressure and temperature change, a “one

dimensional six-equation two-fluid model” was employed, which is capable to

describe transient-like pressure waves and quick evaporation or condensation which

is proportional to cavitation caused by energetic proton interaction in mercury

target [24]. The method was developed to describe the sudden and drastic steam

condensation, called water hammer [25, 26].

The model contains six first-order partial-differential equations which describe

one-dimensional surface-averaged mass, momentum and energy conservation laws for

both phases. A special numerical procedure ensures that shock-waves can be described

without any numerical dispersion. With two major modifications this model can be

applied to investigate the thermo-hydraulic properties of the planned mercury target

in the european spallation source (ESS). These modifications are the following: the

equation of state namely the density and the internal energy of both mercury phases

should be known in a broad range of pressure (1 Pa to 100 MPa) and temperature

(273 K to 1000 K). As a second point the interaction of the high energy proton

beam with mercury has to be included. This is a much simpler task because we

may consider that about 50energy is absorbed as a 2 ms long heat shock square

pulse, giving a new source term in the energy equation of the liquid phase. The ESS

mercury target station is modeled as a 18 m long closed loop which is bent in three

dimensions and the pipe diameter is 15 cm. We consider that 150 kJ heat is absorbed

in a 10 cm long pipe, this is approximately the width of the proton pulse. Calculation

shows that such a single pulse heats up the mercury with about 40–44 K, assuming

that the initial temperature was between 293–373 K (i.e. within the normal working

range of the spallation source). In the calculations, low velocities 0.5–4 m/s, low

initial pressure 1–4 bar and low initial temperature (below 374 K) were assumed. To

our knowledge the existing Japanese Spallation Neutron Source Hg loop is about 15
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m long, with a diameter of 15 cm, the flow velocity of Hg is 0.7 m/s and the pressure

is approximately equal to 1 bar.

Concerning the pressure change, the model is able to estimate the positive part,

but at the negative region (where most of the low temperature cavitation is expected

to happen [27]), a stability problem aroused. Therefore we focused our calculation to

the heat shock and, at present, neglected the pressure change. Preliminary calculation

yielded a few bar changes [24], in agreement with the results of Ida [28], therefore

the latter calculations were performed in the −5 to 10 bar range.We should mention

here, that other models predicted much larger pressure changes (even hundreds of

bars) [29, 30] both in the positive and negative pressure region.

Also the effects of repeated pulses were checked. The calculations were

performed with a 2 ms square pulse train where the delay time was 20 ms which is

similar to a 16 Hz repetition rate. We started with a flow system with initial p = 4 bar,

Tinitial = 353 K and initial flow velocity v = 4 m/s.We found that the temperature

jumps are more or less additive which means that after the beginning of the third

pulse the temperature was about 430 K.

9.4. Determination of the work of critical cluster formation

Let us assume, now, that the system is brought suddenly into a metastable state

located between spinodal curve and binodal curve at the liquid branch of the equation

of state. Then, by nucleation and growth processes, bubbles may appear spontaneously

in the liquid and a phase separation takes place [31]. Based on the relations outlined

above, we will determine now the parameters of the critical clusters governing bubble

nucleation in dependence on the state parameters, pressure and temperature.

We start with the general expression for the change of the thermodynamic
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potential

ΔG = σA + (pβ − pα)Vα +
∑

j

njα(μjα − μjβ) , (9.28)

Here the subscript α specifies the parameters of the cluster (bubble) phase while β

refers to the ambient liquid phase. This relation holds as long as the state of the liquid

remains unchanged by the formation of one bubble. For a one-component system, this

expression is reduced to

ΔG = σA + (pβ − pα)Vα + nα(μα − μβ) . (9.29)

As independent variables, we selected the radius of the bubble, r, and the molar

volume of the gas phase in the bubble. Similarly to [19, 32, 33], we arrive then at

Δg(r, ωg, ωl, θ)

kBT
= 3

(
1

ωl
−

1

ωg

)δ

r2 + 2f (ωg, ωl, θ) r3 , (9.30)

where the following notations have been introduced:

f (ωg, ωl, θ) = Π(ωg, θ) − Π(ωl, θ) +
1

ωg

(
μ (ωl, θ) − μ (ωg, θ)

pcvc

)

, (9.31)

g ≡
G

Ω1
, Ω1 =

16π

3

1

p2
ckBTcθ

Θ(θ)3 , (9.32)

r ≡
R

Rσ
, Rσ =

2

pc
Θ(θ) . (9.33)

The dependence of the scaling parameters Ω1 and Rσ on the reduced temperature is

shown in Figure 9.5.
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Fig. 9.5. Dependence of the scaling parameters Ω1 and Rσ on the reduced

temperature, θ.

The Gibbs free energy surface for the metastable initial state has a typical

saddle shape near to the configuration corresponding to a bubble of critical size (see

Fig. 9.6, θ = 0.92, ωl = 0.65) in the space of critical radius-molar volume and work

of cluster formation. The critical point position is determined by the set of equations

∂Δg(r, ωg, ωl, θ)

∂r
= 0 ,

∂Δg(r, ωg, ωl, θ)

∂ωg
= 0 . (9.34)

The dependence of the critical cluster parameters on the initial molar volume of

liquid, ωl, are shown in Figs. 9.7–9.10, for different values of temperature, θ = 0.17,

0.5, 0.7, 0.8, 0.891 and 0.92. The positions of the binodal curves are given then by

ω
(left)
b = 0.409, 0.45, 0.494, 0.531, 0.589, 0.62, and ω

(right)
b = 1.663 ∙ 108, 90.5,

11.606, 5.634, 3.043, 2.475, the respective parts of the spinodal curves are located at

ω
(left)
sp = 0.452, 0.528, 0.59, 0.634, 0.696, 0.726, and ω

(right)
sp = 13.609, 4.04, 2.584,

2.087, 1.679, 1.547, correspondingly.

