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AHOTALIIA

Abuszoe O. C. YzaranpHenuii minxia ['mb0ca y teopii nyknearii. — Kamidika-
IiliHA HAayKOBa Mpallsi Ha MpaBaxX PyKOIUCY.

Hucepraitist Ha 3700yTTsS HAYKOBOTO CTYIICHS JOKTOpa (i3MKO-MaTeMaTHYHHX
Hayk 3a creuianbHicTio 01.04.02 «Teopernuna dizuka» (104 — dizuka Ta acTpoHO-
Mist). — [HcTUTYT Teoperuunoi ¢gizuku M. O. I. Axiezepa, HamioHanbHUIl HAayKOBHIA
neHTp “XapkiBcbkuit (izuko-rexHiyauil inctutyr” HAH VYkpaiam, Xapkis, 2021.

[Ipu iHTepmpeTallli eKCIepUMEHTATbHUX PE3yJabTaTiB 3 JUHAMIKUA (Da30BUX
MePEXO/IIB MEPIIOTO MOPSIKY, TOUMHAKOYH 3 METACTa0IIbHUX MTOYAaTKOBUX CTaHIB, 1OCI
3aCTOCOBYETHCS NEPEBAXKHO KJIACHMYHA TEOopls HyKJeallll 110 TPaKTye BiANOBIIHUN
MPOIIeC 3 TOUYKHU 30py (HOPMYBaHHS Ta 3pOCTaHHS KiacTepiB. TakoK 4acTo MPUITYCKa-
€THCS, 10 00’ €MHI BIACTHBOCTI KJIACTEPIB JIy>KE CXOXI1 3 BIACTHBOCTAMH Makpodas.
Ile aGo momiOHI MPUMYIIEHHS, 1O JIEKaTh B OCHOBI KJIIACHYHOTO MIIX0AY, TIATPUMY-
I0ThCs (MPUHAKWMHI, SKIO aHATI3yIOThCS MpoIecH GOpMyBaHHS KOHJCHCOBaHHUX (a3)
pe3yibTaTaMu KJIacM4HOi Teopii 1'100ca reTeporeHHUX CHUCTEM, SIKa 3aCTOCOBYETHCS
10 TpoiieciB GOpMyBaHHS KPUTUYHOTO KjacTepa. Po3misigatoun kiactepu sik ApiOHI
YACTHHKHU 3 BIIACTUBOCTSMU HOBOI MaKpPOCKOIMIYHOI (ha3w, BBAXKAETHCS, IO MPOIEC
pPOCTYy 1 pO3YMHEHHS KJlacTepa BiOyBa€ThCs B OCHOBHOMY 3a PaxyHOK JOJaBaHHS
a00 BUIIPOMIHIOBaHHS OKPEMHX OJUHHUIIL (aToMiB, MOJeKyl). SIK Jpyre ao1aTKo-
BE€ TEPMOJMHAMIUHE MPUIYIICHHSI TepeadayaeThcs, MO B MEPIIOMY HAOTUKEHHI
MDK(a3Ha eHepris KpPUTHYHUX KJIAcTepiB JOPIBHIOE BiAMOBIAHOMY 3HAYEHHIO JIs
PIBHOBAXHOTO CHIBICHYBaHHS 000X (a3 3 MJIOCKOI TpaHUIel0. AJIBTEpHATHBHA
KOHTHHYaJIbHA KOHIIEIIIIIS OMKCY TEPMOJAMHAMIKM I€TEPOTeHHUX CUCTEM, pO3po0IieHa
BaH Jep Baanbcom, Brmepmie Oyna 3acTocoBaHa JI0 aHai3y MPOLECIB HyKJealli-
pocty XineproM, Kanom 1 Ximtiapaom, sk 1 NpUALLUIM, 30KpeMa, A0 BUCHOBKY, LIO
napaMeTpu 00’€MHOTO CTaHy KPUTHUYHUX KJIACTEPIB MOXKYTh 3HAYHO BIJPI3HITHUCS Bij

BIJIMOBITHUX 3HaYeHb Makpodas mo mepeadadaroTses y teopii ['i66ca. Kpim Toro,



3rajiaHi aBTOpU TaKOX PO3POOMIIM ajlbTePHATHBY TEOPETHUUYHOMY OIKCY HYyKJealli —
MOJIeNIb CHIHOJAJLHOTO PO3Majly. 3arajJbHOBU3HAHO (Marud B OCHOB1 KJIACUYHUUN
anami3 ['1060ca), 1o Mojeb HyKJIealli-pocTy onucye popMyBaHHs (a3, MOUMHAIOUH 3
MeTacTaOUIbHUX MOYaTKOBUX CTaHIB, TOJI SIK MOJIENIb CIITHOAAILHOIO PO3Iay OMUCYE
TEPMOJIMHAMIYHO HECTIMKI cTaHM. SIK HACIIJOK, BUHUKAE MPOOIeMa, IK OJHH PEKUM
(HyKJI€alis-poCT) MEePEXOUTH B abTePHATUBHUI (CIIHOAATBHUN PO3Ma), SIKIIO CTaH
¢da3u HABKOJMIIHBOTO CEpEeNOBUINA OE3MEPEPBHO 3MIHIOETHCS BIJ] METACTaOLIbHUX
70 HECTaOUIbHUX CTaHiB, TOOTO MOOIM3Y KIIACHYHOI cHiHOAanbHOI KpuBoi. Kiacu-
yHui miaxia ['10606ca TyT nependayae MEBHY CUHTYISIPHY NOBEAIHKY, sKa, OJIHAK,
HE MATBEP/KYEThCsl onrcoM Kana—Ximmiapaa, CTaTUCTUKO-MEXaHIYHUM aHaJIi30M
MoOJIeNl, Ta eKkcrepuMeHToM. Lle mpoTupiuus B mporHo3ax JIBOX YCTaJE€HUX Teopii
BUPIIIYETHCS 3a JIOMOMOTOIO y3arajbHEHHS KJIACUYHOIO TEPMOJAMHAMIYHOTO METOMY
['166ca. Pe3ynbraTtu Takoro y3arajabHEHHS MPEACTABICH] Y JUCEepTaliiHii poOOTI ajis
roMmoreHHoi (po3aumm 1-4, 9, 10) Ta rereporenHoi (po3auiu 6-8) Hykiearlii HOBoi da3u
Ha MPUKJIaAl OIHAPHOTO PEryIIpHOTO po3uuny (posainu 1-4, 6, 8), pinuHu BaH nep
Baanwca (po3aim 5, 7), piakoi pTyTi npu ajcopOyBaHHI MPOTOHHOTO IMy4Ka (PO3Iid
9) Ta cTBOpPEHHS MOPH y PO3TATHYTOMY po3IuiaBi faioncuay (posaia 10).

1. Y nepuiomy po3aini y3araibHeHui meto ['166ca po3BuHEHuU 7151 HyKJIearii
HOBO1 a3y y IpoCTiii MoJzeni peryiaspHoro OiHapHoro po3uuny. Llmsx eBosmrorrii
KJIacTepa 3a pO3MIpOM Ta CKJIAJOM BH3HAYAETHCS MEMOOOM HAUUUBUOULO020 CHYCKY
Ha TIMEePIIOBEPXHI TEPMOJAMHAMIYHOTO MOTEHITIANY 3 ypaxXyBaHHSIM TEPMOJMHAMIYHUX
Ta KiHeTHYHUX (akTopiB. BiAMOBIIHO 10 1BOTO aHai3y 3MiHA PO3MIPY Ta CKIady
KJIaCTEpiB HOBOI (ha3u SIKICHO BIAPI3HAIOTHCS MOPIBHSHO 3 KIACHUYHOIO KAPTUHOIO.
[Tokazano, o HykJjearis, ToOTo rnepiia crajis (GopMyBaHHS KiacTepa, MOYUHAIOUH
3 MeTacTaOlIbHUX TMOYATKOBUX CTaHIB, BUSIBJISE BIACTUBOCTI, 1[0 HAaraayloTh CITiH-
OJIAJILHUM PO3MAaJ: CIOYaTKy pO3Mip KJlacTepa 3aJIUIIAEThCS Maike MOCTIMHHM, a
HOTo CKJIajJ 3MIHIOEThCS, X04a HAsBHICTh aKTHUBALIMHOTO Oap’epa BIApI3HSIE MPOIEC

HYyKJIeallii BiJl CIPaBKHbOTO CHIHOMAIBHOTO po3naay. KpiMm Toro, moka3aHo, 1o yTBo-
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peHHs (a3 sSK y MeTacTabUIbHHUX, TaK 1 HECTAOIIbHUX MOYATKOBHX CTaHaX IMOOJIH3Y
KJIACUYHOI CIIHO/IAJIl, MOXE MPOTIKaTH Yepe3 MPOXOKEHHs XpeOTa TepMOJUHAMIYHO-
ro MOTEHIlaty, TOOTO Yepe3 ACSKUM akTUBAIlIMHUIM Oap’e€p, HE3BaXKAOUU Ha Te, 110
JUIsl HeCTAOUIbHUX MOYAaTKOBUX CTAaHIB 3HAUYCHHS POOOTH (OpPMYBaHHS KPUTHUUYHOTO
KJIacTepa, 110 BiJIMOBIIA€ CIJIOBOI TOYINl TEPMOAMHAMIYHOIO IMOTEHIIIAITY, JOPIBHIOE
Hy/ 0. TakuM 4MHOM, TTOKa3aHO, IO KOHIIEIIIisl HyKJIearii — B MoaudikoBaHiil Gopmi
MOPIBHSIHO 3 KJIACUYHOI KapTHHOI — MOXKE TAaKOXK OyTH NMPUIATHOIO JJIsS aHaJi3y
MpoIiecy yTBOPEHHSI HOBOi (a3 y HecTaOUIbHOMY IMOYaTKOBOMY CTaHi, TOOTO, Ha
BIIMIHY Bl KiacuyHoro miaxonay ['100ca, y3aranpHeHuid meron ['100ca pae omuc
dbopmyBaHHS HOBOi a3 sAK s OIHOMANBHOI, TaK 1 IS CHIHOMAJIBHOI JTUISHOK
dazoBoi miarpamu. OcHOBHUM pe3ynbmamom, 10 Ma€ MpaKkTUYHE 3HAYCHHS, € Te,
o poOOTa YTBOPECHHS KJIacTepa KPUTUYHOTO PO3MIPY B y3araJlbHCHOMY METOIi
['i60ca MeHIIa, HIK Yy KJIACHMYHUI Teopli HyKjealli y KanusIpHOMY HaONMKEHHI, 1
3MEHIIYETHCS 10 HYJS Ha CHIHOAAI.

2. Y npyromy po3isii OCHOBHI OCOOIHUBOCTI CIIHOAQIBHOTO PO3MALy, 3 OJTHOTO
00Ky, Ta HyKJearllii, 3 1HIIOro, Ta Mepexij MK oOoMa MexaHI3MaMU aHaJI3YHOThCS
B paMKax TEPMOIMHAMIYHOI KJIacCTepHOI MOJEIi Ha OCHOBI y3arajibHEHOTO METOMY
['66ca y mogeni perymnsipHoro 6iHapHOro po3unHy. [Ipu iboMy kinacTepu HOBOI (azu
MOXKYTh 3MIHIOBAaTHCSI 3 4acoM SIK 3a pO3MipaMH, TaK 1 3a CBOIMU IHTEHCHBHUMU
napaMeTpaMu CTaHy, HampuKIaJ, TYCTHHOK abo CKIagoM. AHAII3YEThCS TaKOXK
BILIMB 3MiHU ITapaMeTPiB CTaHy HABKOJIMIITHHOTO CEPEIOBHUIIA Ha CBOJIIOIIIO KIacTepa.
Haciiaky Takoi 3MiHM MarOTh BaKJIMBE 3HAYCHHS SK JUI aHAI3y (a30yTBOPCHHS B
oOMexeHuX (HaHOPO3MIPHUX) CHCTEMax, TaK 1 JUIsl PO3YMIHHS €BOJIIOLIT aHcamOIiB
KJIACTEpIB Y BEJIUKUX (HeoOMexeHux) cucteMax. [lokazaHo, 1o mporecu Hykiearii,
MOYMHAIOYM 3 TEPMOJWHAMIYHO METACTAOUIBbHMX IMOYAaTKOBUX CTaHIB, MPOTIKAIOTh
SKICHO 3HAYHOIO MIpOI0 aHAJOTIYHO IPOIECy YTBOPEHHs HOBOI (a3u 3a MeXaHi-
3MOM CIIHOIAJIBHOTO po3many. Ll cXOXKICTh 0COONMBO TMOMITHA, SIKIO PO3IVISAATH

HECTaOUIbHY CHCTEMY MaJjioro po3Mipy. Y 1bOMY BHIIQJIKy €BOJIOIIS CUCTEMU



MOYMHAETHCS 32 MEXAHI3MOM CITHOJATBHOTO PO3Maly, ajie yepe3 3pOCTaHHs KJIacTepiB
NepeCcUYCeHHs 3MEHITYEThCS, CUCTeMa cTae MeTacTabinpHO0. Hapemti, nepecuyeHHs
3MEHILYEThCSI HACTLIbKU, 110 PO3YMHEHHS KJACTEPIB 3 MEHIUMMHU pPO3MIpaMHU CTa€
HEOOXITHOI0O YMOBOIO JJII 3POCTaHHS KJIACTEpiB OUIBIIOTO PO3MIPY, 1 MOYUHAETHCA
cranis xKoajiecueHmii. TakuM YHHOM, IIAX1J J03BOJISE OIMKMCATH E€BOJIIOLIID CHCTEMHU
BiJI CIIIHOAJIBHOTO PO3Maay A0 CTajli KoaleCIeHII].

3. YV mepmioMy Ta JIpyromy po3aiiax aHami3z Oylo MPOBEACHO METOI0M
HaWIIBUIIOIO CIYCKY Ha TINEepHOBEPXHI TEPMOJMHAMIYHOIO MOTEHLIANY, SIKUW Ja€
TIIBKM OCHOBHUH IUISAX €BOJIIONIL KJIacTepa 3a pO3MIpOM Ta CKJIAAOM. Y TPEThOMY
PO3IiI1 TIPOBEICHO OLIBIN JIETAIIBHUI aHaII3 3a JIOIMOMOTOI YHCEIBLHOTO MOJICITIOBA-
HHS Ha OCHOBI KIHETHYHOI Teopii HykJjeallli, TepMoauHaMika GOpMyBaHHS KJIacTepiB
aHaI3ye€TbCcs HAa OCHOBI y3arajJbHEHOro Merony [100ca nisi Moneni peryisipHOro
OlHApHOTO PO34YMHY. Y pe3yabTaTi MPOAHANI30BAHO egoNoYilo QYHKYII po3nooiny
Knacmepié 3a PO3MIPOM Ta CKJIAJOM SIK JJii METacTaOUIbHUX (HYyKJealis), Tak 1
JUIsE HecTaOlIbHUX (CIIHOMATBHUN PO3Majl) MOYaTKOBUX CTaHiB. Po3paxoBaHO MOTIK
KJIacTepiB HOBOI (ha3u B MPOCTOPI PO3MIPIB, TTOKA3aHO, 110 MAKCUMYM TOTOKY MOXE
IIPOXOJIUTH HE TUIBKU Yepe3 CIVIOBY TOUKY, ajie TAKOX 1 uepe3 rpeOiHb rirneprnoBepxHi
TEPMOAMHAMIYHOIO MOTEHI[IaTY.

4.V 4geTBepTOMY PO3/ILJ1 32 JIOMOMOTOI0 YHCEILHOIO MOJCIIOBAHHS Ha OCHOBI
KIHETUYHOT Teopli Hykieaiii y OiHapHOMY pEryIsipHOMY pO3YHHI BHU3HAYAETHCS
HaWO1IBII BIPOT1IHUH MOTIK KJIacTepiB HOBOI (pa3u B IPOCTOPI pO3MIpIB, 3aJICIKHO BiJl
moyaTkoBOoro mepecuueHHs. [lokazaHo, 10 MOXKHA BUIUIMTH TPU OOJACTI 3aJI€KHO
BIJl CTyI€HS HECTaOUIbHOCTI CUCTEMH. Y mepiuiii o0nacTi, Ipu MajioMy 3HaYeHHI
MEPECUYUCHHS], Pe3yIbTaTh KJIACHYHOI Teopii HyKJjeallli Ha OCHOBI KamUISIPHOTO Ha-
ONMMKEeHHsI Ta y3arajbHeHOro Meromy ['i100ca maibke iEHTUYHI, MAKCUMYM IOTOKY
KJIacTepiB HOBOI (pa3u B MPOCTOP1 pO3MIPIB MPOXOAUTH Yepe3 CIIOBY TOUKy. B mpyriii
oOnacti, mpu OUTBIIOMY 3HAYEHHI MEpPECUUYEHHs, poOOTa CTBOPEHHS KiacTepa HOBOI

(a3u MOMITHO MEHILA, HIXK B KJIACUYHIN Teopli HyKJIealli, 10 NPU3BOAUTD /10 ICTOTHO
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OLTBIII BHUCOKOTO 3HAYCHHS IIBUIKOCTI HyKJearii. MakcuMyM IMOTOKY B IPOCTOpI
pO3MipiB, SIK 1 B Mepiiid o01acTi, MPOXOAUTh MEPEBAXKHO Yepe3 Cimayio. Y mepiiid
1 Ipyrii o0yacTAX MOXKHA BUKOPHUCTOBYBATH JIJISl PO3PaxXyHKy HIBHUAKOCTI HyKJeari
MPOCTI aHAIITHYHI BUPA3W 4epe3 akTUBallHU Oap’ep. Y Tperiil 006xacTi, modausy
CHIHOJAM1, HyKJIeallis BiIOyBaTUMETHCS HE YEPEe3 C1TIOBY TOUKY, aJIe TPAEKTOPIETO, 1110
MPOXOAUTH Yepe3 rpediHb TINEepPHoBEPXHI TEPMOAMHAMIYHOTO MOTEHIany. Po3paxy-
HOK IIBUKOCTI HyKJI€allii y TpeTiid 00JacTi MOXKIMBUNA TUTbKH HAa OCHOBI YHCEJIBHOTO
MOJIEJIIOBAHHS HAa OCHOBI KJIaCTEPHOT TUHAMIKH.