The dependence of the work of formation and radius of the critical cluster on

temperature for the practically significant cases p = −5, 0, 1, 2, 5 and 10 Bar. is

presented in Fig. 9.10. In Fig 9.11 dependence of the nucleation rates on temperature

for the same values of pressure are shown (the value of pre-exponential factor J0 =
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Fig. 9.6. (Color online) Gibbs free energy surface for metastable initial state, θ =

0.92, ωl = 0.65.

Fig. 9.7. (Color online) Dependence of the critical cluster radius, rc = Rc/Rσ, on

the initial molar volume of liquid, ωl, for different values of temperature, θ = 0.17,

0.5, 0.7, 0.8, 0.891 and 0.92.
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Fig. 9.8. (Color online) Dependence of the gas molar volume in critical bubble, ωg,c,

on the initial molar volume of liquid, ωl, for different values of temperature, θ = 0.17,

0.5, 0.7, 0.8, 0.891 and 0.92.

Fig. 9.9. (Color online) Dependence of the work of critical cluster formation,

ΔGc/kBTΩ1, on the initial molar volume of liquid, ωl, for different values of

temperature, θ = 0.17, 0.5, 0.7, 0.8, 0.891 and 0.92.
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Fig. 9.10. (Color online) Dependence of the work of critical cluster formation,

ΔGc/kBT (a), and of the critical cluster radius (b) on temperature for p = −5,

0, 1, 2, 5 and 10 Bar.
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1041s−1m−3 have been used for the calculation). One can see, that in such case

Fig. 9.11. (Color online) Dependence of the nucleation rate on temperature for p =

−5, 0, 1, 2, 5 and 10 Bar.

nucleation is possible only at very high temperatures, near Ts ≈ 1570 K. One can

observe as well that concerning a 20 cm diameter sphere (region of proton adsorption)

and 2 ms time span, one can expect 1 or more nucleation events above 1530.5 K.

We arrive in this way at the conclusion that at the conditions analyzed intensive

formation of supercritical bubbles by homogeneous nucleation is included. However,

heterogeneous nucleation induced by different kinds of nucleation cores dissolved in

liquid mercury may occur, of course, also at lower temperatures.

9.5. Conclusions

In spallation neutron sources, liquid mercury is the subject of large thermal

and pressure shocks (including negative pressures) upon adsorbing the proton beam.

Increased temperature and negative pressure can result in the formation of unstable

bubbles which can cause cavitation erosion of the structural material, shortening the
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life-time of the equipment and contaminating the liquid mercury with tiny steel pieces.

Therefore it is crucial to avoid or minimize bubble nucleation. While pressure shock

can be softened by adding helium micro-bubbles to the mercury, there is no way to

deal with the thermal shock (i.e. local heating is not possible in the middle of the

liquid mercury). Therefore our calculation focused on the calculation of the degree

of temperature increase, the work of critical cluster formation (i.e. the nucleus of a

macroscopic bubble) and the nucleation rate. It has been shown that after repeated

proton pulses the temperature can be increased with a few hundred K, but the

nucleation rate is so low that the possibility of homogeneous nucleation (i.e. bubble

formation in the pure mercury) is highly improbable, even when the pressure gets

values below the vapor pressure.
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9.6. Висновки до роздiлу 9

Результати дослiджень, представлених у даному роздiлi, опублiковано

в статтi [9] (Додаток А. Список публiкацiй здобувача за темою дисертацiї). Тео-

ретично дослiджено процес закипання ртутi у iмпульсних джерелах нейтронiв,

що працюють на реакцiї сколювання (Spallation Neutron Source). Серед основних

результатiв у якостi висновкiв можна видiлити наступнi:

• Обчислена робота формування критичних кластерiв (мiкробульбашок

пари ртутi) та швидкiсть їх зародження в залежностi вiд тиску i температури.

• Показано, що швидкiсть гомогенного зародження дуже низька при

розглянутих умовах процесу навiть пiсля адсорбцiї декiлькох iмпульсiв протонiв,

тому ймовiрнiсть кавiтацiйних процесiв незначна.
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РОЗДIЛ 10

ТЕОРIЯ УТВОРЕННЯ ПОРИ В РОЗТЯГНУТОМУ СКЛI:

УЗАГАЛЬНЕНИЙ ПIДХIД ГIББСА

У десятому роздiлi проведено теоретичний аналiз процесу зародження

пори у малих зразках переохолодженої дiопсидної рiдини у процесi кристалiзацiї

поверхневого шару зразка на основi узагальненого методу Гiббса. Через невiд-

повiднiсть густини кристалiчної та рiдкої фаз зростання кристалiчного шару

на поверхнi зразка призводить до рiвномiрного розтягування iнкапсульованої

рiдини i, подiбно до кавiтацiї в простих рiдинах, до зародження однiєї пори.

Аналiз цього процесу з точки зору класичної теорiї нуклеацiї дає якiсно

правильний результат, однак кiлькiсно теоретичнi оцiнки та експериментальнi

данi вiдрiзняються.
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ABSTRACT

A theoretical analysis is performed of the process of nucleation of a pore

in small samples of an under-cooled diopside liquid, enclosed by a solid
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crystalline surface layer growing from the melt. Due to the density misfit of

the crystal and liquid phases the growth of the crystalline layer leads to a

uniform stretching of the encapsulated liquid. After reaching some critical

values, the resulting tensile stress results in nucleation of a single pore.

Nucleation of the pore is followed by its rapid growth, which decreases

considerably the magnitude of elastic stresses and therefore eliminates the

pre-condition for nucleation. This process has been analyzed earlier in terms

of classical nucleation theory leading to a qualitatively correct interpretation.