5.V m’stoMy po3aull JOCHIKEHO T'eTepOreHHa HyKJeallis KJIacTepiB HOBOL
da3u (KoHAeHcallish Ta KUIIHHS) Ha TUIOCKUX TBEPAUX IMOBEPXHSIX 3 ypaXyBaHHIM
3MIHU TTapaMeTpPiB CTaHy KPUTHYHHX KJIACTEePiB (Kpamneibok abo Oynbp0aIiok) 3anexHo
BIJl NEPECUYCHHsS B paMKax yi3arajibHeHoro miaxoay ['1006ca. OmHOKOMIIOHEHTHA
pinvHa BaH nep Baanbca oOpana sik MOAENb IS aHAi3y OCHOBHUX XapaKTEPUCTHK
nporecy. [lokazano, mo y BUNAAKy YTBOPEHHS KpamelbKu B MEPEHACHYEHINH mapi
Ha TiapodoOHIN MOBEpXHI Ta YTBOPEHHs OynbOamok y piauHi Ha TiApodiIbHIN
MOBEPXHI €(PeKT TeTepOreHHOCTI He3HaYHUH. B albrepHaTUBHUX BUIIQJIKaX KOHJICH-
calii Kpamenbku Ha TiApoQUIbHIA MOBEPXHI Ta yTBOpPEHHs OynbOalloK y piauHi
Ha TiApodoOHIi MOBEpXHI HyKJeallis 3HAUHO MOCUIIOEThCS. DAKTUYHO, Y IbOMY
BUMAJKy ICHYBaHHS TBEPAO01 MOBEPXHI MPU3BOAUTH 0 3HAYHOTO 3MIMIECHHS CIIHOAAT]
70 MEHIIUX 3HAYeHb MEPEeCHYEHHsS IMOPIBHSIHO 3 TOMOTEHHOIO HYKJealli€lo, TOOTO
reTeporeHHa CIHOAAIb HAOMMXKA€eThCs J10 OiHOmali, a 00JacTh MeTacTaOlIbHOCTI
3BY)KY€ETBHCS 32 PaXyHOK PO3LIMPEHHS 001acTi HECTA0IBHOCTI.

6. Y moctomMy po3AuTl JOCTIHPKEHO TeTepOreHHa HYKIIeAlls y pecyisipHOMY
OinapHoMy po3uuni HA TUIOCKHX TBEpAMX NOoBepXHAX. [lokazaHo, 10 KOHTAKTHUH
KyT Ta KaTaTITUIHUA (DaKTOp HJIs TeTepOoreHHOi HyKJIeallli CTaloTh 3aJIeKHUMHU BiJ
CTYTMEHS MeTacTabUIbHOCTI (MepEeCUYCHHS ) pO3UKHY. Y BUIIAJKY YTBOPCHHS KJIacTEpiB
HOBOi (a3 Ha MOBEPXHI 3 HU3BKOIO 3MOUYBAHICTIO (KOHTAKTHHM KyT Ouibiie 90°)

KaTaJiTHYHA aKTHBHICTh TBEP/AOi IMOBEPXHI Mana. B anprepHaTHBHOMY BHITAJIKy
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BHCOKOI 3MO4YBaHOCTI (KOHTAaKTHUU KyT MeHIe 90°) iIHTeHCUBHICTh HyKJI€allli 3HAYHO
MIOCHITFOETHCSI TBEPJIOI0 TTOBEPXHEI0. TakuM YMHOM, y IIbOMY BHUIAJKY, K 1y piauHi
BaH nep Baanbca, rereporeHHa cmiHOAaJb HaOMWXKaeTbesl N0 OlHOAAm, a 00JacTh
METacTabUIbHOCTI 3BYKYETHCS 32 PAXYHOK PO3LIMPEHHS 001acTli HECTAO0IbHOCTI.

7. Y choMOMY pO3IiTi TOCHTIIKEHO TEeTepOoreHHa HyKJeallis (KOHAeHcallis)
Kparenab piauHu 3 napu (ra3y) Ha aedexTHid TBepzid moBepxHi. [lapa omucyeThes
pisHanHAM cmaHy ean Oep Baanvca, sx moBepxHeBHUU AedeKT oOpaHa KOHIYHA
nopa. Iloka3zaHo, 110 KOHTAaKTHMM KyT Ta KaTallTHUYHUNA (akTop ans Hykieaii
Ha JIe)eKTHIM MOBEpPXHI 3ajexarb BiJi CTYNEHS IEPEOXOJIOMKEHHs mapu. Y pasi
YTBOPEHHS Kpaneyib Ha T1ApoQiIbHIN MOBEPXHI KOHIYHOI MOPH MIBUAKICTH HYKJearlii
3HAYHO 301IBIITYETHCS TIOPIBHSAHO 3 KOHACHCAIIIEI0 HA IUIaHAPHIN moBepxHi. HasBHICTH
nedexty Ha TiApodUIbHIA MOBEPXHI MPU3BOAUTH 10 3HAYHOTO 3CYBY CIIHOAAII
MOPIBHSHO 3 TETEPOreHHOI HYKJICAI[IEI0 HA TUIAHApHIN MOBepXHi. 31 3MEHIICHHSIM
KyTa KOHyCa MOpHU Te€TepOreHHa CHIHOJaMb HaOMMXKaeThca A0 OlHOMaml, 1 00JacThb
METACTAa0UTBHOCTI 3BY)KYETHCS 32 PaxXyHOK PO3MIUPEHHsI 007acTi HEeCTaOUTLHOCTI,
MOKa3aHO TaKOX, 110 1CHY€ TPAHUYHUN KyT KOHYCa TIOPH, MEHIIE SIKOTO (pOpMyBaHHS
HOBOI (hazu mpoxoauTh 0e30ap’epHO.

8. Y BoCbMOMY pO3/iiIl JOCHIIKEHa TeTeporeHHa HyKJIeallisi KiacTepiB HOBOi
basu B pezynsipHomy bOinapnomy po3yuni Ha ePEKTHIN TBepAid MOBEpXHI, 1 TaK, SK
1 B TIOTIepeTHBOMY PO3ALTi, K MedeKT MmoBepxHi oOpaHa KoHIuHA Topa. Po3paxoBana
IIBUIKICTh HYKJeallii Kiactepa HOBOi (a3u y 3aJeKHOCTI BiJl KyTa KOHyca TOpH 1
CTYIICHS TIEPECUYCHHS PO3YUHY.

9. V neB’siToMy po3aili TEOPETUYHO JOCTIIKEHO MPOLIEC 3aKUIAHHSA PTYTI y
IMITyJIbCHUX JIPKEpenaxX HEUTPOHIB, 110 MPaLOI0Th Ha peakiii ckoatoBaHHs (Spallation
Neutron Source). [Ipu agcopOyBaHHI MPOTOHHOTO MyYKa PTYTh IMiIJAETHCS BEITUKAM
TePMIYHUM yaapaMm Ta yaapaMm THCKY. Lli JlokambHi 3MIHM CTaHy PTYTI MOXYTh
CIIPUYMHUTH YTBOPEHHS B PIJIMHI HECTAOUIbHUX OyJIbO0AIOK, SIKI MOXKYTh IMOUTKOJIUTH

opu iX KaBiTalli KOHCTPYKLIMHI Marepiainu (CTiHKa Tpyou). Y gaHOMy pO3ILIl



obuucieHa podota GopMyBaHHS KPUTHUHUX KIacTepiB (MIKpOOyIpOAIIOK mapu pTyTi)
Ta MBHJKICTH iX 3apokeHHs. [Toka3aHo, M0 MBUAKICTh TOMOTCHHOTO 3apO/KEHHS
Jy’KE€ HU3bKa MPHU PO3NIAHYTUX YMOBAax IMPOLECY HaBITh MICHS afcopOIii JEeKUIbKOX
IMITyJIbCIB MPOTOHIB, TOMY WMOBIPHICTh KaBITAI[IHHUX MPOIECIB HE3HAYHA.

10. ¥V necaromy po3ziii IpoBEAEHO TEOPETHUHUN aHAII3 TIPOIIECY 3apOKEHHS
MOPH Y MaJTMX 3pa3Kax MePeoX0I0HKEHOT IIOTICUIHOT PIAMHY Y TIPOIIeCi KprucTaizarii
NOBEpXHEBOTO Mapy 3paska. OOuncieHa pobora (GopMyBaHHS MOPU KPUTUUHOTO
pO3MIpy B 3aJIEKHOCTI BiJI HEIAaTUBHOIO THUCKY Ta 4ac OYIKYBAaHHS NEPILIOTO KpHU-
TUYHOTO 3apojka (IMOpH) B MPOLECi 3pOCTaHHS KPHUCTAIIYHOTO IIapy Ha MOBEPXHI
3pa3ka. AHali3 I[bOTO MPOIIECY 3 TOUYKHU 30py KJIACUYHOI Teopii HyKJjealli 1a€e siKiCHO
MPaBUJILHUM PE3YJIBTaT, OJHAK KIJIbKICHO TEOPETHUYHI OI[IHKU Ta eKCIIepUMEHTaIbHI
naHl Biapi3HstoThes. [lokazaHo, mio y3aranpHeHud miaxia ['1060ca mpuBOIUTH A0
KiJTbKICHO TPaBUJIIBHOTO OIMHCY TPOIECY 3apO/DKEHHS TMOpPU y TIEPEOXONIOKEHOT
JIOTICUIHOT PIIMHH 1 JIO3BOJIMB TOSICHUTH TMOXOMKEHHS BHYTPITpaHYISPHIX I, IO
YTBOPIOIOTHCS TPU CITIKaHHI KEPaMIKH.

Pe3ynbsraru mociigkeHb JOTOBHIOIOTH 1 PO3IIMPIOIOTH HAsIBHI YSBJICHHS TIPO
MexaHi3MH (ha30BHX MEPEXO/IiB MepIIoro poay. BoHu BU3HAual0Th KIHETUKY MPOLIECIB
CaMOCTPYKTYpYBaHHSI PEYOBHMHU BiJ HAHOPO3MIPHHUX 0 TaJlaKTUYHUX PO3MIPIB 13
ITUPOKUM CIEKTPOM 3aCTOCYBaHb SIK Y (PyHIaMEHTATbHUX, TaK 1 B TMPHUKIATHUX
nociipkeHHsX ((i3uka, acTpoHOMIs, Ximis, O10J0TisS, METEOpOJIOTis, MEIUIIMHA,
MaTepiaso3HAaBCTBO) Ta TEXHOJIOTIT — KOHJIEHCAIIS Ta KUIIIHHS, CEerperaiis y TBEpIux
Ta PIAKUX pO3uMHAx, ab0o KpuUCcTajizailis Ta ruiaBieHHs. [{ociipkeHHs, MpoBeIeH1
B JMcepTalli, € akTyalbHUMH Ta MaloTh K (pyHAaMeHTalbHE, TaKk 1 MNPUKIIATHE
3HAYCHHS.
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ABSTRACT

Abyzov A. S. Generalised Gibbs’ approach in nucleation theory. — Qualification
scientific paper, manuscript.

Thesis for a Doctoral Degree in Physics and Mathematics: Speciality
01.04.02 “Theoretical physics” (104 — Physics and Astronomy). — A. I. Akhiezer
Institute for Theoretical Physics, National Science Center “Kharkiv Institute of
Physics and Technology” NAS of Ukraine, Kharkiv, 2021.

In the interpretation of experimental results on the dynamics of first-order
phase transitions starting from metastable initial states, up to now, predominantly the
classical nucleation theory is employed treating the respective processes in terms of
cluster formation and growth. As a simplifying assumption, it is assumed frequently
that the bulk properties of the clusters are widely similar to the properties of the newly
evolving macroscopic phases. This or similar assumptions, underlying the classical
approach, are supported (at least, as far as processes of formation of condensed
phases are analyzed) by the results of Gibbs’ classical theory of heterogeneous
systems applied to processes of critical cluster formation. Treating the clusters as
small particles with properties of the newly evolving macroscopic phase, the process
of cluster growth and dissolution is considered to proceed basically via addition or
emission of single units (atoms, molecules). As a second additional thermodynamic
assumption, the interfacial specific energy of critical clusters is supposed in a first
approximation to be equal to the respective value for an equilibrium coexistence
of both phases at planar interfaces. The alternative continuum’s concept of the
description of the thermodynamics of heterogeneous systems, as developed by van
der Waals, has been applied for the first time to an analysis of nucleation by Hillert,
Cahn and Hilliard. They came, in particular, to the conclusion that the bulk state
parameters of the critical clusters may deviate considerably from the respective

values of the evolving macrophases and from the predictions of Gibbs’ theory.
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Moreover, the mentioned authors developed also as the alternative to the theoretical
description of nucleation — the model of spinodal decomposition. According to the
common belief (having again its origin in the classical analysis due to Gibbs), the
nucleation-growth model works for the description of phase formation starting from
metastable initial states, while thermodynamically unstable states are believed to
decay via spinodal decomposition. As one consequence, the problem arises as to
how one mode of transition (nucleation-growth) goes over into the alternative one
(spinodal decomposition) if the state of the ambient phase is changed continuously
from metastable to unstable states, i.e., how the transition proceeds in the vicinity
of the classical spinodal curve. The classical Gibbs’ approach predicts here some
kind of singular behavior, which is, however, not confirmed by the Cahn-Hilliard
description, statistical-mechanical model analyses and experiment. The resolution
of this contradiction is performed following a generalization of Gibbs’ classical
thermodynamic method. The results of this generalization are presented in the
dissertation for homogeneous (sections 1-4, 9, 10) and heterogeneous (sections 6-
8) nucleation of a new phase on the example of binary regular solution (sections
1-4, 6, 8), van der Waals fluid (sections 5, 7), liquid mercury during proton beam
adsorption (section 9) and pore formation in the stretched diopside melt (section 10).

1. In the first section, the generalized Gibbs method is developed for the
nucleation of a new phase in a simple model of a regular binary solution. The
evolution path of the cluster in terms of size and composition is determined by the
method of the fastest descent on the hypersurface of the thermodynamic potential,
taking into account thermodynamic and kinetic factors. According to this analysis, the
change in the size and composition of the clusters of the new phase are qualitatively
different compared to the classical picture. It is shown that nucleation, i.e. the first
stage of cluster formation, starting from metastable initial states, exhibits properties
resembling spinodal decay: initially the cluster size remains almost constant, and

its composition changes, although the presence of an activation barrier distinguishes
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the nucleation process from true spinodal decay. In addition, it is shown that the
formation of phases in both metastable and unstable initial states near the classical
spinodal can occur through the passage of the ridge of thermodynamic potential,
1.e. through some activation barrier, despite the fact that for unstable initial states
the value of critical cluster formation, which corresponds to the saddle point of the
thermodynamic potential, is zero. Thus, it is shown that the concept of nucleation — in
a modified form compared to the classical picture — may also be suitable for analyzing
the process of formation of a new phase in an unstable initial state, i.e., in contrast to
the classical Gibbs approach, the generalized Gibbs method describes the formation
of a new phases for both binodal and spinodal regions of the phase diagram. The main
result, which is of practical importance, is that the work of formation of a cluster of
critical size in the generalized Gibbs approach is smaller than in the classical theory
of nucleation in the capillary approximation, and decreases to zero on the spinodal.
2. In the second section, the main features of spinodal decay, on the one hand,
and nucleation, on the other, and the transition between the two mechanisms are
analyzed in a thermodynamic cluster model based on the generalized Gibbs approach
in the model of regular binary solution. In this case, the clusters of the new phase can
change over time, both in size and in their intensive state parameters — for example,
density or composition. The first part of the analysis considers the processes of
formation of a new phase depending on the initial state of the system for the case
when the change of environmental parameters due to the evolution of clusters can be
neglected (this is possible if the fraction of the new phase is small). The next step
analyzes the impact of changes in environmental parameters on the evolution of the
cluster. The consequences of such a change are important both for the analysis of
phase formation in limited (nanoscale) systems and for understanding the evolution
of cluster ensembles in large (infinite) systems. It is shown that nucleation processes,
starting from thermodynamically metastable initial states, proceed qualitatively to a

large extent similar to the process of formation of a new phase by the mechanism of
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spinodal decay. This similarity is especially noticeable when considering an unstable
system of small size. In this case, the evolution of the system begins by the mechanism
of spinodal decay, but due to the growth of clusters, the supersaturation decreases,
the system becomes metastable. Finally, supersaturation decreases to such an extent
that the dissolution of clusters with smaller sizes becomes a necessary condition for
the growth of larger clusters, and the coalescence stage begins. Thus, the approach
allows us to describe the evolution of the system from spinodal decay to the stage of
coalescence.

3. In the first and second sections, the analysis was performed by the method of
the fastest descent on the hypersurface of the thermodynamic potential, which gives
only the main path of evolution of the cluster in size and composition. In the third
section, a more detailed analysis is performed using numerical simulations based on
the kinetic model of nucleation, the thermodynamics of cluster formation is analyzed
based on the generalized Gibbs method for the regular binary solution model. As
a result, we analyzed the evolution of the cluster distribution function by size and
composition for both metastable (nucleation) and unstable (spinodal decay) initial
states. The calculated flux of new phase clusters in the space of size shows that the
maximum flux can pass not only through the saddle point, but also through the ridge
of the hypersurface of the thermodynamic potential.

4. In the fourth section, using the numerical simulation based on cluster
dynamics in binary regular solution, the most probable flux of clusters of the new
phase in the size space i1s determined, depending on the initial supersaturation. It is
shown that three regions can be distinguished depending on the degree of system
instability. In the first region, with a small value of supersaturation, the results of the
classical nucleation theory based on the capillary approximation and the generalized
Gibbs approach are almost identical, the maximum flux of new phase clusters in the
size space passes through the saddle point. In the second region, with a higher value

of supersaturation, the work of a cluster of a new phase formation is significantly
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less than in the classical theory of nucleation, which leads to a significantly higher
value of the nucleation rate. The maximum flux in the size space, as well as in the first
area, passes mainly through a saddle. In the first and second regions, simple analytical
expressions can be used to calculate the nucleation rate through the activation barrier.
In the third region, near the spinodal, nucleation will take place not through the
saddle point, but through a trajectory passing through the ridge of the hypersurface of
thermodynamic potential. The calculation of the nucleation rate in the third region is
possible only via numerical simulations based on cluster dynamics.

5. The fifth section the heterogeneous nucleation of new phase clusters
(condensation and boiling) on flat solid surfaces taking into account the change in the
state parameters of critical clusters (droplets or bubbles) depending on supersaturation
within the framework of the generalized Gibbs approach is analysed. The one-
component van der Waals fluid was chosen as a model for the analysis of the
main characteristics of the process. It is shown, that in the case of the formation
of a droplet in supersaturated vapor on a hydrophobic surface and the formation of
bubbles in a liquid on a hydrophilic surface, the effect of heterogeneity is insignificant.
In alternative cases of droplet condensation on the hydrophilic surface and the
formation of bubbles in the liquid on the hydrophobic surface, the nucleation is
significantly increased. In fact, in this case, the existence of a solid surface leads to a
significant shift of the spinodal to smaller saturation values compared to homogeneous
nucleation, i.e. heterogeneous spinodal approaches the binodal, and the metastability
region shrinks due to the expansion of the instability region.

6. In the sixth section, heterogeneous nucleation in a regular binary solution on
flat solid surfaces is investigated. It is shown that the contact angle and the catalytic
factor for heterogeneous nucleation become dependent on the degree of metastability
(supersaturation) of the solution. In the case of the formation of new phase clusters on
a surface with low wettability (contact angle greater than 90°), the catalytic activity

of the solid surface was low. In the alternative case of high wettability (contact angle
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less than 90°), the intensity of nucleation is significantly increased by a solid surface.
Thus, in this case, as in the case of van der Waals fluid, the heterogeneous spinodal
approaches the binodal, and the region of metastability narrows due to the expansion
of the region of instability.

7. In the seventh section, heterogeneous nucleation (condensation) of liquid
droplets from vapor (gas) on a defective solid surface is considered. The vapor is
described by the van der Waals equation of state, as a surface defect, a conic void is
taken. It 1s shown that contact angle and catalytic factor for heterogeneous nucleation
on a rough surface depend on the degree of vapor overcooling. In case of droplet
formation on a hydrophilic surface of a conic void the nucleation rate considerably
increases in comparison with the condensation on a planar interface. The presence
of a defect on the hydrophilic surface leads to a considerable shift of the spinodal
towards lower supersaturation in comparison with heterogeneous nucleation on a
planar interface. With the decrease in the void cone angle the heterogeneous spinodal
approaches the binodal, and the region of metastability is diminished at the expense
of the instability region.

8. In the eighth section the heterogeneous nucleation of new phase clusters
in regular solution on a defective solid surface is investigated, as in the previous
section, a conical pore is selected as a surface defect. The nucleation rate of the new
phase cluster is calculated depending on the angle of the pore cone and the degree of
supersaturation of the solution.

9. The ninth section theoretically investigates the boiling process of liquid
mercury in pulsed neutron sources operating on the spallation reaction (Spallation
Neutron Source). During the adsorption of a proton beam, liquid mercury is subjected
to large thermal and pressure shocks. These local changes in the state of mercury can
cause the formation of unstable bubbles in the liquid, which can damage the cavitation
structural materials (pipe wall). The work of critical clusters formation (microbubbles

of mercury vapor) and their nucleation rate are calculated. It is shown that the rate
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of homogeneous nucleation is very low under the considered process conditions even
after adsorption of several proton pulses, so the probability of cavitation processes is
insignificant.

10. In the tenth section, a theoretical analysis is performed of the process of
nucleation of a pore in small samples of an under-cooled diopside liquid, enclosed by a
solid crystalline surface layer growing from the melt. Analysis of this process from the
point of view of the classical theory of nucleation gives a qualitatively correct result,
however, quantitatively, theoretical estimates performed in the framework of classical
nucleation theory and experimental data differ. It is shown here that the generalized
Gibbs approach results in a more adequate quantitatively correct description of the
process of pore nucleation and explains the formation of intragranular residual pores
during ceramic sintering.

The results of the research complement and expand the existing ideas about
the mechanisms of the first-order phase transitions. They determine the kinetics of
the processes of self-structuring of matter from nanoscale to galactic size with a
wide range of applications in both basic and applied research (physics, astronomy,
chemistry, biology, meteorology, medicine, materials science) and technology —
condensation and boiling, segregation in solids and liquid solutions, or crystallization
and melting. The research performed in the dissertation is relevant and has both
fundamental and applied significance.

Key words: Nucleation; Gibbs theory; Heterogeneous nucleation;
Thermodynamics of nucleation; Spinodal decomposition; General theory and
computer simulations of nucleation; General theory of phase transitions; Rough

surface; Surface tension.
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BCTYII

OO0rpyHTyBaHHsI BUOOpPY TeMH jaocjifkeHHs. [Ipornecu Hykmearii-pocTy Ta
CHIHOJAJIFHOTO pO3MaJy € JBOMa OCHOBHMMH MeXaHi3MaMH (a30BUX TEPEXOdiB
NEPILIOTO POy, TAKUX SIK KOHJICHCAIllsl Ta KUIIHHS, CErperaiis y TBepIuX Ta PiIKux
po3uMHax, abo KpucTami3alis Ta IUlaBieHHs. BOHUM BU3HAual0Th KIHETHUKY IMPOIIECIB
CaMOCTPYKTYpPYBaHHSI PEYOBHMHU BlJ HAHOPO3MIPHHUX 0 TaJlaKTUYHUX PO3MIPIB 13
IMIUPOKAM CTIEKTPOM 3aCTOCYBaHb SK y (DyHIAMEHTAIBHHMX, TaK 1 B TPHUKIATHAX
nociimkeHHsX ((i3uka, acTpoHOMIs, Ximis, O10J0TisS, METEOpOJIOTis, MEIUIIMHA,
MaTepiasgo3HaBCTBO) Ta TEXHOJIOTII.

[Ipu iHTepnpeTanii ekcriepuMeHTaIbHUX PE3yJbTaTiB MO AUHaAMIll (a30BHX
MEepeXo/IiB MEPIIOro MOPSIKY, MOYMHAIOUMA 3 METAcTabUIbHUX MOYaTKOBUX CTaHIB,
JIOC1 3aCTOCOBYETHCS MEPEBAKHO KJIACMYHA TEOpPis HYyKJIealll 10 TPaKTye BIIIO-
BITHUHN Tporiec 3 TOYKH 30py (opmyBanHs Ta pocty kiactepiB [1-10]. Sx mie
OJIHE CIIPOIICHHS SK MPABHJIO MPHUITYCKAETHCS, IO 00’€MHI BIACTHBOCTI KJIAcTepiB
cx0ki1 3 BracTuBocTsAIMU Makpoda3z [11]. Ile abo momiOHI mpuUNyIIeHHS, 110 JIEKAaTh
B OCHOBI KJACUYHOIO MIAXOMY, MIATPUMYIOThCS (MPUHANMHI, SKIIO aHATI3yHThCS
npoiiecu (popMyBaHHsI KOHIEHCOBaHUX (ha3) pe3yapTaraMu Kiacu4Hoi Teopii ['100ca
TeTepOTEHHUX CHUCTEM, sIKa 3aCTOCOBYETHCS IO MPOIECIB (POPMYBaHHS KPUTUIHOTO
kiacrepa. Posmismaroun kiactepu sIK JIpiOHI YaCTHHKH 3 BJIACTMBOCTSAMH HOBOI
MaKpOCKOMIUHO1 (a3u, BBAXKAETHCSA, IO TMPOIEC POCTY 1 PO3UMHEHHS Kjactepa
BiJIOYBAa€THCS B OCHOBHOMY 3a PaxXyHOK J0JaBaHHS ab00 BUIIPOMIHIOBAHHS OKPEMHUX
onuHuUllb (aToMiB, Mosiekyn) [1,3,8,9]. Sk apyre nogarkoBe TEPMOJUHAMIUHE TIPUITY-
IICHHSI TIepe0aYaeThes, MO B MEPIIOMY HAOMMKEHHI MiK(pa3Ha €HepTisl KPUTHIHUX
KJIACTEPIiB JOPIBHIOE BIAMOBIAHOMY 3HAYEHHIO JJIsl PIBHOBAXKHOTO CITIBICHYBaHHS 000X
¢a3 13 mIockoro rpanuieto [8].

AnbpTepHaTHBHA KOHTHHYaJIbHa KOHIICTIIIS ONKCY TEPMOIUHAMIKH T'eTEPOTCH-

HUX CHUCTEM, po3pobiieHa BaH nep Baanbcom [12], Bmepmie Oyna 3acTocoBaHa 0
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aHajizy mpoIeciB HykJeamii-pocty XuteptoM, Kanom 1 Ximmiapaom [13-15], sxi
JIUIIIA BUCHOBKY, 11O IMapaMeTpu 00’ €MHOTO CTaHy KPUTHYHHUX KJIACTEPIB MOXKYTh
3HAYHO BIJPI3HATUCS BIJ BIANOBIJHUX 3HAY€Hb Makpogas, MO0 nepeadadaroThCs y
teopii ['1060ca (111 pe3ynbTaTu miaxoAy BaH Jep Baanbca Oynu migTBepakeH1 3rofoM
OUTBbIl TOCKOHAMUM MeTonoM (yHkiioHana ryctunu [16]). Kpim Ttoro, 3ramani
aBTOPHU TAKOXK PO3POOMIIN AJIbTEPHATUBY TEOPETUYHOMY OIUCY HYKJeallli — MOJEIb
CHIHOAAIBLHOTO PO3May.

3araqbHOBU3HAHO (Marud B OCHOBI KjacMyHuM anHami3 [166ca), 1mo Mozaenb
HyKJIealii-pocty onucye (opmyBaHHs (a3, MOYMHAIOUM 3 METacTaOLIbHUX IO4a-
TKOBUX CTaHIB, TOAI SK MOJENb CINHOAAIBHOTO PO3IAIy OIKCYE TEPMOIUHAMITHO
HECTINKI CTaHU. SIK HACIIIOK, BUHUKAE MPoOIeMa, sIK OJUH PeKUM (HYKJIealis-pocT)
NIEPEXOJNTh B AJIETCPHATUBHUN (CITIHOAAIBHHUIA PO3Maj), SKIIO CTaH (a3u HaBKOJIU-
ITHBOTO CEPEIOBUIIA OE3MEPEPBHO 3MIHIOETHCS BiJl METACTAOUIBHUX /10 HECTAOLTLHUX
CTaHiB, TOOTO MOOIM3Y KJIACUYHOI CHIHOMANbHOI KpuBoi. Knacuunuit miaxin ['i00ca
TYyT mepeadadae MEBHY CHHTYISIPHY IOBEIIHKY, SKa, OJHAK, HE MIATBEPKYETHCS
onmucom Kana—Ximmiapnaa, aHami3oM Yy CTaTMCTHKO-MexaHIuHIA mozemi [17, 18] Ta
ekcriepuMenToM [19].

[lepma crpoba ycyHYTH OpOTHpIYYsl B MPOTHO3aX JIBOX YCTAJICHUX TeOpid
Oyna 3pobnena B mozen Illaiina-Xo6cterrepa [20,21] 1948-1952 pokiB (auBuUCH
TakoX [22]), sika, OHAK, HE OTpUMaJia PO3BUTKY B PE3yJbTaTI MOSIBU HE3a0apoM Teopii
criiHoasibHOTO po3nany Kana—Ximmapaa [14,15]).

3nayno mi3Hime ixei moxeni Illaiina-XoOcterTepa Oynu BIAKPUTI 3aHOBO
32 JIONOMOIOI0 y3arajibHEHHS KJIACMYHOIO TEepMOAMHAMIYHOro Merony ['100ca B
poborax [23-26] Ta Oynau 3HAUYHO PO3BUHEHI B myOmikamisx 3100yBada [27-36],
10 CTAHOBJSTH OCHOBY JMCEpTaIliiHOT poOOTH. 30KpeMa, pe3yabTaTh TAKOTO y3a-
raJbHEHHS TIPEACTaBJICHI IS TOMOTCHHOI Ta TeTepOreHHOi HykJearlii HOBoOi (a3u
Ha TpUKIaal OIHAPHOTO PETyISIPHOTO PO3UMHY, PIAMHU BaH Jep Baanbca, piakoi

PTYTI npu ajgcopOyBaHHI IPOTOHHOIO IMy4YKa Ta CTBOPEHHS MOPH IpPHU KpUCTami3auii



29

posmasi mionicuay. I[lokazaHo, 110 3apopkeHHs, TOOTO mepiia cTajis (popMyBaHHS
KJIacTepa, MOYMHAIOYU 3 METACTaOUIbHUX MMOYATKOBHMX CTaHIB, BUSBIISE BIACTHUBOCTI,
IO HaragyloTh CHIHOAAJBHUN pO3MaaA: CIOYATKy pPO3MIp KiacTepa 3alUIIa€ThCs
Maike TOCTIMHUM, a HOTO CKJIaJl 3MIHIOETHCS, 1 TIJIBKH ITICIISI TOTO, SIK CKJIaJ KjlacTepa
JIOCSITHE JIEAKOTO KPUTHUYHOTO 3HAYCHHS, MOro po3Mip MOYMHAE 3POCTATH, XOua
HasSIBHICTh aKTUBAIIHHOTO Oap’epy BIAPI3HSIE MPOIIEC 3apPOHKEHHS BiJ CIPABKHBOTO
criHomanpHOTO po3nany. KpiMm Toro, mokasaHo, 1o yTBopeHHs ¢a3 K y MeTacTadiib-
HUX, TaK 1 HECTAOLIbHUX IMOYATKOBUX CTaHaX MOOJW3Y KIIACHMYHOI CIIHOJAIl MOXKE
MPOTIKATH Yepe3 MPOXOMKEHHs XpeOTa TePMOJMHAMIYHOTO MOTEHIIIAy, TOOTO Yepes
NeSKUN aKTHBAIlIMHUKA O6ap’ep, HE3BAXKAIOUM HA T, IO JI HeCTaOUIPHUX MOYaTKOBUX
CTaHIB 3HAYCHHS pOOOTH (POPMYBaHHS KPUTUIHOTO KJIacTepa, 10 BiAMOBIIAE C1AJI0OBOT
TOYI[l TEPMOAMHAMIYHOIO MOTEHIIIATY, JOPIBHIOE HYII0. TakuM 4YMHOM, TOKa3aHo, 1110
KOHLIETILIISI HyKJIealii — B MOAU(IKOBaHIN (OopMI MOPIBHSIHO 3 KIACUYHOIO KAPTUHOIO —
MOXE TakoK OyTH MNPHUIATHOIO ISl aHAJi3y NpolleCy YTBOPEHHST HOBOI ¢dazu y
HECTaOlTbHOMY TOYaTKOBOMY CTaHi, TOOTO, Ha BIAMIHY BiJl KJIACHYHOTO ITiIXOMY
['i66ca, y3aranmpHenuidt Meron ['10606ca mae ommc ¢dopmyBaHHS HOBOI (ha3u sK IJIs
O1HOJIANIBHOI, TaK 1 JUIs CIMIHOJAIBHOI IUISHOK (Da30BoOi JilarpamMu. Takok MOKa3aHo,
110 IPY aHaJli31 FeTepOreH i HyKJiealii HOBO1 a3y B y3arajibHeHOMY miaxoxl ['166ca
KOHTAaKTHHIM KyT 1 KaTtaliTU4yHuUU (akTop ((PakTop 3MEHIIEHHS POOOTH YTBOPEHHS
KJIacTepa KPUTUYHOTO PO3MIPY 3a PaxyHOK TBEPHIOi MOBEPXHI) CTAIOTh 3aJICKHUMHU
BiJI CTYIIEHSI METACTa0lILHOCTI (TIepeCcUUYeHHs, TIePEOXOIOKEHHS a00 TeperpiBaHHs)
cuctemu. Came 11€ KOJIO JOCITIIHKEeHb, SIKE BXE BiJIoOMe y CBITOBIN jiTeparypi [37-39]
sk y3arajabHeHuil miaxin I'i66ca (Generalized Gibbs Approach, GGA), poobuts Temy
JUcepTallii aKTyaJabHOI).

Merta i 3aBaanHs aocjiakeHHs. OCHOBHaA MeTa JIMUCEPTAIHOT Tparli moJisrae
y BHUABIICHHI cHenu@IuHuX OCOOJMBOCTEH mpolieciB (GopMyBaHHS HOBOi (a3u B
y3aeanvHenomy nioxooi 1'ivboca.