However, quantitatively, theoretical estimates performed in the framework

of classical nucleation theory and experimental data differ. It is shown here

that the generalized Gibbs approach results in a more adequate quantitatively

correct description of the process of pore nucleation.

c©2011 Elsevier B.V. All rights reserved.

10.1. Introduction

According to Abyzov, Fokin et al. [1–3](c.f. also [4–6]), there is abundant

evidence of formation of pores in crystallization processes of small samples of under-

cooled glass-forming melts, when the samples crystallize from the outer boundaries.

The basic model of the mechanism of pore formation has already been developed

[1–3]. Due to the density misfit of the crystal phase and under-cooled melt the growth

of the crystalline layer leads to a uniform stretching of the encapsulated liquid and,

similar to cavitation in simple liquids, to nucleation of a single pore (see Figs. 1

and 2). In accordance with the principle of le Chatelier-Braun, the pore is formed to

compensate, at least partially, the elastic strains caused by the density difference

between glass and crystal phases. Pore formation is followed by rapid growth,

which diminishes considerably the magnitude of elastic tensile stresses and therefore

eliminates the pre-condition for nucleation of further pores. Such scenario is quite

general because the densities of most glasses differ from those of their isochemical

crystals. By this reason, the effects studied are of great technological significance for
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glass-ceramic development and sinter-crystallization processes [1–6]). In the present

analysis, diopside glass has been used as a model system for the detailed study of

these processes because its density is significantly less than that of the crystal, which

increases the effect of elastic tensile stresses (see details given in [2]).

In a preceding paper, we performed the first theoretical analysis of pore

nucleation in such samples in terms of classical nucleation theory (CNT) employing

the classical Gibbs approach to the thermodynamic description of heterogeneous

systems [2]. As it is shown in this earlier work the proposed basic mechanism –

i.e. homogeneous formation of pores due to tensile stresses – works qualitatively

well, however, quantitatively, classical theory overestimates the work of critical

pore formation by a factor of the order of two. In the present contribution, it

is demonstrated that the generalized Gibbs approach provides a more adequate

description of the process of pore nucleation as compared to classical nucleation

theory and allows us to interpret pore formation in the considered elastically stretched

liquids even in a quantitatively correct way, i.e. as cavitation-like processes caused by

elastic stresses.

10.2. Experimental data and their analysis

Samples of diopside glass in the form of small cubes, side a approximately

2, 3 or 4 mm, were heat-treated at T = 870◦C for different times, t. After a given

period of time, the samples were quenched to roomtemperature. Then the top and

bottomsurfaces of the cubes were removed by grinding and polishing to study their

interior and to measure the crystalline layer thickness. Optical microscopy and X-ray

analysis were employed to identify the crystalline phases (see [2] for details). The

heat-treatment temperature is lower than the melting temperature, Tm = 1392◦C, but

is much higher than the standard glass transition temperature, Tg = 720◦C, so diopside

crystals may form and they do it at the surface of the cubic samples (see, e.g. [7]). This

process is illustrated in Fig. 10.1. Note that at the beginning of the nucleation-growth
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Fig. 10.1. Sketch of experimental results [2] showing the switch of the crystallizing

phase in dependence on the width of the crystalline layer and stress induced pore

formation: a) cubic sample of diopside glass; b) formation of diopside crystals at

the surface of the sample; c) formation of a continuous solid crystalline layer; d)

formation of a wollastonite-like crystalline layer; e) growth of the wollastonite-like

phase and pore formation.

process diopside crystals do not develop a continuous solid crystalline mantle on the

sample surface. In the early stages (Fig. 10.1b) there are gaps between the diopside

crystallites, and only after some time has elapsed, due to the coalescence resulting

from the growth of the initially separated small diopside crystals, a continuous solid

crystalline layer is formed. This crystalline layer, like a nutshell, does not allowthe

stresses to relax fully and elastic stress energy – due to volume differences of the

initial liquid and evolving crystal phase – accumulates with the further increase of the

width of the layer in such stretched system. As a first response to the increase of the

magnitude of elastic stresses the system exhibits a “switching” of the crystallization

process from formation of diopside (1CaO∙1MgO∙2SiO2) to a wollastonite-like phase

(see Fig. 10.1d). Latter phase has a composition of diopside but has a structure similar

to wollastonite (CaO∙SiO2, triclinic, for more details see [2]). The reason of such

switch can be interpreted as a consequence of the fact that crystallisation of the

wollastonite-like phase produces smaller values of elastic stress energy as compared

to the formation of diopside. The density of the wollastonite-like phase is considerably

lower than that of the diopside crystals (densities of diopside crystals and the melt

are 3.278 × 103 and 2.84 × 103kg/m3 [8], and density ofwollastonite-like crystals

is 3.042 × 103kg/m3 [2]). Consequently, the density misfit of the wollastonite-like
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crystal phase and the diopside melt is lower and the resulting elastic stress effect

in the crystallization process is smaller as compared to diopside crystal formation.

Thus, we may suggest in agreement with experimental data [2] that – due to evolving

tensile stresses – the formation and growth of diopside crystals terminates almost

immediately after completion of formation of a continuous diopside crystalline layer.

The average thickness of the diopside crystalline layer depends mainly on the typical

distance between the diopside crystals formed independently in the initial stage of

crystallization or, equivalently, on the number of crystallites formed in the crystalline

layer. Taking into account that nucleation of diopside crystals is heterogeneous and

occurs on some active centres (surface defects) [7], its number density depends only

on the kind of surface [9].