JUJis JOCSITHEHHS TIOCTaBJIEHOI METH OyJ10 C(hOPMYJIbOBAHO TaKl 3aB/IaHHSA:
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e 1o0yayBaTu meopito HyKleayii B y3arajabHeHOMY miaxoni ['160ca 3 ypaxy-
BaHHSIM pi3HUX Koe@iyicnmie Ougy3ii KOMIIOHEHTIB PETyIspHOTO PO3YUHY, TPOBECTH
aHaii3 EeBOJIIOLII KjacTepa HOBOI (a3 3a pO3MIPOM Ta CKIAJOM 3 ypaxXyBaHHSIM

TEPMOJIMHAMIYHUX Ta KIHETUUYHUX (PAKTOPIB;

® JIOCIIIUTHA OCOOIMBOCTI Ta 3B 30K MIXK MEXaHI3MaMU HyK1eayii, 3 OJHOTO
00Ky, Ta cniHodanbHo20 po3nady, 3 THIIIOTO, HA OCHOBI y3araibHeHOTO MeTomy ['100ca

y MOJICJI PETYJISIPHOTO O1HAPHOTO PO3YHHY;

e 100yayBaTH KIHETHYHY TEOPI0 HYyKIealii IJjsi peryaspHOro OiHApHOTO
pO3UWHY, JI¢ TepPMOJMHAMIKA YTBOPEHHS KIIACTEPiB (POPMYIIOETHCS HAa OCHOBI y3a-

rajgpbHeHoro metoay ['160ca;

e 100y/ayBaTu TEOPIIO cemepoceHHOl HyKleayii Ha TIIIOCKIN TBEp/ii MOBEPXHI
y MOJIEJISIX OJIHOKOMIIOHEHTHOI PiAMHU BaH Jiep Baanbca Ta perynspHoro 6iHapHOTO

PO34YMHY 3 ypaxXyBaHHSIM 3aJIKHOCTI KyTa 3MOUyBaHHsI BiJl TapaMeTpiB KJlacTepa;

e 100yayBaTU TEOPIIO cemepoceHHOI HyKeayii Ha Oeghekmax TBEPAOi MOBEPX-
HI y MOJIEJISIX OJJTHOKOMITOHEHTHOI P1AMHU BaH jep Baanbca Ta perynspHoro 6iHapHOTo

PO3YMHY 3 ypaxyBaHHSM 3aJICKHOCTI KyTa 3MOYYBaHHS BiJl MapaMeTpiB KIacTepa;

® JIOCIIIUTH TPOIEC 3aKUTAHHS PTYTI B IMIYJIBCHHUX JDKEpEIax HEHUTpPOHIB,
10 TPaIlo0Th Ha peakilii ckomoBanHs (Spallation Neutron Source), npu aacopOy-

BaHHI MPOTOHHOTO My4YKa Ha OCHOBI y3arajbHeHOro MeToay ['100ca;

® [IPOBECTH TEOPETHUUHUN aHATI3 IPOIECY 3aPOKEHHS TOPU B MAJIMX 3pa3zKax
MEePEOXO0JIOKEHOT AIOTICUAHOI PIIMHM Y MPOIECi KpUCTali3allii MOBEpXHEBOIO LIapy
3pa3ka Ha OCHOBI y3arajibHeHoro merony ['166ca.

06 ’ekmom docniddcenns € miporiec GopMyBaHHS HOBOI a3y y METaCTaOUIbHIM
a00 HecTabUIbHIN (ITepeCcHUCHOl, MePEOX0IOMKEHOI a00 TIEPerpiToi) CUCTEMI.

IIpeomemom OocniddcenHss € TapamMeTpu TIporecy Hykiealii HOBO1 (a3u:
IIBUJIKICTh HYKJI€allii, poOoTa CTBOPIOBAHHSI, pO3MIp Ta CKJaj (TyCTHHA) KilacTepa
KPUTUYHOTO PO3MIpy, PYHKIIISI pO3NOALTY KiIacTepiB HOBOI (ha3u 3a pO3MIPOM.

Memoo Oocnioscenns. JIns BUpIIEHHS MOCTABICHUX Y AMCEPTALlil 3a7a4 Oyiu
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BUKOPHUCTaHI 3arajibHONPUUHATI Ta J00pe MepeBipeHi METOAM TEOPETUYHOI (Pi3UKH:
METOJM AHAJIITUYHOTO Ta YUCEIBHOTO PIIIEHHS HEMHIMHUX audepeHIialbHIuX piB-
HSHb, METOJ] HAWIIIBHUIIIIOTO CITyCKY, YMCEJIbHE PIIICHHS CHCTEMH KIHETHYHUX PiBHSIHB
KJIACTEPHOI AMHAMIKH JIsl PYHKIIT pO3HOALTY KJIACTEPIB 32 PO3MIPOM.

HaykoBa HOBHU3HA OTPUMAHUX Pe3yJIbTATIB

[ToGynoBana HOBa Teopist HyKJIeallil, y3aeanvHenuti memoo Iibbca, sika, Ha Bij-
MIHY BIJ] KJJACUYHOI TeOpii HyKJIeallii, 1[a€ MOXKJIMBICTh aHaJI3y MPOLECY YTBOPEHHS
HOBO1 (ha3u y HEeCTaOUILHOMY IMOYATKOBOMY CTaH1 MOOIU3Y KIACUYHOI CniHOOAi, B
paMKax sIKoi 3100yTO HACTYIIHI Pe3yJbTaTH:

e [I0Ka3aHO, IO 3apOJKEHHs, TOOTO TepIna cTajis (opMyBaHHS KiacTepa,
NOYMHAIOYH 3 METACTa0lTbHUX TIOYaTKOBHX CTaHIB, BUSBIISE BIACTUBOCTI, 1110 HAraIy-
I0Th CITIHOJAIBLHUN PO3IMaJ], X0ua HABHICTh aKTUBAIIMHOTO 0ap’epy BiAPI3HSE MPOIEC

3apOKEHHS B1J] CIIPABKHBOTO CHIHOIAILHOTO PO3Naay;

® [I0Ka3aHO, 10 YTBOPEHHS (a3 y HeCTaOUIbHUX MOYATKOBUX CTaHAX MOOIU3Y
KJIACUYHOI CniHOOANi MOXKE TIPOTIKATH 4Yepe3 ACSKUM axmueayitinuti oap’€p, He3Ba-
KAIOYU Ha Te, 110 Y IbOMY BHUMNAAKy 3Hau€HHs poOOTH (OpMYBaHHS KPUTUYHOTO
KJIacTepa, M0 BIAMOBIAAE CIAJIOBOI TOUINl TEPMOIMHAMIYHOTO TIOTEHITIATY, TOPIBHIOE
HYJTIO;

e TiependadeHO ehekm 3MeHUeHHS Kyma 3MOUYB8aHHs, 1, TAKUM YMHOM, 301J1b-
IICHHS] KaTIITUYHOI aKTUBHOCTI MOBEPXHI Yy BUIIAJIKY 2emepoceHHOl HyKieayii Ha
TUTOCKIN TBEp/ii MOBEPXHI y MOAENAX OJHOKOMIIOHEHTHOI piIuHU BaH Jep Baanbca
Ta PETYISPHOrO OIHAPHOTO PO3ZUYHHY; PO3BUHYTO TEOPETHUUHUN OMHC LBOTO €EeKTy y
BUIIAJIKy YTBOPEHHS KJIAcTEpPiB HOBOI (Da3u Ha MOBEPXHI 3 HU3BKOIO (KOHTAKTHHUM KyT
outbiie 90°) Ta BUCOKOIO 3MOUYBaHICTIO (KOHTakTHHM KyT MeHie 90°), mokazaHo,
10 TeTePOTeHHA CITIHOJAAIL HaOIMKAEThCS 10 O1HOATI, a 00IacTh METacTa01IbHOCTI

3BYXKYETBCS 32 PaXyYHOK PO3IIUPEHHS 001acTi HECTAO1IbHOCTI;

® BIIEpIIE POIISHYTO €PEKTU 2emepoeHHol HyKieayii Ha deghexmax TBEPIOi

MOBEPXHI Y MOJENSIX OJHOKOMIIOHEHTHOI piIMHU BaH Jep Baanbca Ta perymsipHOro
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O1HApPHOTO PO3YMHY, MPOBEICHO MOPIBHSIHHS PE3yJbTaTIB KJIACHYHOT Teopii HyKIearrii
13 y3aeanohenum memooom 1i66ca, OTPUMAHO 3aJ€XKHICTh MMapaMeTpiB KPUTUUHOIO

KJIacTepa Ta IIBUJKOCTI HyKJealli BiJ CTyneHs Ae(eKTHOCTI MOBEPXHi;

® BIIEpIIE TCOPETUIHO AOCITIIHKEHO MPOIEC 3aKUITaHHS PIIKOT y IMITYJIbCHUX
JoKepeslax HeUTPOHIB, IO MPAIO0Th Ha peakilii ckoitoBaHHs (Spallation Neutron
Source), npu ancopOyBaHHI MPOTOHHOTO IMy4YKa, OTPUMAHO 3aJIEKHICTh IIBUIKOCTI

HYyKJI€allil Bl TEMIIepaTypu Ta TUCKY PTYTI;

e BIIEpUIE MPOBEICHO TEOPETUYHHUI aHaII3 MPOLECY 3apO/LKEHHS MOpU Y
MaJiux 3pa3Kkax [epeoXOoJIO/KEHOT MIONCHIHOI PIAMHU Yy TMpolecl KpucTaizalii
MMOBEPXHEBOTO APy 3pa3Ka, KUl JO3BOJIUB MOSCHUTH TTOXOKCHHS BHYTPIITHHOTPA-
HYJISIPHIX TP, 110 YTBOPIOKOTHCS MPH CITIKAHHI KePaMiKH.

IIpakTnyHe i HayKoBe 3HAYEHHSI OTPUMAHUX Pe3yJIbTATIB IOJSATaE B TOMY,
IO PEe3yJbTaTH JOCHIKEHb JOMOBHIOIOTH 1 PO3IIMPIOIOTH ICHYIOUl YSABIEHHS PO
MeXaHi3MH (Pa30BUX MEPEXO/IIB NEPIIOro poay. BoHM BU3HAUalOTh KIHETUKY MPOLIECIB
CaMOCTPYKTYpPYBaHHSI PEYOBHMHHU BlJ HAHOPO3MIPHHMX [0 TaJlAKTUYHUX PO3MIPIB 13
IIMPOKUM CIEKTPOM 3aCTOCYyBaHb SK y (yHIaMEHTAIbHHUX, TaK 1 B TPUKIAHUAX
nociipkeHHsx ((izuka, acTpoHOMIs, Ximis, O10J0TisI, METEOpOJIOTis, MEIUIINHA,
Marepiajo3HaBCTBO) Ta TEXHOJOTI — KOHJEHC ALl Ta KUIIHHS, Cerperamis y TBepIux
Ta PIAKUX PO3YMHAX, a00 KpUCTasi3alisl Ta IJIaBJICHHS.

OcoOucTnii BHecok 3100yBavya. HaykoBi pe3ynaprarv omyOJIiKOBaHI y CTar-
TsX [27-36], sIKi CTAaHOBIIATH OCHOBY JIMICEPTAIlii, TAKOXK PE3yJabTaTH JUCEPTaIlli 1o1a-
TKOBO BijoOpaxeHi y crartsax [40-50] 1 gomoBigaimcs Ha HayKOBUX KOH(EPEHIIIsX
[51-62]. [locTaHoBKa OUIBLIOCTI 3aJay, BUPIMIEHUX y JucepTalii, GopmMyiIroBaHHI
OCHOBHMX 1€ Ta METOAIB JOCIIJDKEHHS HaJeXHUTh 3700yBadyeBl, a TaKOX BIH
BUKOHYBaB yCl1 pO3paxyHKI 1 OpaB y4acTh y aHali31 pe3yJbTaTiB.

VY crarti [27] 3100yBaduem Oyli0 3alIpOIIOHOBAHO Memo0 HAUUBUOULO20 CHYCKY
Ha TINEPHOBEPXHI TEPMOAMHAMIUYHOTO TMOTEHIANy 3 ypaxXyBaHHSM KIHETHYHHX (pa-

KTOPIB JIsl JOCHIDKCHHST HyKJealii HOBO1 (a3u y Mojeli peryisipHoro O0iHapHOTo
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po3unHy. Y [28] 3m00yBadem Oylio 3ampONOHOBAHO 1 MPOBEIEHO aHaJi3 BILUIUBY
3MIiHM TapaMeTpiB CTaHy HABKOJMIIHHOTO CEPEOBHINA Ha EBOJIOIII0 KiacTepa. Y
crarTsax [29] 1 [30] 3moOyBauem Oyno MpOBEIECHO YKMCEIbHE MOJICIIOBAHHS HA OCHOBI
KIHETUYHOI TeOopii HyKJIealli JIsl peryaspHOro O1HApHOTO PO3YHHY, € TEPMOJIUHAMIKA
YTBOPEHHSI KJAcTepiB (OPMYIIOETHCS HA OCHOBI y3arajabHeHoro merony ['160ca.
3mo0yBauem Oyiia 3ampoIlOHOBaHA TIMOTE3a, M0 B y3arajJbHeHoOMY Mertoai ['100ca
KOHTAKTHHUH KyT 1 KaTamiTHuHu (aktop ((hakrop 3MeHIIEeHHS poOOTH YTBOPEHHS KJla-
cTepa HOBOI (pa3u KPUTUUHOIO PO3MIPY Ha TBEP/Oi OBEPXH1) Fr€TEPOreHHOI HyKearii
CTalOTh 3aJICKHUMH BI1Jl CTYTICHS METACTaOLIbHOCTI PIIUHHU, SIKYy OYJIO MiATBEPIKEHO
y crarti [31] ansa piauni Ban aep Baanbsca Ta y crarti [32] mist Mojgesni perysasipHOTO
O6inapHOrO po3umHy. Y crartsax [33] 1 [34] 3moOyBauem Oyio BUKOHAHO TEOPETUYHI
PO3paxyHKH reTepOTreHHOI0 3apOKeHHS HOBO1 a3y Ha feeKTHIM TBep/Iii MTOBEPXHI.
VY crarti [35] 3100yBauemM Oyio TEOPETUYHO AOCIHIIKEHO MPOIEC 3aKUTMAHHS PIAKOi
PTYTl y IMIYJIbCHUX JIKEpenax HEUTPOHIB, 110 MPAIlOIOTh HA PEaKIlli CKOJIIOBAHHS
(Spallation Neutron Source). B crarti [36] 3m00yBadem Oyi10 MpoBEACHO TCOPETUIHUI
aHai3 MPOIECY 3apOKEHHS TIOPH Y MalIMX 3pa3KaxX MEpeoXOJIOKEHOI AI0TMCHIHOT
PIAMHM y TIpolieci KpucTaiizallii TOBEpXHEBOTO 1Iapy 3pa3Ka.

AmnpoOauisi pesyabsrartiB aucepramii. Pe3ynbsratu auceprauiiiHoi poOOTH
JOTIOBIAINCsl Ta OOTOBOPIOBANIMCS Ha ceMiHapax [HCTUTYTy TeopeTudyHOi (i3UKH
imeni O. . Axiezepa HamioHanbHOTO HAyKOBOTO NEHTPY «XapKiBChKHM (Hi3UKO-
TexHiyHUN 1HCTUTYT» HAH Vkpainm, a Takok Ha Takux MiXHApOJHUX HAyKOBHUX
KOH(EepeHIIsIX Ta ceMIHapax:

e Nucleation and Atmospheric Aerosols. 17th International Conference

(August 13 — 17, 2007, National University of Ireland, Galway, Ireland),

e 4th international workshop “Diffusion and diffusional phase transformations
in alloys (DIFTRANS-07)” (July 16-21, 2007, Sofiyivka (Uman) Cherkasy region,
Ukraine).

e XIII.th, XVI.th, XVIL.th and XVIIl.th Research Workshop Nucleation
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Theory and Applications (Joint Institute of Nuclear Researches, April 1 — 30, 2009,
2012, 2013 and 2014, Dubna, Russia),

e O-th International Symposium on Crystallization in Glasses and Liquids

(September 10 — 13, 2009, Foz do Iguagu, PR, Brazil),

e 3rd International Conference on Quantum Electrodynamics and Statistical

Physics (QEDSP2011) (August 29 — September 2, 2011, Kharkov, Ukraine),

e 11th Lihnwitzseminar on Calorimetry 2012 (June 11 — 14, Rostock-

Warnemiinde, Germany, 2012),

e Crystallization 2012. 10th International Symposium on Crystallization in

Glasses and Liquids (September 23 — 26, 2012, Goslar, Germany),

e Polymer Group Seminar, Institute of Physics, University of Rostock

(February 12, 2013, Germany, Rostock),

e The Eighth International Conference on Material Technologies and Modeli-
ng (MMT-2014) (July 28 — August 01, 2014, Ariel University, Ariel, Israel).