In the course of subsequent development of the wollastonite-like crystalline

layer, the remaining internal parts of the samples become uniformly stretched (see

Fig. 10.1d and [1] for more details). As a result, like in cavitation processes in

liquids, pores may spontaneously evolve (see Figs. 10.1e and 10.2). The origin of

Fig. 10.2. Reflected (a) and transmitted (b) light optical micrographs of diopside

glass sample of size 2x2x2 mm3 heat-treated at 870◦C for 200 min [2] (the cracks

on the sample appeared due to the preparation of the cross section needed to test the

inner part of cubic sample).

pore nucleation is the elastic stress energy due to misfit of crystalline and ambient

phase, again. Note, that for all experiments with annealing times t > t∗ (when pores
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have been formed), the size of the pores in the samples was almost the same, as it is

shown in Fig. 10.2, and pores of intermediate sizes are not registered, which proves

our assumption of very rapid, similar to cavitation processes, pore growth. Once a

first pore is formed, as a rule, a second pore does not appear, since rapid growth

of the first pore eliminates the elastic tensile stresses widely. As a consequence of

this peculiarity, the main characteristic of the nucleation process considered is the

waiting time for the appearance of the first pore, t∗, similar to crystallization of metal

droplets [10, 11] or boiling of liquids [12]. Note that sometimes crystals are forming

at the internal surface of the pore (see Fig. 10.2a), but this process takes place at the

late stage of pore growth, and therefore cannot affect the considered here nucleation

process.

In the analysis of experimental data on pore formation, a dimensionless

parameter, the reduced thickness of the layer, X, was employed. This parameter

characterises the size of the non-crystallised fraction of the cubes under consideration

and is defined as

X =
a − 2H

a
. (10.1)

where H is thickness of the crystalline layer. For a sample of size 2x2x2mm3,

the measured dependence of X on annealing time is shown in Fig. 10.3, black

triangles represent the experiments which finished without a pore, white ones — the

experiments with pore formation. Pores were always formed at some well-defined

finite values t = t∗ and X = X∗ (see [2] for more details).

The next step is to interpret these experimental results theoretically. As it was

shown in our preceding works [1–3] the value of the thickness of the crystalline layer

H basically determines the degree of development of elastic stresses in a finite system

of the considered geometry. In this way, X∗ and t∗ are also the basic parameters to

be employed in the theoretical description of pore formation and the comparison of

experiment and theory.
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Fig. 10.3. Dependence of the measured values of X on annealing time, t, for diopside

glass samples of size 2x2x2 mm3 heat-treated at 870◦C. White and black triangles

represent the experiments which finished with and without pore formation. Grey bands

divide regions without (t < t∗, X > X∗) and with (t > t∗, X < X∗) pore formation.

10.3. Theory of pore formation

10.3.1. Equation of state for stretched diopside glass

In order to apply the generalized Gibbs approach to the description of

nucleation, the thermal equation of state of the system has to be known. Lacking

respective data, we employ here the van der Waals equation of state for the diopside

melt [13, 14], the thermal equation of state of the systemwhere the process of

nucleation takes place has to be known. Lacking suitable data,we employ the reduced

formof the van derWaals equation of state [15–17] for the specification of the thermal

equation of state of the diopside melt

Π(ω) =
8θ

3
(
ω − 1

3

) −
3

ω2
, (10.2)

Π =
p

pc
, ω =

v

vc
, θ =

T

Tc
. (10.3)
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Here p is the pressure, v the specific volume, T the temperature, while pc, vc, and Tc

refer to the critical point. These critical parameters can be determined via density, ρ,

Young’s modulus, E, and bulk thermal expansion coefficient, β,

ρ(θ) =
ρc

ω(θ)
, E(θ) =

p

ΔL/L0
= −ωpc

(
dω

dΠ

)−1

, β(θ) =
1

ωTc

dω

dθ
. (10.4)

For diopside glass [8] (ρ0 = 2.84 kg/m3, E0 = 1011 J/m3 for T = 20◦C and β =

11.73 ∙ 10−5 K−1 for T = 870◦C), the solution of the system of equations yields

pc = 102 MPa, ρc = 971 kg/m3, vc = 1.03 ∙ 10−3 m3, Tc = 3590 K . (10.5)

The chemical potential of the molecules in a van der Waals fluid can be written

generally as [13]

μ

pcvc
= −

8θ

3
ln(3ω − 1) +

8θω

3ω − 1
−

6

ω
+ χ(θ) . (10.6)

Here χ(θ) is some well-defined function only of temperature.

Here we consider pore formation processes proceeding via nucleation and

growth. Such processes occur for homogeneous initial states of the system (diopside

melt) located in the region between binodal (the boundary between stable and

metastable regions) and spinodal (the boundary between metastable and unstable

regions) curves. To be definite, all further calculations will be performed here for

a temperature T = 870◦C that corresponds to a reduced temperature, θ = 0.318. In

this particular case, the position of the binodal curves is given by ω
(left)
b = 0.373,

and ω
(right)
b = 1663, the respective parts of the spinodal curves are located at

ω
(left)
sp = 0.445, and ω

(right)
sp = 6.343, correspondingly. Thus, we consider initial

states located between the left hand side branches of the spinodal and binodal curves,

respectively, i.e., initial states in the range ω
(left)
b < ω < ω

(left)
sp , that correspond to

the interval of tensile stresses psp < p < pb (psp ≈ −769 MPa, pb ≈ −0.06 MPa).
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Isotherms for the diopside melt according to Eq. (10.6) for different values of the

reduced temperature θ = 0.318, 0.6, 0.84, 1 are shown in Fig. 10.4, dashed green

and blue curves present binodal and spinodal curves, correspondingly.

Fig. 10.4. van der Waals’s isotherms adopted for the description of the diopside melt

for different values of the reduced temperature θ = 0.318, 0.6, 0.84. First value,

θ = 0.318, corresponds to the temperature in the experiment [2], the last three curves

are placed just for reference.

One can see, that there are two classes of isotherms: for the first one (θ ≥ θs),

p ≥ 0, and for the second class (θ < θs), the pressure may be both positive and

negative. Only in this temperature range, melt can exist in a stretched state. The

parameter θs is determined via the equation

Πl(ωsp(θs), θs) = 0, (10.7)

which yields theta θs ≈ 0.844 and Ts ≡ Tcθs ≈ 3029 K. Let us note, that the

parameters Tc and Ts are rather formal here, because diopside melt can decompose

partially at high temperatures, but they are employed only for the definition of the
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equation of state, which is used in the physically realistic range of temperatures and

pressures.

10.3.2. Determination of the work of critical pore formation and of the

nucleation rate

In order to determine the work of critical pore formation, governing the

nucleation process, both the thermodynamic driving force for nucleation and the value

of the surface tension has to be known. For the surface tension we choose here an

equation of the form [13,14]

σ(ωg, ωm, θ) = Θ(θ)

(
1

ωm
−

1

ωg

)δ

, δ = 2. (10.8)

where ωg is a specific volume of the gas in the pore, ωm is a specific volume of the

melt, the function Θ(θ) is defined via

Θ(θ) = A

(
1

ω
(left)
b

−
1

ω
(right)
b

)4−δ

. (10.9)

Here A = 0.0333 J/m2, which corresponds to the experimental value of the specific

surface energy, σ = 0.377 J/m2 [8].

Similarly to [13,14], the basic equations employed for the determination of the

work, ΔG, of formation of a pore of radius R in the generalized Gibbs approach read

Δg(r, ωg, ωm, θ)

kBT
= 3

(
1

ωm
−

1

ωg

)δ

r2 + 2f(ωg, ωm, θ)r3 , (10.10)

f(ωg, ωm, θ) = Π(ωg, θ) − Π(ωm, θ) +
1

ωg

μ(ωm, θ) − μ(ωg, θ)

pcvc
, (10.11)

where the driving force of pore formation, Δg, and the critical pore size, r, in
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dimensionless form are employed. In detail, the following notations have been used

Δg ≡
ΔG

Ω1
, Ω1 =

16π

3

1

p2
ckBθTc

Θ(θ)3 , (10.12)

r ≡
R

Rσ
, Rσ =

2

pc
Θ(θ) . (10.13)

The dependencies of the scaling factors Ω1 and Rσ on temperature are shown in

Fig. 10.5. For the chosen temperature, T = 870◦C, their values are equal to Ω1 =

14.665 and Rσ = 1.027 nm. These values are specified in the figure by dashed curves.

These parameters tend to zero at T = Tc, but this limiting case is far beyond the

physically interesting temperature interval between the glass transition temperature,

Tg, and melting point, Tm. So, the analysis can be performed similarly with similar

results also for other temperatures within the range Tg < T < Tm.

Fig. 10.5. Dependencies of the scaling factors, Ω1 (left) and Rσ (right), on

temperature.

The Gibbs free energy surface for the metastable initial state has a typical saddle

shape at the critical point (see Fig 10.6). The saddle point position — supplying us

with the work of formation and the size of the critical pore – is determined by the set
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Fig. 10.6. Dependence of work of bubble formation, ΔG/kBT , on the radius of the

bubble and the gas density in the bubble.

of equations

∂Δg(r, ωg, ωm, θ)

∂r
= 0,

∂Δg(r, ωg, ωm, θ)

∂ωg
= 0. (10.14)

The dependencies of work of formation, size and gas density in the critical pore

on negative pressure are shown in Figs. 10.7,a-c. The red curves correspond to the

generalized Gibbs approach,while green curves refer to computations performed in the

framework of CNT [12,14,18]. Once the work of critical pore formation is known, the

following equation can be employed for the determination of the rate of nucleation,

J , of pores [19]

J = J0
h

4l3
1

η
exp

(

−
ΔGc

kBT

)

. (10.15)

η(T ) = 10−4.27+ 3961.2
T−750.9 [Pa s] , (10.16)
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Fig. 10.7. a) Work of the critical

bubble formation, ΔGc/kBT , as a

function of negative pressure; b) Radi-

us of the critical bubble, Rc, as a

function of negative pressure; c) Gas

density in the critical bubble as a

function of negative pressure.

Here h is Planck’s constant, l ≈ 2 ∙ 10−10 m

is the size parameter of the diffusing bui-

lding molecules, which is equivalent to

the jump distance or the lattice parameter

— parameters usually used in such kinetic

analyses (see, e.g. [20, 21]), and η(T ) is

the viscosity of the melt [20], for the heat-

treatment temperature T = 1143 K η =

6.74 × 105 Pa s.

Some uncertainty in the definition

of the pre-exponential term, J0, will not

strongly affect the nucleation rate, the value

J0 = 1041 s−1m−3 has been used for the

calculation [22]. In Fig. 10.9, dependencies

of the nucleation rates for generalized Gibbs

approach (red line) and CNT (green line) on

pressure for the same values of temperature

are shown. Utilizing Eq. (10.15), the followi-

ng equation can be written then for the

number of pores nucleated in the stretched

melt in a period of time, t,

N(t) =

∫ t

0
J(t′)V (t′)dt′, (10.17)

where V is the volume of the stretched melt.

Since the negative pressure p determines, to

a large extent, the thermodynamic barrier for nucleation (see Fig. 10.7a), its increase

with increasing thickness, H , of the crystalline layer leads to a strong increase of the
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nucleation rate with heat-treatment time, t, while V weakly decreases.

Fig. 10.8. Nucleation rate, J , as a function of negative pressure (red lines –

generalized Gibbs approach, green line – CNT).