3B’A30K mpani 3 HAayKOBUMHU NMporpaMamMu, IJjaHnamm, teMamu. Jlucepraiis
BUKOHAHA y BT TEOPil KOHJAEHCOBAHUX CEPENIOBHUII 1 siiepHOi Matepii [HcTuTy-
Ty TeopernyHoi ¢izuku imeHi O. [. Axiezepa HarioHanmbHOTO HayKOBOTO IEHTPY
«XapkiBcbkuil (izuko-texHiuaui 1HCTUTYT» HAH VYkpainun. Bona € HeBin emMHOIO
CKJIQJIOBOIO TaKUX MPOEKTIB:

e 0azoBa mporpama «Bigomue 3amoBnenHs HAH VYkpainu Ha npoBeneHHs
HayKOBHX JIOCIIIJIPKEHb 3 aTOMHO1 HayKu 1 TexHiku HallioHanbHOro HayKOBOIO IIEHTPY
«XapkiBcekuii (pizuko-rexHiuHmiA iHCTUTYT» Ha 2006-2010 pp. 3a Temoro: «ludy3iitHi
IPOLIECH ¥ €JIEKTPOHHI BJIACTUBOCTI KOHJCHCOBAHUX CEPENOBUI (HOMEDP JAEpiKpee-

crpanii 080906UP0010, BuKkoHaBeEIb);

e (asoBa mporpama «Bigomue 3amoBnenns HAH VYkpainu Ha mpoBeneHHs
HayKOBUX JOCTIPKEHb 3 aTOMHOI HayKH 1 TeXHiKH HarioHaIpHOTO HAyKOBOTO IIEHTPY

«XapkiBcbkuil (Pi3uko-TexHiyHui 1HCcTUTYT» Ha 2011-2015 pp. 3a Temoro: «da3oBi
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NEPETBOPEHHS, SIBUIIA MEPEHOCY 1 €JIEKTPOMArHiTHI MPOLIECH B F€TEPOre€HHUX KOH-

JIEHCOBaHUX cucTemax» (Homep aepxkpeectparii 0111U009545, BukoHaBelp);

e (azoBa mporpama «Bimomue 3amosnenns HAH Vkpainu Ha mpoBeneHHs
HAyKOBHX JOCII/DKEHb 3 aTOMHOI HayKd 1 TexHiKM HallloHanbHOTO HayKOBOTO LIEHTPY
«XapkiBcbkuil Ppizuko-TexHiuHui iHCTUTYT» Ha 2016-2020 pp. 3a Temoro: «EnexTpoH-
dboHOHHI mporecH 1 (a30Bl MEPETBOPEHHS B KJIIACUYHUX 1 KBAHTOBUX KOHJIEHCOBAHUX

cepenoBuiax» (Homep aepxpeecrpaiii 0116U007068, BukoHaBeIb);

e nuboBa kKomiuiekcHa nporpama HAH VYkpainum «HaykoBo-TexHiuHMI Cy-
MIPOBIJ] PO3BUTKY SIJAEPHOI €HEPreTUKU Ta 3aCTOCYBAaHHS pajliallifHUX TEXHOJOT1H
y Tally3sX €KOHOMIKM» 3a Temoro: “MojnentoBanHsi KiHeTuyHuX mpoueciB B U-Pu
NajuBl Ta B KOHCTPYKIIMHMX Marepiajlax aKTHBHOI 30HU IMEPCIICKTUBHHUX SITICPHHUX
peaKkTopiB Ha MIBUAKUX HEUTpoHax” (HoMep naepxaBHOi peectparii 01110009547,

TepmiH BukoHaHHs 2011 — 2012 pp., BUKOHaBElb);

e 1uboBa KoMmiuiekcHa nporpama HAH Vkpainm «HaykoBo-TexHIUHHI Cy-
IPOB1JI PO3BUTKY SJIEPHOI €HEPreTUKH Ta 3aCTOCYBAHHS pajlallifHUX TEXHOJIOTIH y
rajiy3siX eKOHOMIKI» 3a TeMor0: “Po3po0ka nepexigHuX NpoueciB y NEPCIEKTUBHOMY
IIBUJIKOMY PEAKTOpl 3 XBUJICIO SIACPHOTO TOPIHHS Ta B MarepiajiaX aKTUBHOI 30HU
pPEakToOpiB 4YETBEPTOro MOKOMiHHSA~ (HOMep nepxkaBHOi peectparii 0113U003968,

tepmin BukoHaHHs 2013 — 2015 pp., BUKOHABEIIb);

e 1u1boBa KomIuiekcHa nporpamMa HAH VYkpainu «HaykoBe 3a0e3neueHHs po3-
BUTKY SIZIEPHO-EHEPreTUYHOIO KOMIUIEKCY Ta MEPCIEKTUBHUX SJIEPHUX TEXHOJIOT1H»
3a TeMor: “PO3BUTOK METOJIB MACHUBHOTO KOHTPOJIO Ta KEPYBaHHS IMOTYXHICTIO
NEPCIEKTUBHOTO HIBUAKOIO SJAEPHOTO pEakTopa 3 XBWJICKO SJAEPHOrO TOpPIHHA Ta
JOCIIIJKEHHSI PEAaKTOPHUX MaTepialiB NEPCIEKTUBHUX SAEPHUX YCTAaHOBOK~ (HOMEp
nepxkaBHoi peectpauii 0116U007071, tepmin BukoHanHsa 2016 — 2018 pp., BukoHa-

BEIlb);

e 1uboBa KoMIUiekcHa mporpama HAH Vkpainu «Snepui Ta pasiamiiiHi

TEXHOJIOT11 JIJIsl eHePTeTUYHOTO CEKTOPY 1 CYCHUIBHUX TOTPed» 3a TeMoro: “Po3podka
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METO/IIB PETYIIOBAHHS MOTYKHOCTI MEPCIEKTUBHOTO IMIBUIKOTO PEAKTOpa 3 XBUJIEIO
SJIEPHOTO TOPIHHSA Ta MOJEIIOBAaHHS MaTepialliB JJIsl SIIE€PHOI €HEPreTUKU HACTYITHOTO
MOKOMIHHA™ (HoMep AepskaBHOi peectpanii 0119U101826, Tepmin BukoHaHHs 2019 —

2021 pp., BUKOHABEIb);

® [IPOEKT HIMELBKOro HAyKOBO-IOCHIIHUIIBKOTrO criBroBapuctBa (Deutsche
Forschungsgemeinschaft) “Nucleation-growth processes in multicomponent systems”

(University of Rostock, Germany, 2002, 2003, 2005 — 2009);

® [IPOEKT HIMelpKoi cinyxk0u axkaaemiunux oOMiHIB (DAAD) “First-order
phase transformation in multicomponent finite domains” (Section 322, Code number

A/05/24752, University of Rostock, Germany, 2005);

e CHuUIbHUN MNpoeKT (QyHIaMeHTanbHUX AociipkeHp “JOD][ — BPODJ -
2009 “KinetnuHi acmnekTd (OpMyBaHHS aHCAMOJIIB HAHOYACTUHOK MpPHU MipOdi3i
Kparuti po34uHIB MPHU 3HIKEHOMY THCKY  (HOMeEp aepxkaBHOI peectpariii ®29/377 —

2009, Tepmin BukoHauHs 2009 — 2010 pp.);

® TMPOEKT HIMElbKoi ciay:k0u akanemiunnx oOmiHiB (DAAD) “Generalized
Gibbs’ approach to the thermodynamics of heterogeneous systems: applications to
crystallization and cavitation processes in confined systems with non-conserved order
parameter” (Section 322, Code number A/11/05260, University of Rostock, Germany,
2011).

Iyonikanii. OcHOBHI pe3ynbTaTH aucepTanii omyOiikoBaHl y 10 HaykoBHX
CTaTTAX y (haXOBUX MIKHAPOJHUX BHIAHHAX MEPIIOTO Ta APYroro KBapTimio |,
npouuToBadi moHaa 230 pasiB, JOJATKOBI pe3ysibTaTH OMyOsikoBaHI y 8 HayKOBHX
npaigix Ta y 3 miaBax B MoHorpadisx (mporutoBani nmoHan 140 pasiB). Pesynbraru

JUcepTalii JOMOBIJAIUCS Ha BITYM3HSHUX 1 MIKHAPOJIHUX HAYKOBUX KOH(EpPEHLISX

Ta CeMIHapax.

IThe Journal of Chemical Physics (2004, 2007, 2013, 2014, 2017),
Journal of Non-Crystalline Solids (2010, 2011, 2014),
European Physical Journal B (2011),
Entropy (2019)


http://www.scimagojr.com/journalsearch.php?q=13715&tip=sid&clean=0
http://www.scimagojr.com/journalsearch.php?q=27542&tip=sid&clean=0
http://www.scimagojr.com/journalsearch.php?q=28547&tip=sid&clean=0
http://www.scimagojr.com/journalsearch.php?q=28134&tip=sid&clean=0
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Crpykrypa i obcar aucepramii. Jlucepraiiis CKiIagaeTbCcs 3 BCTYITY, JECITH
PO3/UTIB, BUCHOBKIB, Ta OJHOTO JI0JIaTKy. 3arajJbHUi oOCsr IucepTaliitHoi poOoTH
ckiagae 369 cTopiHOK, oOCAT OCHOBHOI YacTUHU CKianae 344 CTOpPIHKH, 3 SIKUX
JoJIaTOK 3aitmMae 5 ctopiHok. Pobora mictuth 120 pucyHKIB, 3 sikux 13 MOBHICTIO
3aiiMaroTh IUJIONLY CTOPIHKH, Ta 363 HaliMeHyBaHHS BUKOPUCTAHUX Jxepen. Jlucep-
TaliiHa poOoTa MiArOTOBIICHA JIJIs 3aXHCTY B (OpMi HAYK0B80i 00nosidi. BiamoBiIHO
Hakazy MinictepctBa ocBiTH 1 Hayku Ykpainu Ne 1220 Big 23.09.2019, “3a HasiBHOCTI
HE MEHIIE HIXK AecATh MyOmikamiid, skl pO3KpUBAIOTh OCHOBHI HAyKOBI pE3yJbTaTh
qucepTalli, y BUJAHHSX, BIAHECEHUX 10 mepiioro 1 apyroro kBaptuwiiB (Ql 1 Q2)
BiamoBiaHO 10 kinacudikaiii SCImago Journal and Country Rank a6o Journal Citation
Reports, 3axuct moxe BimOyBarucs y ¢dopmi HaykoBoi momoBimi. Ilix HaykoBoro
JOTIOBIJIF0 PO3YMIIOTh JUcepTalliio, odhopMiieHy BiamoBigHo po3aury II Bumor go
odopMIIEHHSI AUCEepTallli, 3aTBEp/PKEHUX Haka3oM MIHICTEpPCTBA OCBITH 1 HAyKH
VYkpainu 12 ciuns 2017 poky Ne 40, 3apeectpoBanux B MiHICTEPCTBI IOCTUIIIT YKpaiHU
Bixm 03 mrororo 2017 poky 3a Ne 155/30023. Po3mimamu amceprarii € ImyOmikarii

3100yBavya HayKOBOTO CTyIeHs [63].
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PO3JILI 1

HYKJEALISI ABO CHIHOJAJBHUI PO3MNA/ B TPOLECAX
®A30YTBOPEHHSI B BATATOKOMIOHEHTHUX PO3UMHAX

VY mepmmomy po3aiil y3araiabHeHH MeToj ['100ca po3BUHEHMM I HyKJIeallil
HOBO1 ha3m y mIpocTiii Mojeni peryiaspHoro OiHapHoro po3umHy. IInsx eBosrorrii
KJacTepa 3a po3MIpOM Ta CKJIAJOM BHU3HAYAETbCS MEMOOOM HAUUUBUOULO20 CHYCKY
Ha TIIEeproOBEepXHI TEPMOAMHAMIYHOIO MOTEHIIATY 3 YPaXyBaHHIM TEPMOAMHAMIYHHUX
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In the present paper, some further results of application of the generalized
Gibbs’ approach (J. W. P. Schmelzer et al., J. Chem. Phys. 112, 3820 (2000);
114, 5180 (2001); 119, 6166 (2003)) to describing new-phase formation
processes are outlined. The path of cluster evolution in size and composition
space is determined taking into account both thermodynamic and kinetic
factors. The basic features of these paths of evolution are discussed in

detail for a simple model of a binary mixture. According to this analysis,
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size and composition of the clusters of the newly evolving phase change
in an unexpected way which is qualitatively different as compared to the
classical picture of nucleation-growth processes. As shown, nucleation (i.e.,
the first stage of cluster formation starting from metastable initial states)
exhibits properties resembling spinodal decomposition (the size remains
nearly constant while the composition changes) although the presence of
an activation barrier distinguishes the nucleation process from true spinodal
decomposition. In addition, it is shown that phase formation both in
metastable and unstable initial states near the classical spinodal may proceed
via a passage of a ridge of the thermodynamic potential with a finite work
of the activation barrier even though (for unstable initial states) the value of
the work of critical cluster formation (corresponding to the saddle point of
the thermodynamic potential) is zero. This way, it turns out that nucleation
concepts — in a modified form as compared with the classical picture — may
govern also phase formation processes starting from unstable initial states.
In contrast to the classical Gibbs’ approach, the generalized Gibbs’ method
provides a description of phase changes both in binodal and spinodal regions
of the phase diagram and confirms the point of view assuming a continuity
of the basic features of the phase transformation kinetics in the vicinity of
the classical spinodal curve. (©)2004 American Institute of Physics. [DOI:
10.1063/1.1786914]

1.1. Introduction

In the interpretation of experimental results on the dynamics of first-order
phase transitions starting from metastable initial states, up to now predominantly
the classical nucleation theory is employed [1-5] treating the respective process in

terms of cluster formation and growth. As one additional simplifying assumption
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it 1s assumed hereby frequently that the bulk properties of the clusters are widely
similar to the properties of the newly evolving macrophases [6]. This or similar
assumptions (cf. [7]), underlying the classical approach, are supported (at least, as
far as processes of formation of condensed phases are analyzed) by the results of
Gibbs’ classical theory of heterogeneous systems [8] applied to processes of critical
cluster formation. Treating the clusters as small particles with properties of the
newly evolving macroscopic phase, the process of cluster growth and dissolution
1s considered to proceed basically via addition or emission of single units (atoms,
molecules) with the same properties.

As a second additional thermodynamic assumption, the interfacial specific
energy of critical clusters is supposed in a first approximation to be equal to the
respective value for an equilibrium coexistence of both phases at planar interfaces.
In order to come to an agreement between experimental and theoretical results, this
second assumption often has to be released by introducing a curvature dependence of
the surface tension. However, such assumption leads to other internal contradictions
in the theory [9-11].

The alternative continuum’s concept of the description of the thermodynamics
of heterogeneous systems, as developed by van der Waals [12, 13], has been applied
for the first time to an analysis of nucleation by Cahn and Hilliard [14]. In application
to nucleation-growth processes (phase transformations originating from metastable
initial states), Cahn and Hilliard came, in particular, to the conclusion that the bulk
state parameters of the critical clusters may deviate considerably from the respective
values of the evolving macrophases and from the predictions of Gibbs’ theory. These
results of the van der Waals’ approach were reconfirmed later-on by more advanced
density functional computations (cf. e.g. [15]).

Moreover, mentioned authors developed also the alternative to the nucleation-
growth model theoretical description of spinodal decomposition. According to the

common believe (having again its origin in the classical analysis due to Gibbs [8]),
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the nucleation-growth model works for the description of phase formation starting
from metastable initial states, while thermodynamically unstable states are believed to
decay via spinodal decomposition. As one consequence, the problem arises how one
mode of transition (nucleation-growth) goes over into the alternative one (spinodal
decomposition) if the state of the ambient phase is changed continuously from
metastable to unstable states, i.e., how the transition proceeds in the vicinity of the
classical spinodal curve. The classical Gibbs’ approach predicts here some kind of
singular behavior, which is, however, not confirmed by the Cahn-Hilliard description,
statistical-mechanical model analyses (cf. e.g. [4,16,17]) and experiment [18]. From
a more general point of view, we are confronted here with an internal contradiction in
the predictions of two well-established theories which has to be, hopefully, resolved.
The resolution of this contradiction is one of the aims of the present analysis, it is
performed here following a generalization of Gibbs’ classical thermodynamic method
developed by us in recent years [19-26].

In the mentioned series of recent publications it was demonstrated [19-22] that,
by developing a generalization of Gibbs’ thermodynamic approach, Gibbs’ and van
der Waals’ methods of description of critical cluster formation can be reconciled. The
generalized Gibbs’ approach was shown to lead for model systems to qualitatively
and partly even quantitatively similar results as compared with density functional
approaches [23-26]. In particular, it leads to a significant dependence of the properties
of the critical clusters on supersaturation and to a vanishing of the work of critical
cluster formation for initial states in the vicinity of the spinodal curve.

The generalized Gibbs’ approach has, however, one additional advantage as
compared with existing approaches to the description of cluster formation. Both the
classical Gibbs’ and van der Waals’ methods of description of heterogeneous systems,
as well as modern density functional analyses, have one common limitation. They are
restricted in their applicability to thermodynamic equilibrium states exclusively. As a

consequence, the mentioned theories can supply us with information on the properties
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of critical clusters, governing nucleation (cf. e.g. [15]). However, they cannot supply
us with any theoretically founded description of the properties of single clusters
or ensembles of clusters being not in equilibrium with the ambient phase. By this
reason, in order to describe the evolution of ensembles of clusters in first-order phase
transitions, evolving either as the result of nucleation or of spinodal decomposition,
additional assumptions have to be made concerning their properties and the evolution
of their properties with the changes in cluster size and supersaturation in the system
(cf. e.g. [7]). However, as far as one remains inside mentioned approaches, one has
no theoretical tool to check the degree of validity of these assumptions.

The generalization of Gibbs’ approach, described in its basic premises in detail
in [10, 11, 25, 26], allows us to overcome this deficiency. It gives a tool for the
determination of the thermodynamic functions of a cluster or ensembles of clusters
in the ambient phase both for thermodynamic equilibrium and well-defined non-
equilibrium states. In order to allow the determination of the state parameters of
the clusters in dependence on their sizes, one has to formulate then merely criteria
determining the most probable path of evolution of the clusters in the space of
independent thermodynamic variables.

As the simplest possible prescription and in order to demonstrate the principal
consequences, recently we put forward the criterion [10, 11] that the evolution of a
cluster in a first-order phase transition proceeds along a valley of the appropriate
thermodynamic potential. This valley connects the metastable initial state of the
system with the newly evolving macrophase, passing in its course the saddle point
of the appropriate thermodynamic function. As well-known, latter state corresponds
to the critical cluster. As the result of such analysis, the dependence of the state
parameters of the cluster on their size was established. Moreover, it was shown that
a number of other thermodynamic and kinetic parameters, determining processes of
cluster formation and growth, become cluster-size dependent as well [10].

It was already mentioned in the preceding analysis [10] that, in general, both
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thermodynamic and kinetic properties of the system under consideration will have an
effect on the most probable path of evolution of the cluster or ensembles of clusters
in a first-order phase transformation. However, in [10] the possible effect, connected
with the peculiarities of cluster growth kinetics, was neglected in the search for the
preferred trajectory of evolution of the clusters in the space of thermodynamic state
parameters. It is the first aim of the present paper, to extend the studies made in [10] to
account for both mentioned factors. As in the previous investigation [10], the analysis
will be performed for the case of phase formation in multi-component solutions. The
method is applicable, however, for any (or, at least, for a huge variety of) other cases
of first-order phase transformations as well.

Having at our disposal these results, we will go over then to an analysis of
a second problem, the transition from the nucleation-growth model of the phase
transition to spinodal decomposition in passing the classical spinodal curve of the
system under consideration. A comparison of the classical treatment of nucleation,
based on Gibbs’ thermodynamic approach, and the Cahn-Hilliard theory of spinodal
decomposition leads to the consequence that near the spinodal a discontinuity in the
kinetic mechanisms of formation of the new phase has to be expected. Moreover,
the mentioned approaches lead to different results concerning the properties of the
critical clusters near the spinodal curve. As will be shown, the generalized Gibbs’
approach utilized here, predicts, in agreement with computer simulations [4, 16, 17]
and experimental results [18], a continuous transition from thermodynamic metastable
to thermodynamic unstable initial states in the course of passing the classical spinodal
curve. Even more, as it turns out from the analysis, the scenario of the initial stages
of nucleation-growth processes starting from metastable initial states is shown to
resemble widely the behavior well-known from the Cahn-Hilliard picture of spinodal
decomposition. In addition, the basic mechanism of nucleation — the transition via a
potential barrier in the evolution to the newly evolving phase — is shown to retain (in

a modified form as compared with the classical picture) its importance for unstable
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initial states near the spinodal curve as well.