As it was already noted, generally, only one pore appears in a stretched

melt since its fast growth eliminates the negative pressure and terminates further

nucleation. The first pore is formed at a time t = t∗ defined by

N(t∗) = 1. (10.18)

Here t∗ corresponds to the critical value of X∗ to be compared with the results as

detected in experiment

X∗ =
a − 2Ut∗

a
, (10.19)

where U = 0.672 μm/s is the growth rate of the crystalline layer [2].

To estimate the nucleation rate and then to perform the calculations by

Eqs. (10.15)–(10.18), one needs to know the dependence of the negative pressure,

p, on the position of crystal-melt interface, X . As was noted in [2], at the beginning

the diopside crystals practically do not participate in the melt stretching, and only

at the moment of formation of continuous the diopside layer, it could stretch the

melt, and a switch to the wollastonite-like phase occurs (see Fig. 10.1). Therefore the
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thickness of the diopside crystal layer was considered as independent of the size of

the sample.

For the computations of the evolving elastic fields, we considered a sample of

spherical size (see [1] for details). Fig. 10.9 (blue line) shows the results of these

calculations versus ra = Ra/Rs for a radius of the sphere estimated as Rs = a/2

(here Rs is the radius of the spherical sample and Ra is radius of the amorphous core).

After approaching some critical value of pressure, p∗, that corresponds to X∗ i.e.

Fig. 10.9. Dependence of the negative pressure on reduced size of amorphous core.

Red line – dependence p(X) as it is needed for nucleation of a pore according to the

generalized Gibbs approach, green line – according to CNT, blue line – calculation of

p(X) [1].

formation of the pore, negative pressure drops rapidly. Taking into account Eq. (10.19)

one can rewrite the condition of pore formation Eq. (10.18) as N(X∗) = 1.

A comparison between the predictions of the value of X∗ via CNT and

experiment shows that CNT overestimates the work of critical bubble formation

(see [2] for details), and, vice versa, the generalized Gibbs approach slightly

underestimates the work of critical bubble formation, that is a pore is created at a

lower value of negative pressure. In order to arrive at a satisfactory agreement of

experimental values of X∗ with theoretical predictions, for CNT we have to increase

the negative pressure by a factor 1.356 (green line in Fig. 10.7), and for generalized

Gibbs approach we have to reduce the negative pressure by a factor 0.939 (red line

in Fig. 10.7). Such reduction of the theoretically estimated pressure can be easily
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explained by the difference in the shapes of the samples studied theoretically [1] and

experimentally [2].

Fig. 10.10. Dependence of X∗ on

the volume of the sample. Circles

show experimental data, the curve is

calculated by Eqs. (10.15)–(10.19).

Fig. 10.10 shows the dependence of

X∗ on the volume of sample, circles show

experimental data, the curve is calculated by

Eqs. (10.15)–(10.19). The thickness of the

diopside crystal layer, Xd/w, was used here

as a fit parameter, the best result is obtained

for a value Xd/w = 27.1 μm, which is in

good agreement with the experimental data

[2] .

10.4. Summary of results and discussion

The generalized Gibbs approach leads to much smaller values of the work of

critical bubble formation (ΔGc = 56.8 kBT ), as compared to CNT, being nearly

identical to the value required to predict the experimental results quantitatively

exactly. The result obtained via CNT (ΔGc = 121.9 kBT , see Fig. 10.7a) is much

higher leading to a huge difference of the values of the steady-state nucleation

rates obtained via the two different methods (Fig. 10.7d). So, the generalized Gibbs

approach provides a more adequate description of the process of pore nucleation as

compared with the classical nucleation theory and allows one also in a quantitatively

correct way to interpret pore formation in the considered elastically stretched liquids

as cavitation-like processes caused by elastic stresses.

Note that our theoretical analysis was performed for spherical geometry, but

the experiments were performed on cubic samples. The difference in the shapes of

the samples studied theoretically and experimentally is expected to be origin for the

remaining quantitative deviation of theoretical and experimental results. In order to



A.S. Abyzov et al. / Journal of Non-Crystalline Solids 357 (2011) 3474–3479 358

verify this assumption, now we perform similar experiments for samples of different

shapes (spheres and thin plates) for a more precise comparison of the results.

10.5. Conclusions

The switch of surface crystallization of diopside melts from diopside crystals to

a wollastonite-like crystalline phase and pore formation in the glass-forming diopside

melt can be qualitatively and quantitatively described as the result of elastic stresses

caused by crystallization. In contrast to CNT, the generalized Gibbs approach has

shown to be capable of giving not only a qualitative but even a quantitatively correct

interpretation of this process. In this way, phase switch and pore formation due to

crystallization is a general phenomenon which has to be taken properly into account

in any processes like sintering, fabrication of glass-ceramic materials involving partial

crystallization of glass powders.
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10.6. Висновки до роздiлу 10

Результати дослiджень, представлених у даному роздiлi, опублiковано

в статтi [10] (Додаток А. Список публiкацiй здобувача за темою дисертацiї).

Проведено теоретичний аналiз процесу зародження пори у малих зразках

переохолодженої дiопсидної рiдини у процесi кристалiзацiї поверхневого шару

зразка. Через невiдповiднiсть густини кристалiчної та рiдкої фаз зростання

кристалiчного шару на поверхнi зразка призводить до рiвномiрного розтягування

iнкапсульованої рiдини i, подiбно до кавiтацiї в простих рiдинах, до зародження

однiєї пори. Серед основних результатiв у якостi висновкiв можна видiлити

наступнi:

• Обчислена робота формування пори критичного розмiру в залежностi

вiд негативного тиску та час очiкування першого критичного зародка (пори) в

процесi зростання кристалiчного шару на поверхнi зразка.

• Показано, що узагальнений пiдхiд Гiббса приводить до кiлькiсно пра-

вильного опису процесу зародження пори у переохолодженої дiопсидної рiдини

i дозволив пояснити походження внутрiшньогранулярнiх пiр, що утворюються

при спiканнi керамiки.
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ВИСНОВКИ

У дисертацiйнiй роботi побудована нова теорiя нуклеацiї, узагальнений

метод Гiббса, яка, на вiдмiну вiд класичної теорiї нуклеацiї, дає можливiсть

аналiзу процесу утворення нової фази не тiльки поблизу бiнодалi, але також у

нестабiльному початковому станi поблизу класичної спiнодалi. Основнi резуль-

тати дисертацiйної роботи сформульованi в наступних пунктах.

1. Показано, що нуклеацiя, тобто перша стадiя формування кластерiв

нової фази, починаючи з метастабiльних початкових станiв виявляє властивостi,

що нагадують спiнодальний розпад, хоча наявнiсть активацiйного бар’єра

вiдрiзняє процес нуклеацiї вiд класичного спiнодального розпаду.

2. Показано, що утворення фаз у нестабiльних початкових станах поблизу

класичної спiнодалi може протiкати через активацiйний бар’єр, незважаючи на

те, що у цьому випадку значення роботи формування критичного кластера, що

вiдповiдає сiдлової точцi термодинамiчного потенцiалу, дорiвнює нулю;.

3. Дослiджена гетерогенна нуклеацiя на планарнiй твердiй поверхнi у

моделi однокомпонентної рiдини ван дер Ваальса. Показано, що контактний

кут змочування i каталiтичний фактор (фактор зменшення роботи утворення

кластера нової фази критичного розмiру на твердої поверхнi) гетерогенної

нуклеацiї стають залежними вiд ступеня метастабiльностi (переохолодження

або перегрiвання) рiдини. У випадку утворення крапельки в перенасиченiй

парi на гiдрофобнiй поверхнi та утворення бульбашок у рiдинi на гiдрофiльнiй

поверхнi ефект гетерогенностi незначний. В альтернативних випадках конден-

сацiї крапельки на гiдрофiльнiй поверхнi та утворення бульбашок у рiдинi на

гiдрофобнiй поверхнi контактний кута змочування зменшується, каталiтична

активнiсть поверхнi збiльшується, i, таким чином, нуклеацiя посилюється.

Фактично, у цьому випадку iснування твердої поверхнi призводить до значного
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змiщення спiнодалi до менших значень пересичення порiвняно з гомогенною

нуклеацiєю, тобто гетерогенна спiнодаль наближається до бiнодалi, а область

метастабiльностi звужується за рахунок розширення областi нестабiльностi.

4. Вперше дослiджена гетерогенна нуклеацiя на планарнiй твердiй по-

верхнi у моделi регулярного бiнарного розчину. Показано, що у випадку

утворення кластерiв нової фази на поверхнi з низькою змочуванiстю (контактний

кут бiльше 90◦) каталiтична активнiсть твердої поверхнi мала. В альтернатив-

ному випадку високої змочуваностi (контактний кут менше 90◦) iнтенсивнiсть

нуклеацiї значно посилюється твердою поверхнею. Таким чином, у цьому

випадку, як i у рiдинi ван дер Ваальса, гетерогенна спiнодаль наближається до

бiнодалi, а область метастабiльностi звужується за рахунок розширення областi

нестабiльностi.

5. Розглянуто ефекти гетерогенної нуклеацiї на конiчнiй пори у моделi

однокомпонентної рiдини ван дер Ваальса та у моделi регулярного бiнарного

розчину. Показано, що контактний кут та каталiтичний фактор для нуклеацiї на

дефектнiй поверхнi залежать вiд ступеня метастабiльностi (переохолодження,

перегрiвання або пересичення розчину). У разi утворення кластерiв нової фази

на гiдрофiльнiй поверхнi конiчної пори швидкiсть нуклеацiї значно збiльшується

в порiвняннi з випадком планарнiй поверхнi. Наявнiсть дефекту на гiдрофiльнiй

поверхнi призводить до значного зсуву спiнодалi – зi зменшенням кута конуса

пори гетерогенна спiнодаль наближається до бiнодалi, i область метастабiль-

ностi звужується за рахунок розширення областi нестабiльностi. Показано, що

iснує граничний кут конуса пори, менш якого формування нової фази проходить

безбар’єрно.

6. Теоретично дослiджено процес закипання рiдкої ртутi у iмпульсних

джерелах нейтронiв, що працюють на реакцiї сколювання (Spallation Neutron

Source), при адсорбуваннi протонного пучка; обчислена робота формування

критичних кластерiв (мiкробульбашок пари ртутi) та швидкiсть їх зародження.
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Показано, що швидкiсть гомогенного зародження дуже низька при розглянутих

умовах процесу навiть пiсля адсорбцiї декiлькох iмпульсiв протонiв, тому

ймовiрнiсть кавiтацiйних процесiв незначна.

7. Проведено теоретичний аналiз процесу зародження пори у малих

зразках переохолодженої дiопсидної рiдини у процесi кристалiзацiї поверхне-

вого шару зразка. Обчислена робота формування пори критичного розмiру в

залежностi вiд негативного тиску та час очiкування першого критичного зародка

(пори) в процесi зростання кристалiчного шару на поверхнi зразка. Аналiз цього

процесу з точки зору класичної теорiї нуклеацiї дає якiсно правильний результат,

однак кiлькiсно теоретичнi оцiнки та експериментальнi данi вiдрiзняються.

Показано, що узагальнений пiдхiд Гiббса призводить до кiлькiсно правильного

опису процесу зародження пори у переохолодженої дiопсидної рiдини, що

дозволяє пояснити походження внутрiшньогранулярнiх пiр, що утворюються

при спiканнi керамiки.

Таким чином, усi поставленi завдання виконанi, i мета дисертацiйної

роботи досягнута.