The paper is organized as follows. In Section 1.2, a more precise formulation
of a recently proposed criterion [10] is given determining the trajectory of evolution
of the cluster or cluster ensembles in the space of thermodynamic state parameters.
The general results are illustrated then for the model of binary regular solutions in
Section 1.3. In Sections 1.4 and 1.5, the typical features of the dynamics of the phase
transition starting both from metastable and unstable initial states are specified as
derived in the framework of the generalized Gibbs’ approach and compared with
the classical models of nucleation-growth and spinodal decomposition processes.
It is shown, in particular, that [i.] the classical model of cluster formation and
growth is, in general, not valid for the description of segregation in solutions; [ii.]
the properties of the clusters change significantly as a function of their sizes, this
change proceeds most dramatically at sizes near to the critical cluster size; [1ii.] the
formation of the critical clusters starting from metastable initial states proceeds via
a scenario widely similar to the Cahn-Hilliard picture of spinodal decomposition;
[iv.] the nucleation concept — passage of some activation barrier in the evolution
to the new phase — retains its importance also for new phase evolution in unstable
initial states near the spinodal curve; [v.] an interpretation of the size of the region
with highest amplification of density fluctuations — as derived in the Cahn-Hilliard
theory of spinodal decomposition — can be given as being uniquely correlated with the
critical cluster size in thermodynamically unstable initial states (with zero values of
the work of critical cluster formation) computed via the generalized Gibbs’ approach.

A summary of the results and a discussion, performed in Section 1.6, completes the

paper.
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1.2. The Trajectory of Cluster Evolution in the Space of
Thermodynamic State Parameters

1.2.1. Thermodynamic Determination

1.2.1.1. Segregation in Multi-Component Solutions: General Case

Considering nucleation at isothermal (I = constant) and isobaric (p =
constant) conditions, the change of the Gibbs free energy, due to the formation of
one cluster in the ambient phase, is given — according to the generalized Gibbs

approach [10,25,26] — in the most general form as

k
AG = (p=pa)Va+ D njalijaa: T {za}) = pis(p, T {zs})] + oA . (LD

j=1

The parameters nj, are the numbers of particles of the different components in the
cluster, V,, is the volume and A the surface area, o the interfacial free energy and s,
the chemical potential referred to one particle either in the cluster («) or the ambient
phases ((3). For convenience of the notations, we will omit the subscripts « and (3 as
far as such omission cannot lead to confusion.

For metastable initial states, we always have a critical cluster volume V, with
a corresponding value of AG equal to AG,. This way, Eq. (1.1) can be brought into
a dimensionless form with ® = (AG/AG.). The set of (f = k + 1) independent
dimensionless variables is given then by

qd; = Nja ]:17277k’ qrk+1 = (12)

_“
v
In this representation, we have a length scale, the radius of the critical cluster size.
This way, such length unit is to be preferred on physical grounds.

In Eq. (1.1), the intensive parameters of the cluster phase are not defined so

far, they can have, in general, any arbitrary reasonable values. This way, as soon as
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we would like to determine the states of the clusters in dependence on their sizes in
the course of their evolution, we have to advance some criterion allowing to make
the respective predictions. The basic postulate, formulated in [10] in order to resolve
this problem, consists in the following statement: the evolution of the cluster has to
proceed along a valley of the characteristic thermodynamic potential following the
path of the steepest descent from the saddle point.

In some sense, this postulate can be considered as a generalization of the
approach employed by H. Reiss in the early paper of 1950 where the generalization
of classical nucleation theory to binary systems is developed [27]. Above postulate
represents an extension of this approach allowing to describe the state of the clusters
in the whole course of its evolution from sub-critical up to macroscopic sizes.

The mentioned valley is determined by the following considerations: The di-
fferent independent kinetic mechanisms a cluster can change its size and composition
consist in the change of the volume and the number of particles of the different
components in the cluster. Following the basis assumptions of the thermodynamics of
irreversible processes, the driving force for such changes of the state of the system
are proportional to (0®/0q;). The thermodynamically favored path of the evolution

should be given thus by the set of equations (see Appendix)

f
— =Y —— 1.3
dl = Jg; dl ’ (13)
d,  0® AG

Here [ is a scalar parameter determining the trajectory of the evolution in the given
space of thermodynamic variables and dl is the distance between two points on the
trajectory. This way, Eqgs. (1.3) and (1.4) describe the trajectory of steepest descent
of the thermodynamic potential with starting points in the immediate vicinity of

the saddle point of the Gibbs’ free energy. In dependence on the choice of these
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starting points, we can determine in this way either the part of the trajectory from
the saddle point to the newly evolving macroscopic phase or, alternatively, the path
to the metastable ambient phase. Based on this basic set of equations, the trajectory
describing the evolution can be determined also in any other appropriate set {Q} of

thermodynamic state parameters (see Appendix).

1.2.1.2. The Case of an Incompressible Cluster Phase

Let us now go over to the limit of an incompressible cluster phase. In this case,
the change of the thermodynamic potential due to the formation of a cluster is given

by the more simple expression [10]

k
AG = o [1ia(p, Ty {za}) — pis(p, T, {xs})] + 0 A . (1.5)

j=1

The number of degrees of freedom is reduced here by one and the volume of the
cluster can be expressed directly via the specific volumes of the different components
in the cluster phase, wj,, and the number of particles of the different components in

the cluster, n;,, as

k
Vo= WjaNja - (1.6)
j=1

For this particular situation, the basic set of coordinates are exclusively dimensionless
numbers.

Eq. (1.5) can be transformed into a dimensionless form, again, where
the independent coordinates are given now by (ni,72q,---,Mke). Such choice
corresponds, in this particular case, to the physically distinguished coordinate system

for which Eq. (1.4) holds (the correctness of this statement will become even more
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obvious in the forthcoming section, when the set of kinetic equations for cluster
growth in solid solutions will be considered). This way, we may determine now
either the trajectory in the distinguished set of coordinates and perform, if required,
afterwards the necessary computations allowing to determine other parameters of the
clusters in dependence on their sizes as well. Alternatively, we can also omit the first

step and go over directly to alternative sets of coordinates (see Appendix).

1.2.2. Incorporation of the Kinetics of Cluster Evolution on the Determi-

nation of the Trajectory

1.2.2.1. Some Special Cases

For the description of phase separation processes in solutions, the deterministic
growth equations can be written in most applications of interest as (cf. [28-30] and
references cited therein)

= —W;iN1g, N2y -+« s Nk .
dt i\ Ilay 102 ko (97%'@

(1.7)

In the both particularly important cases of diffusion or kinetic limited growth

modes, the coefficients of aggregation w; (114, N2q, - - - , Nke) are of the form
wi(nlaa N2ay - - - anka) = Dixz’@(nm, N2ay - - - anka) (1.8)
with slightly different specific expressions for the function O(ni,,n2q4, - - -, Nky) N

dependence on the mode of cluster growth. Here D, is the partial diffusion coefficient
of the i-th component and x; its molar fraction in the ambient phase. In both limiting

cases, we can introduce therefore the new variables

Nio

)
Djx;

dl — @ (n1a7 n?a; ce 7nk06) dt ) Mia =

(1.9)
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and rewrite Eq. (1.7) in the form of Eq. (1.4) as

dmm o 0P

(1.10)

In mentioned and similar cases (when a transformation like Eq. (1.8) is
possible), the evolution in the space of the independent state parameters of the
clusters is given by relations similar to those (cf. Eq. (1.4)) determining the
valley of the respective thermodynamic potential. However, in the expressions for
® a transformation of the variables m;, = (\/m) n;, has to be performed.
Consequently, the path of cluster evolution will depend not only on thermodynamic
factors but on the set of diffusion coefficients of the different components as well. This
way, in the considered cases the kinetics of cluster growth affects the most probable
trajectory of evolution of the cluster via the products of the values of the diffusion
coefficients and the molar fractions of the different component in the ambient phase.
Earlier obtained results will be reestablished if the product D;x; has nearly the same
values for all components in the solution.

Note that this generalization is to some extent similar to Stauffer’s proposal
in the determination of the direction of the nucleation fluxes in the vicinity of the
saddle point [31] and to generalizations of this approach by introducing so-called
generalized nucleation potentials [32]. But here these ideas are extended, again, to the

whole course of evolution of the clusters of the newly evolving phase.

1.2.2.2. General Method of Determination of the Cluster Trajectory

Let us assume, now, that the state of the thermodynamic system consisting of
a cluster in the otherwise homogeneous ambient phase is determined by the set of

variables {¢} and the deterministic equations of motion are given or can be brought
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into the form

— =0 (1,9, --,4q5) , i=1,2,...,f. (1.11)

Here {q} can be given by any set of state parameters allowing to determine in a
uniquely defined way the deterministic cluster trajectory.

The set of equations Eq. (1.11) can be solved then starting from initial states
in the immediate vicinity of the saddle point of the thermodynamic potential. In this
way, we can determine the deterministic trajectory of the cluster in the space of
thermodynamic variables. In generalization of the purely thermodynamic evolution
criterion proposed in [10, 11] and discussed here before, we postulate that this
deterministic trajectory gives the most probable path of evolution of the cluster from
the initial ambient phase to the newly evolving macroscopic phase. By this postulate,
the task of determination of the change of the cluster properties in the course of their
evolution is solved.

As evident from the determination of the most probable path, we assume here
that the evolution of the clusters proceeds along a trajectory passing states near the
saddle point of the appropriate thermodynamic potential. In most cases of practical
interest, this assumption is fulfilled. Nevertheless, it was noted from time to time that
situations may exist where this assumption does not hold (see e.g. [16,32-35]). For

these cases, a separate analysis is required. We will return to this problem shortly.

1.2.2.3. Discussion

In generalization of the purely thermodynamic criterion for the evolution of the
state of the cluster in the course of their growth, advanced earlier [10, 11], now both
thermodynamic and kinetic factors are incorporated adequately. Some consequences

and differences as compared with the case of a purely thermodynamic determination
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of the path of evolution will be analyzed for the case of segregation in regular
solutions in the next section.

As will be demonstrated here for the case of cluster formation in solutions, the
analysis of the most probable path of evolution of the clusters allows immediately
to understand the basic qualitative features of the process of cluster formation and
growth for the considered kind of phase formation. As it will turn out for the
considered here case of phase formation in solutions, the classical picture of this
process does not represent an adequate description of the real situation. In the
analysis, we will consider again phase formation in binary regular solutions allowing

to demonstrate the basic results for a relatively simple model system.

1.3. An Example: Binary Regular Solutions

For a binary regular solution, we can start the analysis with Eq. (1.5) and result

at the following particular expression for AG (cf. [10,19])

AG = —n,Au+dA, Ap = —kpTf(x,z,) (1.12)

with

o =70 (xq—1x) . (1.14)

In above equations, kp is the Boltzmann constant, 7. is the critical temperature
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of the solution, ¢ is a parameter depending on temperature, only, and x, and x are
the molar fractions of the second component in the cluster and the ambient phase,
respectively. We will assume in the subsequent computations that the temperature in
the system 1is fixed to 7" = 0.77,.. The left hand side branches of the binodal (x3)
and the spinodal (x,) curves are located for this temperature at z; = 0.0857 and
zspy = 0.2261, respectively [10, 19]. The respective right hand side values of the

molar fractions for the binodal and spinodal curves are given by xl(f) =1— a3 and

9522) = 1 —x,,. We will assume here first that the initial concentrations in the ambient
phase have values in the range z;, = 0.0857 < x < z,, = 0.2261 extending the
analysis later to unstable initial states with v > x, = 0.2261.

Having at our disposal the expression for the thermodynamic potential or,
more generally, the deterministic equations describing cluster growth and decay,
we can now determine the most probable path of evolution of the cluster and the
dependence of the state parameters of the clusters on their sizes. First we show the
results employing the purely thermodynamic criterion [10, 11] (i.e. we suppose that
the evolution proceeds along the valley of the thermodynamic potential passing the
saddle point [Egs. (1.3) and (1.4)]). The results are presented in Figs. 1.1 — 1.2.

In the right hand side of Fig. 1.1, the shape of the Gibbs free energy surface and
the path of the cluster evolution is shown in the (ny/n., ns/n.)-space. Here n; and ny
are the numbers of particles of the different components in the cluster, n, is the total
number of particles in the critical cluster (the subscript « is omitted for convenience
of the notations). The molar fraction of the ambient phase was chosen here to be
equal to x = 0.19. The left hand side of Fig. 1.1 gives a similar dependence but this
time in the size-composition space (r = R/R., o = N2/ (n1a + N24)), Where R, is
the critical cluster size in nucleation.

The whole path of evolution of the clusters can be divided into three different
parts. In the first part of the trajectory (4-B in Fig. 1.1), the composition of the

clusters remains the same as the composition of the ambient phase. This way, along
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Fig. 1.1. Left: Path of the cluster evolution in the (r, z,)-space. Right: Shape of the
Gibbs free energy surface and trajectory of cluster evolution in the (ny/n., ne/n.)-
space (for a regular solution with a molar fraction of the segregating component in
the ambient phase equal to x = 0.19). Here n; and ny are the numbers of particles of
the different components in the cluster. The respective values are divided by the total

number of particles in the cluster of critical size, n.

this part, AG remains equal to zero. This result is easily understandable taking into
account that in this range the cluster cannot be distinguished from the ambient mother
phase. Consequently, the real cluster evolution begins at the point B, where the cluster
composition starts to change. The size of the region in the ambient phase, specified by
B, we will denote as R,. For the example considered, I, is nearly equal to the critical
cluster size, R.. In the next stage, in the part of the trajectory of cluster evolution B-C,
the cluster composition varies dramatically without significant changes in the cluster
size. At the point C the cluster composition corresponds almost to the composition of
the newly evolving macroscopic phase. In the third part of evolution, starting with the
point C, the cluster grows further in size with an already nearly constant composition.

In Fig. 1.2, the dependence of the cluster composition, x,, on the reduced
radius, r = R/R., is shown for different values of the molar fraction, =, of the
second component in the ambient phase. Here the following cases are illustrated:
r = 0.086, x = 0.09, x = 0.11, z = 0.13, x = 0.15, z = 0.17, x = 0.19 and
x = 0.22. It is evident that the basic qualitative features of the phase transformation

kinetics do not depend on supersaturation in the considered range of metastable initial
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Fig. 1.2. Dependence of the cluster composition, x,, on the reduced radius, r =
R/R., for different values of the concentration in the ambient phase: © = 0.086,
r=20.09, =011, =0.13, 2 = 0.15, x = 0.17, = 0.19 and = = 0.22.

states. However, the size, R, a cluster starts its evolution with, varies with a change
in the supersaturation. For small values of the initial supersaturation, the ratio R/ R,
tends to zero. However, in absolute units, 5 shows a behavior as presented in Fig. 1.3
(the parameter €2, depends on particular properties of the system under consideration,
an estimate yields (25 = 1 nm (cf. [23])).

The size parameter R diverges for small supersaturations similarly to the size
of the critical cluster. This way, independent on the value of the supersaturation, the
classical picture of the nucleation-growth process does not give a correct description
of the real situation. The cluster evolution does not proceed via a growth in size of
initially very small units with properties of the newly evolving phase. In contrast,
in some region in the ambient phase with spatial dimensions of the order 2R,, the
concentration increases and only after this process is completed to a large extent,
a further increase in cluster size occurs. An illustration of these differences — the
classical model of nucleation-growth processes and the scenario based on the analysis
presented here — is given in Figs. 1.4 (and somewhat later also in Figs. 1.7a and c).

So far, we have analyzed the most probable path of evolution of the
cluster in cluster size space, if the motion is determined by purely thermodynamic
considerations. However, as mentioned already in [10] and discussed in detail in

Section 1.2.2, in general, both thermodynamic and kinetic properties will determine
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Fig. 1.3. Characteristic size, I?,, of the part of the ambient phase, where processes
of amplification of the concentration occur. It is supposed here that the evolution
proceeds via the most probable path in the space of thermodynamic state parameters of
the clusters as determined thermodynamically. This size parameter, R, is determined
as a multiple of a parameter {25 depending on the particular properties of the solution
considered (cf. Eq. (1.24)). The parameter €2, has values of the order of one nanometer
[23].

the most probable path of evolution of the clusters. Here we would like to study in
detail the effect of kinetic factors on the evolution of the state of the clusters in the
course of their growth for the limiting cases of diffusion and kinetic limited growth.
As shown in detail in Section 1.2.2, for these cases we can proceed as earlier but have
to replace in the final expressions n;, by m;,. The results are independent on the
particular kind of growth kinetics — diffusion or kinetic limited growth — considered.
Indeed, for the both considered growth modes, we get, from Egs. (1.7) and (1.8), the

same equation for the determination of the cluster trajectory in the parameter space,

1.€.,

dni,  Dix1 0P(nya, n2y) (3@(7110” n20‘)> B (1.15)

dnse  Doxo Onia Onga

The results of the computations are illustrated in Figs. 1.5.

In the left hand sides of Figs. 1.5, the results of such computations are given for
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Fig. 1.4. Illustration of the differences in the classical picture of nucleation-growth
processes in solutions ((a): growth in size of clusters with nearly the same composition
as the newly evolving macroscopic phase) as compared with the results obtained via
the generalized Gibbs’ approach and the basic postulate as formulated in Section 1.2
((b), see text). The lower curve is drawn here for a molar fraction z = 0.19 (cf.
Fig. 1.1).

the dependence of the cluster composition, z,,, on the reduced radius, r, for different
values of the molar fraction, x, of the second component (i.e. z9 = x, r1 = 1 — )
in the ambient phase (z = 0.11, x = 0.15, x = 0.19, z = 0.22 from top to bottom).
For different values of the kinetic coefficients, different dependencies x, = x,(r) are
obtained. The following values of Dy /D5 are chosen: D1/Ds = 0.1 (1), D1/Dy =1
(2), and D1/Ds = 10 (3). In the right hand side of Figs. 1.5, the shape of the
Gibbs free energy surface and the path of the cluster evolution are shown in the
(n1/ne, no/n.)-space, again. With an increase of the ratio D;/D,, the position of
the point B in the cluster trajectory (cf. Fig. 1.1) in the space of its state variables is
shifted to higher values of the ratio R/R. and Rs may even exceed R..

In Fig. 1.6, the situation is shown once again for the whole range of possible
values of the parameters D;/D, and an initial concentration of the ambient phase
equal to x = 0.17. Here, again, the curves, corresponding to ratios D;/Ds = 0.1 (2),
Dy/Dy =1 (3) and D1/Dy = 10 (4) are given. However, they are supplemented by
the limiting curves D1/Dy — 0 (1) and Dy/Dy — oo (5). As evident from Figs. 1.5

and 1.6, qualitatively the picture remains the same as in the case when the trajectory
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Fig. 1.5. Left: Path of the cluster evolution in the (r, x,)-space. Right: Shape of the
Gibbs free energy surface and path of the cluster evolution in the (ny/n., na/n.)-
space. The computations are made for a regular solution with molar fractions z =
0.11, z = 0.15, x = 0.19 and x = 0.22 of the second component in the ambient phase
for different values of the ratio Dy/Dy: D1/Dy = 0.1 (1), D1/Ds =1 (2), D1/ Dy =
10 (3). In generalization of the results shown in Fig. 1.2, here the trajectory describing
the evolution of the cluster is determined taking into accout both thermodynamic and
kinetic factors.

of evolution is determined by purely thermodynamic criteria. Quantitatively, the most

probable path is shifted in the space of cluster state variables.

1.4. On Some Intrinsic Similarity of Nucleation and Spinodal

Decomposition

According to the classical theory of nucleation and cluster growth, nucleation
proceeds by addition and/or emission of monomers (atoms, molecules etc.) starting
from monomers and leading to the formation of dimers, trimers etc. Hereby the
state of the clusters is assumed to be widely independent on cluster size. As

already mentioned, this feature of the theory is an additional assumption not
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Fig. 1.6. Path of the cluster evolution for a molar fraction of the initial state equal to
x = 0.17 for the whole range of possible ratios of the diffusion coefficients D;/Ds:
Dy/Dy — 0 (1), D1/Dy = 0.1 (2), D1/Dy =1 (3), D1/D> =10 (4), D1 /Dy — o0
(3).

founded theoretically. Remember that Gibbs’ classical approach [8] is restricted in
its applicability exclusively to equilibria of heterogeneous substances, it cannot give
any information on thermodynamic non-equilibrium states, in general, and the state
of sub- and supercritical clusters, in particular.

In the generalization of Gibbs’ approach, underlying our analysis, we start with
the formulation of appropriate expressions for the thermodynamic potentials (and
the development of the theoretical basis underlying this approach) for clusters of
arbitrary sizes in the ambient phase [10, 11,25,26]. This procedure allows us to give
a theoretically founded prescription on the course of evolution of the clusters in the
transformation as it was outlined in preceding sections. Now, let us analyze in more
detail whether the results confirm the classical model of nucleation processes or not.
As it will turn out, the answer is, in general, no.

In order to prove this statement, let us return to an analysis of the results shown

in Figs. 1.1-1.3 and 1.5. It follows immediately from these results that the evolution
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of the critical cluster does not proceed via the classical picture as sketched in Fig. 1.4a

and 1.7a.
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Fig. 1.7. Illustration of the basic features of (a) the classical nucleation-growth
scenario, (b) the Cahn-Hilliard spinodal decomposition model and (c) the model
for the description of phase formation in solutions as developed here based on the

generalized Gibbs’ approach (see text).

According to the classical picture of this process, aggregates having nearly
the composition and structure of the newly evolving macroscopic phase grow by
incorporation of additional units with similar properties. In contrast, the analysis
performed here leads to the following picture of the process: in some certain
region of the ambient phase with a typical size, 2R,, the molar fraction of the
segregating component is increased. This increase of the concentration proceeds
without significant changes in the size of the region representing the precursor of
the new phase remaining comparable with the critical cluster size. As it turns out the
size of this region in the ambient phase, where the concentration amplification takes
place, may even decrease again in the course of increase of the molar fraction of the
second component in it (cf. Figs. 1.5). In such cases, when the cluster size is reduced
with the evolution to the critical size, the driving force of the initial stage of the
cluster evolution consists in the change of the composition, but not of the size. Only
after the change of the composition is widely completed, the cluster starts to grow,
again (see Figs. 1.6b and 1.7c¢). The further evolution follows widely the classical

model.
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The dependence of the characteristic size parameter, 7, both in absolute (as
multiples of the parameter €2,) and relative units (rs = R,/ R.) on supersaturation for
different values of the ratio D /D5 is shown in Figs. 1.8 (dotted curve: D1/ Dy = 0.1,
dashed curve: D1/Dy = 1, full curve: Dy/Dy = 10). As evident, for most values of
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Fig. 1.8. Dependence of the size of the precursor of the newly evolving phase on
supersaturation for different values of the ratio D;/Dy (dotted curve: Dy/Dy =
0.1, dashed curve: Di/Ds = 1, and full curve: D1/Dy = 10). The respective
dependencies are given both in absolute (as multiples of the parameter ()5, cf.
Eq. (1.24)) and in relative units as 7, = Rs/R,.

the initial supersaturation the size parameter 7, is of the same order of magnitude as
the critical cluster size and may even exceed it. Such possibility is excluded if the
path of evolution is determined thermodynamically (as shown in Figs. 1.1 - 1.3), it is
a consequence of kinetic effects. Indeed, if the mobility of the second component is
small as compared with the first one (D > D), then its molar fraction in the cluster
is increased mainly by reducing the content of the rapidly moving first component,
1.e., by reducing the size of the cluster.

Summarizing above results, we find a very different picture of the scenario of
the phase formation process in solutions as compared with the classical model. It is
illustrated in Fig. 1.7c. In some part of space of the ambient phase with a characteristic
size 2R, the state of the ambient phase is changed continuously. In this process, the
size of the evolving cluster is varied only slightly. The relative width of the range

of sizes of the precursor of the new phase, where this transition proceeds, decreases
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with increasing supersaturation, and a characteristic size R, where the cluster begins
to change its composition, tends to the critical radius R, at x = x), .

Note that the picture described is in its nature very similar to the Cahn-
Hilliard picture of the initial stages of spinodal decomposition illustrated in Fig. 1.7b.
Here also an amplification of density fluctuations is found in a certain stage of the
transformation. The typical size of these precursors of the new phase depends on the
state of the ambient phase. It is of the order of R,. = Ajpas/2 (cf. Eq. (1.19) and
the discussion to it). This way, following the approach to nucleation as described
here, we conclude that nucleation and spinodal decomposition are not complementary
and different but in its nature very similar mechanisms of the phase transformation.
In both cases, the driving force of the process is connected with the change of the
concentration in some given region of the ambient phase. Only after the change
of the composition is widely completed, the subsequent evolution is determined by
factors known from classical theory, where the driving force is connected with the
change of the size of the clusters. On the other hand, some distinction remains, since
processes of phase formation commonly denoted as nucleation — i.e. evolving from
metastable initial states - have to overcome a potential barrier, while processes of
spinodal decomposition - starting from unstable initial states — have not. We will
see, in addition, shortly that nucleation (i.e., processes of phase formation involving
a potential barrier) may be the governing mechanism of evolution of the new phase

also for initial states in the unstable region near the spinodal curve.

1.5. Nucleation, Spinodal Decomposition and the Kinetics of Phase
Transformations in the Vicinity of the Spinodal Curve
1.5.1. Predictions of the Classical Gibbs’ and the Cahn-Hilliard
Approaches
The basic differences in the two classical mechanisms of first-order phase

transitions — nucleation-growth and spinodal decomposition — discussed are illustrated
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in Fig. 1.7a-b (cf. also [16]). According to the model, underlying the classical
description of nucleation processes, in relatively small-scale parts of the ambient
phase fluctuations are formed with state parameters (density, composition) widely
similar in its properties to the newly evolving macroscopic phase. These initially
small clusters grow then in their spatial extensions without significant changes in their
properties (see Figs. 1.4b and 1.7a). In particular, in application to the considered
example of segregation in a regular solution, the molar fraction of the segregating
component in the critical cluster is — following the classical Gibbs’ method of
determination — widely identical (somewhat larger) as compared with the respective
value T,,40r0 = :cér) in the newly evolving macroscopic phase [19,23]. The radius of

the critical cluster (expressed in terms of Gibbs’ surface of tension) is given as

. 2 2
RGtbs) - =0~ 20 (1.16)
(poz - pﬁ) CaALL

In order to determine A in this expression, one has to substitute into Eq. (1.12)
and (1.13) a value of z,, equal (somewhat larger) than x, = %,,4cr0 = I’ér).

Remaining inside the framework of the classical Gibbs’ approach, one can
determine uniquely the reference states for the description of the bulk properties of
the critical clusters (they are determined in Gibbs’ classical approach via identity of
temperature and chemical potentials in both coexisting phases, cf. Fig. 1.9). However,
one has no tool at the disposal allowing us to determine the dependence of the surface
tension on supersaturation or, in other terms, on the size of the critical clusters. If
one employs the capillarity approximation (i.e. identifies the value of o with the
respective value for an equilibrium coexistence of both phases at planar interfaces, i.e.,
oc=0 (xl(f) — xb> 2), then R, decreases monotonicly with decreasing supersaturation
(cf. Fig. 1.10). However, both R. and the work of critical cluster formation (cf.
Fig. 1.11) remain finite at the spinodal curve. However, by the physical meaning

of the spinodal curve (being the boundary between thermodynamically metastable

and unstable states of the homogeneous ambient phase), the work of critical cluster
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Fig. 1.9. Composition of the critical cluster for nucleation in a binary regular solution
as determined via the generalized Gibbs’ approach (full curve), Gibbs’ classical
approach (dashed curve) and the composition of the particular ridge cluster (dotted
curve) having widely the same cluster size as determined via the classical Gibbs’

approach (see text).

formation has to tend to zero here. Provided the surface of tension is chosen as
the dividing surface, the work of critical cluster formation can be written in Gibbs’

classical theory generally as

4 12
AGf:é%[RFMﬂ (1.17)
or as
1 3 1 3
AG, = 6r o ~ 6r o (1.18)

3 (pa—p) 3 (cabu)”

In order to allow a correct description of the behavior of the system near
the spinodal curve, the surface tension has to depend on supersaturation or on the
size of the critical cluster. It has to vanish at the spinodal curve. As a consequence
(cf. Eq. (1.16)), the radius of the critical cluster vanishes as well. Note that these

conclusions do not follow directly from Gibbs’ classical theory but are a consequence
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Fig. 1.10. Radius of the critical cluster for nucleation in a binary regular solution as
determined via the generalized Gibbs’ approach (full curve) and the classical Gibbs’
approach utilizing, in addition, the capillarity approximation (dashed curve). The
radius R, is given as multiples of the parameter €2y (cf. Eq. (1.24)). This parameter
has a value of the order of one nanometer [23].

from above given or similar additional considerations.

Following Gibbs’ classical approach, alternatively to the radius of the surface of
tension also other size parameters may be introduced like the equimolecular dividing
surface or their multi-component generalizations. These size parameters behave, in
general, quite differently near the spinodal, they may even diverge here [23-25]. The
bulk properties of the critical clusters do not depend on the choice of the dividing
surface, however.

This way, taking the radii of the equimolecular or similar dividing surfaces as
the size parameter for the description of the critical clusters, latter ones become near
the spinodal very large with bulk properties of the clusters similar to the properties
of the evolving macrophases. Obviously, such model critical clusters cannot be
considered as an appropriate description of the properties of the real critical clusters.
By this reason, in the search for an appropriate description of these real properties
in terms of Gibbs’ classical theory commonly the radius of the surface of tension is

chosen as the more appropriate size parameter.
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Fig. 1.11. Work of formation of the critical clusters (a) for nucleation in a binary
regular solution as determined via the generalized Gibbs’ approach (full curve) and the
classical Gibbs’ approach utilizing, in addition, the capillarity approximation (dashed
curve). In the computations, the parameter {2; was set equal to ten (cf. Eq. (1.23)). By
a dotted curve the value of the work of formation of a cluster passing the ridge of the
thermodynamic potential is specified having essentially the same size but a different
composition as compared with the critical cluster in Gibbs’ classical approach. The
right curves (b) give an illustration of the resulting differences in the steady-state
nucleation rates. Here the ratio of the nucleation rates, .J/.J.,ss, are shown, when J is
expressed through the value of the work of critical cluster formation computed via the
generalized Gibbs’ approach (evolution proceeding via the saddle point (full curve))
and via the work required to evolve via the particular ridge path discussed (dotted
curve). J..ss 18 the steady-state nucleation rate determined via the classical Gibbs’
approach and involving the capillarity approximation.

Summarizing, based on Gibbs’ classical theory of heterogeneous systems [8]
we come, in particular, to the following conclusions: (i.) the size of the critical
cluster is not uniquely defined, it depends on the definition of the size parameter.
Near the spinodal curve, different size parameters behave differently, they may, for
example, tend to zero or to infinity. (ii.) The properties of the critical clusters are
widely equivalent to the properties of the newly evolving macrophases. This condition
is fulfilled independently of the choice of the dividing surface and an inherent
consequence of the classical Gibbs’ approach.

In contrast, if the van der Waals — Cahn and Hilliard method is employed for the
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description of nucleation processes (i.e. for phase formation starting from metastable
initial states), then directly and without the necessity of additional postulates or
assumptions the following conclusions can be drawn [12-14]: For low values of the
supersaturation, the results of the classical Gibbs’ theory are reestablished. However,
with increasing supersaturation, the bulk state parameters of the critical clusters
change and approach near the spinodal the respective values of the metastable initial
states. As one consequence, the work of critical cluster formation tends to zero then.
In addition, the characteristic size parameter describing the spatial extension of the
critical clusters tends to infinity. These results are reconfirmed by more advanced
density functional computations of the properties of critical clusters [15]. This way,
the predictions of the classical Gibbs’ and the van der Waals-type approaches are in
contradiction for metastable initial states near the spinodal curve.

In addition, according to the Cahn-Hilliard picture of spinodal decomposition
(phase formation processes starting from unstable initial states), the first stages of the
phase transformation starting from unstable initial states are characterized by long
wave-length fluctuations with initially small changes in the state parameters of the
precursor of the new phase as compared with the ambient phase (see Fig. 1.7b).
Hereby the wave-number with the highest rate of amplification of the density
fluctuation depends on the molar fraction of the segregating component in the unstable
initial state. It diverges near the spinodal curve (e.g. [36]). For regular solutions, we

get, in particular, the following expression for the wave number with the highest

ol )],

)

amplification rate

For initial states near the spinodal curve, k,,,, becomes equal to zero [19,
23]. Denoting by a characteristic size parameter, 1,,.., the value of the wave-length

divided by two (knar = 27/ Amazs Rimar = Amaz/2), we come to the conclusion
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that the size of the new phase precursor with the highest rate of amplification of the
composition differences tends to infinity for initial states approaching the spinodal

curve from the side of the unstable initial states as

T 1 -
B o

This way, the van der Waals — Cahn and Hilliard approach is free of internal

contradictions, in the framework of this approach, the nucleation-growth model and
the model of spinodal decomposition lead, near the spinodal curve, to equivalent
results. However, the picture of the nucleation process, as derived via the van der
Waals or similar methods, i1s in contradiction with the conclusions derived based on
Gibbs’ classical theory: the state parameters of the critical clusters are quite different
and the sizes of the critical clusters behave differently (in particular, if in Gibbs’
approach the surface of tension is chosen as the dividing surface). This way, only one

of both theories (if any) can be correct.

1.5.2. Predictions of the Generalized Gibbs Approach

1.5.2.1. Critical Cluster Properties Near the Spinodal Curve

Having in mind above mentioned and additional problems of Gibbs’ classical
approach to the description of heterogeneous systems, in a number of recent publi-
cations a generalization of Gibbs’ method was developed (see e.g. [10,11,22,25,26])
and employed for the determination of the work of critical cluster formation for a
variety of different processes of phase formation [19-21]. In application to segregation
processes in binary regular solutions, the work of critical cluster formation and the

size of the critical cluster (determined in a similar form as the surface of tension in
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Gibbs’ classical approach) are given via [10,19,23]

2 1 3
o N L (1.21)

R, .
3 (COLAN)Z

- VANTI

For the considered case, these equations look similar to the classical expressions
as derived via Gibbs’ classical approach (cf. Egs. (1.16)—(1.18)). However, the
generalization of Gibbs’ theory, as outlined in cited papers, leads to a different
equation for the determination of the state parameters of the critical clusters. For

the considered particular case, we get

Of(x,z4)

3f(x,xa) + (v — 14) O

=0. (1.22)

The derivation of the respective equations is given in detail in [10,19,23]. Here
we reproduce the final results as far as they are required for the subsequent analysis
performed.

In Fig. 1.9, the composition of the critical clusters (determined via Eq. (1.22),
full curve) is shown in dependence on the composition of the ambient phase in the
range between the left hand side branches of the binodal and spinodal curves. For
small values of the supersaturation, the composition of the critical cluster coincides
with the composition of the newly evolving macroscopic phase (v, = xl(f) for
x — xp). It approaches the composition of the ambient phase for initial states near
the spinodal curve (v, — x5, for v — x,). These results are widely identical to
those obtained via van der Waals — Cahn and Hilliard and more sophisticated density
functional approaches. By a dashed curve, the composition of the critical cluster is
shown determined via Gibbs’ classical method (cf. [19,23]).