Результати дослiджень доповнюють i розширюють наявнi уявлення про

механiзми фазових переходiв першого роду. Вони визначають кiнетику процесiв

самоструктурування речовини вiд нанорозмiрних до галактичних розмiрiв iз

широким спектром застосувань як у фундаментальних, так i в прикладних

дослiдженнях (фiзика, астрономiя, хiмiя, бiологiя, метеорологiя, медицина,

матерiалознавство) та технологiї – конденсацiя та кипiння, сегрегацiя у твердих

та рiдких розчинах, або кристалiзацiя та плавлення. Дослiдження, проведенi

в дисертацiї, є актуальними та мають як фундаментальне, так i прикладне

значення.
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1. Schmelzer J., Abyzov A. S. and Möller J. Nucleation versus spinodal

decomposition in phase formation processes in multicomponent solutions. J. Chem.

Physics. 2004. Vol. 121. P. 6900-6917. Квартиль Q1 (2004).

2. Abyzov A. S., Schmelzer J. Nucleation versus spinodal decomposition in

confined binary solutions. J. Chem. Physics. 2007. Vol. 127. P. 114504. Квартиль Q1

(2007).
3. Abyzov A. S., Schmelzer J., Kovalchuk A. A. and Slezov V. V. Evolution of

cluster size-distributions in nucleation-growth and spinodal decomposition processes

in a regular solution. J. Non-Cryst. Solids. 2010. Vol. 356. P. 2915-2955. Квартиль

Q1-Q2 (2010).

4. Abyzov A. S., Schmelzer J. Kinetics of segregation processes in solutions:

Saddle point versus ridge crossing of the thermodynamic potential barrier. J. Non-

Cryst. Solids. 2014. Vol. 384. P. 8-14. Квартиль Q1-Q2 (2014).

5. Abyzov A. S., Schmelzer J. Generalized Gibbs’ approach in heterogeneous

nucleation. J. Chem. Physics. 2013. Vol. 138, P. 164504. Квартиль Q1 (2013).

6. Abyzov A. S., Schmelzer J. Heterogeneous nucleation in solutions: Generali-

zed Gibbs’ approach. J. Chem. Physics. 2014. Vol. 140. P. 244706. Квартиль Q1

(2014).
7. Abyzov A. S., Schmelzer J. and Davydov L. N. Heterogeneous nucleation

on rough surfaces: Generalized Gibbs’ approach. J. Chem. Physics. 2017. Vol. 147.

P. 214705. Квартиль Q1 (2017).

8. Abyzov A. S., Davydov L. N. and Schmelzer J. Heterogeneous nucleation

in solutions on rough solid surfaces: Generalized Gibbs Approach. Entropy. 2019.

http://doi.org/10.3390/e21080782
http://www.scimagojr.com/journalsearch.php?q=28134&tip=sid&clean=0
http://doi.org/10.1063/1.5006631
http://www.scimagojr.com/journalsearch.php?q=28134&tip=sid&clean=0
http://dx.doi.org/10.1063/1.4884395
http://www.scimagojr.com/journalsearch.php?q=28134&tip=sid&clean=0
http://dx.doi.org/10.1063/1.4802201
http://www.scimagojr.com/journalsearch.php?q=28547&tip=sid&clean=0
http://dx.doi.org/10.1016/j.jnoncrysol.2013.04.019
http://dx.doi.org/10.1016/j.jnoncrysol.2013.04.019
http://www.scimagojr.com/journalsearch.php?q=28547&tip=sid&clean=0
http://www.scimagojr.com/journalsearch.php?q=28547&tip=sid&clean=0
http://dx.doi.org/10.1016/j.jnoncrysol.2010.02.031
http://www.scimagojr.com/journalsearch.php?q=28134&tip=sid&clean=0
http://doi.org/10.1063/1.2774989
http://www.scimagojr.com/journalsearch.php?q=28134&tip=sid&clean=0
http://doi.org/10.1063/1.1786914
http://doi.org/10.1063/1.1786914


366

Vol. 21. P. 782. Квартиль Q2 (2019).

9. Imre A. R., Abyzov A. S., Barna I. F. and Schmelzer J. Homogeneous bubble

nucleation limit of mercury under the normal working conditions of the planned

European Spallation Neutron Source. Eur. Phys. J. B. 2011. Vol. 79. P. 101-113.

Квартиль Q1 (2011).

10. Abyzov A. S., Schmelzer J. and Fokin V. M. Theory of pore formation in

glass under tensile stress: Generalized Gibbs approach. J. Non-Cryst. Solids. 2011.

Vol. 357. P. 3474–3479. Квартиль Q1-Q2 (2011).

Науковi працi, якi засвiдчують апробацiю матерiалiв дисертацiї:

11. Abyzov A. S., Schmelzer J. Nucleation versus spinodal decompositi-

on in confined binary solutions. 17th International Conference “Nucleation and

Atmospheric Aerosols”: Book of abstracts (August 13-17, 2007, National University

of Ireland. Editors C. D. O’Dowd and P. Wagner). Galway, Ireland, 2007. P. 278-281.

12. Abyzov A. S., Kovalchuk A. A., Schmelzer J., Slezov V. V. Evolution of

cluster size distributions in phase formation processes in multi-component solutions:

nucleation and spinodal decomposition. XIIIth Research Workshop Nucleation Theory

and Applications (JINR, April 1 – 30, 2009). Dubna, Russia, 2009.

13. Abyzov A. S., Schmelzer J., Kovalchuk A. A. and Slezov V. V. Evolution

of cluster size-distributions in nucleation and spinodal decomposition in regular

solutions. 9-th International Symposium on Crystallization in Glasses and Liquids

(September 10 – 13, 2009, Foz do Iguaçu, PR). Brazil, 2009.
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