It 1s often stated that the classical theory of nucleation describes processes of
phase formation correctly for initial states in the vicinity of the binodal curve. This
statement is true but only to some extent. Indeed, for initial states in the vicinity of

the binodal curve both density functional computations and the generalized Gibbs’
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approach come to a similar conclusion as the classical Gibbs’ theory: the state
parameters of the critical clusters are, in this range of supersaturations, widely similar
to the respective properties of the newly evolving macroscopic phase (cf. e.g. Fig. 1.9
and [23-25]). However, as shown, for example, in Figs. 1.3 and 1.8, even in this
range of supersaturations the formation of the critical clusters does not proceed via
the classical model but via amplification of concentration differences in finite regions
of the ambient phase. This way, the classical model is not an appropriate description of
cluster formation processes in solid and liquid solutions even for low supersaturations.

Once the composition of the critical cluster is known in dependence on
supersaturation, immediately other parameters like the radius and the work of
formation of critical clusters may be calculated. For such purposes, we express

Egs. (1.21) in the form

AG, 7z, 1) 16r  o° 5
— Q _— Q = a) — — Yo )
kBT 1f2(fL” xa) 9 1 3 Ca(kBT)?) 9 g(ﬂf, T ) ('CC T )
(1.23)
g(z,xy) 20
R.= —CQy=—"— 0y = . 1.24
Qf(xa xa) ’ CakBT ( )

These dependencies of critical cluster size and work of critical cluster formation
on supersaturation, as determined via the generalized Gibbs’ approach, are shown
on Figs. 1.10 and 1.11a by full curves. The respective curves, obtained via the
classical Gibbs’ approach (corresponding to critical cluster compositions as given
by the dashed curve in Fig. 1.9 and employing the capillarity approximation o =
o (a:l(f) — ZUb> 2) are shown for comparison by dashed curves, again. Since we are
mainly interested here in qualitative results, we set the parameters {2; equal to ten
and €2, equal to one for convenience (€2 = 10, {25 = 1 nm). Such assumption is
also employed in the computations for the size parameter R shown in Figs. 1.3 and
1.8. More detailed estimates of these parameters for a model system are given in [23]

resulting in €21 = 13.6 and €2y = 1.2 nm.
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As evident the results of the generalized Gibbs’ approach are in full agreement
with the results of density functional computations of the respective parameters,
again, the work of critical cluster formation tends to zero and the size of the cluster
tends to infinity. This way, the generalized Gibbs’ approach gives a picture of the
critical clusters which is in agreement with van der Waals’ and similar methods of
determination and in contrast to the classical Gibbs’ method of determination of the
respective properties.

In Fig. 1.11b, changes in the values of the nucleation rate are shown, if the
different methods are employed for the determination of the work of critical cluster
formation. As evident, in the range, where intensive nucleation processes may occur,
the generalized Gibbs’ approach leads — provided the pre-exponential terms are taken
to be of the same order of magnitude — to nucleation rates by 6-9 decimal orders larger
as compared with the results of classical nucleation theory. This way, the classical
Gibbs’ approach, involving the capillarity approximation, underestimates the values
of the steady-state nucleation rates for phase separation in solutions significantly.

Note an highly interesting feature of the curve shown in Fig. 1.10 representing
the dependence of the cluster size on supersaturation in the generalized Gibbs’
approach. As evident, except in the immediate vicinity of the binodal curve (where
nucleation cannot occur due to large values of the work of critical cluster formation)
and the vicinity of the spinodal curve (which cannot be reached commonly),
there exists a broad range of supersaturations in between these limits where the
cluster size remains nearly constant. Consequently, in almost any experiment, where
homogeneous nucleation is observed, the critical nuclei may be expected to be always
of nearly the same size.

In Fig. 1.12 another important new consequence of the generalized Gibbs’
approach in comparison with the classical Gibbs’ method of description is illustrated.
In Fig. 1.12a, the dependence of the thermodynamic driving force, (Au/kpT) =

| f(x,x,)|, for critical cluster formation is given both for the classical Gibbs’ method
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Fig. 1.12.  (a) Thermodynamic driving force of critical cluster formation
(Ap/kpT) = |f(x,z,)| and (b) surface tension (o(x)/0), referred to the

appropriately defined surfaces of tension, as determined via the classical (dashed
curve) and generalized (full curves) Gibbs’ approaches.

(dashed curve) and the generalized Gibbs’ approach (full curve). While the classical
Gibbs’ approach (in agreement with common expectations) results in a monotonous
increase of the driving force of cluster formation with increasing molar fraction of
the segregating component in the metastable ambient phase, the generalized Gibbs’
approach predicts a non-monotonic behavior. This way, the change of the properties of
the critical clusters reduces the driving force of cluster formation as compared with the
predictions of Gibbs’ classical method. However, this reduction of the driving force
is overcompensated by the decrease of the surface tension. The respective curves (in
reduced units (0()/0x), oo = 0 <9:l(f) — :Eb) 2) are shown in Fig. 1.12b.

A similar behavior as discussed above was found also for a variety of other
specific forms of phase transformations (condensation and boiling in one-component
systems [20,21,24], boiling in binary liquid-gas solutions [25]). This way, the basic
features obtained from above given analysis can be expected to be of quite general

nature.
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1.5.2.2. Nucleation near the Spinodal Curve By-Passing the Saddle Point

In the preceding analysis, we always assumed that the flux of the clusters to
the new phase passes the saddle point of the characteristic thermodynamic potential.
Such scenario can be considered as the rule, but exceptions from this general rule are
possible as well (see e.g. [32-35]). Such exceptions correspond to situations when
the main flux to the new phase passes not the saddle but some ridge point of the
thermodynamic potential. General expectations and detailed analyses [37,38] allow
to conclude that ridge crossing will be the preferred channel of the transformation in
cases, when the thermodynamic barrier is relatively low. In such situations, not the
thermodynamic but kinetic factors will govern the process. A precondition of such
change in the kinetics is obviously that the ridge crossing is characterized by relatively
low values of the activation energy as well. The determination of the location of the
particular ridge point of the thermodynamic potential, determining the kinetics of
the transformation, is a highly complicated task [32] and will be discussed in the
framework of the approach outlined in more detail in a future analysis. Here we will
merely show that in the vicinity of the spinodal curve ridge points with relatively low
activation barriers exists, which are kinetically favored as compared with the passage
via the saddle point of the thermodynamic potential.

As already mentioned, in Figs. 1.10 and 1.11a the radius of the critical cluster
and the work of critical cluster formation are shown also for the case that Gibbs’
classical approach is employed for the determination of these quantities and the
capillarity approximation is used, in addition (dashed curves; cf. [19,23]). As evident
from Fig. 1.10, both curves for the critical cluster size coincide widely except in the
immediate vicinity of the spinodal curve.

The question now is, whether nucleation in the vicinity of the spinodal proceeds
necessarily via passing the saddle point of the Gibbs free energy surface or not. On one

side, the saddle point corresponds to the lowest value of the work of cluster formation
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allowing — after the respective barrier is overcome — the cluster to evolve to the new
phase. Indeed, by taking the derivative of the work of critical cluster formation with
respect to the cluster composition, z,, for fixed values of the composition of the
ambient phase, we arrive at Eq. (1.22). On the other side, in order to evolve into the
new phase via the saddle point near the spinodal curve very large clusters have to be
formed which is unfavorable from a kinetic point of view.

Near the spinodal curve (we restrict ourselves here to values of x larger than
0.2), the work of critical clusters is small and also other channels of the transformation
may be effective. Such other channels are the formation of clusters passing not the
saddle but the ridge of the thermodynamic potential, i.e., by-passing the saddle point.
The cluster sizes along this ridge are given by the mechanical equilibrium conditions,
which are expressed for the considered system via Eq. (1.24). This way, utilizing this
expression, we can compute for any value of the composition of the ambient phase
and for any value of the cluster size along the ridge the value of the concentration in
this particular cluster. Then, utilizing Eq. (1.23), we can obtain the value of the work
of cluster formation for this particular channel of evolution to the new phase.

In order to estimate the possible magnitude of the work of cluster formation for

clusters located at the ridge, we suppose the cluster size to be determined via

gz, 2\") 20

) T 2

R.= -} = :
¢ 2 Cak BT
This expression is widely identical to the radius of the surface of tension in the

classical Gibbs approach employing the capillarity approximation. The composition
of the cluster at the ridge of the thermodynamic potential is determined then via the

generalized Gibbs’ approach as

_ 9l . (1.26)
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One of the possible solutions of this equation is obviously z, = xl(f).

This solution corresponds to the classical Gibbs’ approach utilizing the capillarity
approximation. As it turns out the classical Gibbs’ result corresponds — interpreted in
terms of the generalized Gibbs’ approach — not to a saddle point path of evolution but
to one of the ridge channels of evolution to the new phase.

There exists, however, also another solution of Eq. (1.26) different from the
classical limiting case, i.¢., there exists a ridge path of evolution to the newly evolving
phase with the following properties: (i.) The size of the cluster at the ridge is widely
identical to the radius of the surface of tension determined via Gibbs’ classical
method. (ii.) The composition of this cluster is different from the compositions of
the critical clusters as determined via Gibbs’ classical and the generalized Gibbs’
approaches. The respective dependence of the composition of this particular ridge
cluster on the molar fraction of the segregating component in the ambient phase is
shown in Fig. 1.9 by a dotted curve. (iii.) The value of the work of formation of this
particular cluster — located at the ridge of the thermodynamic potential — is shown
in dependence on the composition of the ambient phase in Fig. 1.11a. The work of
formation of a cluster on the particular ridge point is higher as compared with the
saddle point, when the generalized Gibbs’ method i1s employed for its determination,
but significantly lower as compared with the value obtained via the classical Gibbs’
approach employing the capillarity approximation. As the result, the considered ridge
path results in an increase of the nucleation rate as compared with the classical
estimate by 5-9 decimal orders (cf. Fig. 1.11b).

We have shown in this way that near the spinodal curve, at least, one channel
of evolution to the new phase exists, which has values of the work of ridge cluster
formation considerably lower as compared with the work of critical cluster formation
according to the classical Gibbs’ results, but is of the same size as the critical
cluster size in Gibbs’ classical approach. The system has got, in this way, at least,

one additional channel of evolution to the new phase with values of the activation
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barrier much less as compared with the results of the classical Gibbs’ approach
but much lower values of the cluster sizes as compared with the saddle point
parameters computed via the generalized Gibbs’ approach (or by density functional
computations). This way, in metastable initial states near the spinodal curve nucleation
will not proceed, in general, via the saddle point but in trajectories of evolution by-
passing the saddle point of the thermodynamic potential. Hereby the mechanism of
cluster evolution can be determined similarly as it is done before for the case of
critical clusters in the generalized Gibbs’ approach (i.e., by determining the most

probable path over the particular point on the ridge of the thermodynamic potential).

1.5.2.3. Application of Nucleation Concepts to Thermodynamically
Unstable States Beyond the Spinodal Curve

It is well-known that the classical Gibbs’ approach to the determination of the
work of critical cluster formation — utilizing the capillarity approximation — does not
show any peculiar features for initial states approaching the spinodal curve from the
side of metastable states (cf. Figs. 1.9-1.11). As mentioned, this property is one of the
severe disadvantages of this approach. In this connection the question arises, what the
predictions of the generalized Gibbs’ approach are for unstable initial states on the
right hand side of the spinodal curve.

In Fig. 1.13a, the composition of the critical cluster is given as a function of
the supersaturation, but now in the range 0 < x < 0.5, as obtained by the classical
(dashed curve) and the generalized Gibbs’ approaches (full curves). The composition
of the cluster phase determined via the generalized Gibbs’ approach (Eq.(1.22)) has,
in general, two solutions, x, = x and z, > x (cf. Fig. 1.9). However, for values
of the initial supersaturation x < x,, only one of these solutions (z, > ) leads
to physically reasonable results. The solution x, = x would result in this range of
compositions in negative values of the critical cluster size (see also [19,23] and the

subsequent analysis; x, 1s here the concentration at the left branch of the spinodal
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Fig. 1.13. Parameters of the critical and the ridge clusters for metastable and unstable
initial states: (@) Composition of the critical cluster as determined via the classical
Gibbs approach employing the capillarity approximation (dashed curve), via the
generalized Gibbs approach (full curves, see text) and the composition of the ridge
cluster having the same size as the critical cluster in the classical Gibbs approach
(dotted curve); (b) Size of the critical cluster determined via the generalized Gibbs’
approach (full curve) and size of the ridge cluster (dotted curve; this curve gives
also the size of the radius of the surface of tension in dependence on supersaturation
computed in the framework of the classical Gibbs’ approach employing the capillarity
approximation); (c-d) Work of formation of the the critical cluster as obtained via
Gibbs’ classical approach employing the capillarity approximation (dashed curve),
work of formation of the critical cluster in the generalized Gibbs’ approach (full
curve) and of the particular ridge cluster (dotted curve) as specified in the text ((a)-
(d): left top to right bottom).

curve, again). In contrast, for x > x, there exists only one solution z, = =, 1.e.,
the concentration in the critical cluster equals the concentration in the ambient phase.
For this solution, the equation for the critical cluster size Eq. (1.21) leads to an

indeterminacy of the order 0/0. However, it can be resolved easily to give

fle = —fh I, (%) - (82]"292 ) > {1 - (4?) (x(ll— a:)) }p; |

da2

(%

)

(1.27)
This expression has negative values for initial states in the range v < w, (this is
one of the reasons, why this solution is physically meaningless in this range), it has

positive values for z > xg,.
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The dependence of the critical cluster size R. on supersaturation is shown in
Fig. 1.13b by a full curve. Note that the behavior of this size parameter is, in the range
of unstable initial states, widely identical to the radius R,,,, determined via Eq. (1.20).
This way, the generalized Gibbs’ approach allows, when applied to unstable initial
states, to determine the characteristic sizes of the regions in space with the highest rate
of amplification of density fluctuations as predicted in the framework of the Cahn-
Hilliard theory of spinodal decomposition. This way, the size parameter R, retains a
well-defined physical meaning of a characteristic size where density amplifications
occur preferentially from a thermodynamic point of view.

The expression for the work of critical cluster formation Eq. (1.23), when
applied to unstable initial states, results (after the resolution of the indeterminacy)
in AG./kgT = 0. As it has to be the case, for unstable initial states the activation
energy for the transition to the new phase equals zero. The work of critical cluster
formation, as determined via Eq.(1.23), is shown by a full curve in Fig. 1.13c-d for
the whole range of initial supersaturations considered.

Finally, let us consider also the parameters of the particular ridge pass of
transition of the system, considered earlier, into the new phase when extended to
unstable initial states. As defined earlier, we consider a path over the ridge of the
potential hypersurface having nearly the same size as the critical cluster determined
via Gibbs’ classical approach (cf. the dotted curve in Fig. 1.13b). The composition of
the ridge cluster is shown by a dotted curve in Fig. 1.13a, the work of formation of
this particular ridge cluster in Fig. 1.13c-d by dotted curves as well.

It turns out that the evolution to the new phase can proceed easily via the
formation of such types of ridge clusters having values of the activation energy of
the order 10" — 10° k5T and relative small values of their characteristic sizes. This
way, this channel of evolution can compete with the thermodynamically preferred
channel of formation of critical clusters with zero work of critical cluster formation

or, equivalently, the Cahn-Hilliard scenario of spinodal decomposition.
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1.6. Discussion

In the present paper, the new approach to the description of nucleation-growth
processes in multi-component systems, developed in its basic premises in [10, 11,25]
and accompanying papers, was extended to account for both thermodynamic and
kinetic factors in the determination of the preferred trajectory of the clusters in the
space of thermodynamic state parameters. This trajectory determines the change of
the properties of the clusters in the course of their evolution. As it turns out the
resulting picture of the process of the phase transition in solid solutions is quite
different as compared with the classical picture. Moreover, as shown, there is no
qualitative difference between nucleation and spinodal decomposition with respect
to the basic mechanism of cluster evolution. Nucleation processes, starting from
thermodynamically metastable initial states, proceed qualitatively widely similar as
compared with processes of phase formation governed by spinodal decomposition.
As one of the consequences the problem arises how the classical kinetic description
of nucleation-growth processes (cf. e.g. [4-7]) has to be modified to account
appropriately for the scenario of the transformation as developed here. Some first
analyses in this direction are outlined in [10, 30].

At part, similar consequences as developed here were drawn some time ago
based on the statistical mechanical analysis of model systems (e.g. [4,16]). We come
therefore to the conclusion that the generalized Gibbs’ approach leads — for the
model systems studied — to, at least, qualitatively equivalent results as mentioned
statistical mechanical model analyses. This coincidence is considered as an additional
confirmation of the validity of the generalized Gibbs’ approach, utilized basically in
our analysis. Moreover, since in our approach only the knowledge of macroscopic
properties of the ambient and the newly evolving phases is required in order to
determine the properties of the clusters in dependence on their sizes, the approach

presented here seems, to our opinion, to be preferable in the analysis of experimental
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results on phase formation processes. The application of the methods and results
obtained to the interpretation of experimental data will be addressed in future
publications.

The results of the analysis, as performed above, were obtained for the
analysis of regular solutions. They can be quantitatively modified by modifications
of the thermodynamic properties of the real in comparison to the model system,
by peculiarities of the process of diffusion not accounted for here or additional
thermodynamic factors like elastic stresses which have to be taken into consideration
in a number of cases as well. Nevertheless, we believe that the scenario outlined will
be valid generally for processes of segregation in solid or liquid solutions.

The question arises also immediately, whether the general scenario found for
phase separation in solutions is applicable to other processes of phase formation —
like condensation of gases, bubble formation in liquids, crystallization of melts — as
well or not. The answer to this question requires a detailed separate analysis which
can be performed straightforwardly based on the basic ideas and method as outlined
here. The respective work is in progress and the results will be reported in future

communications.
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Appendix

According to the basic premises of thermodynamics, the thermodynamic
potential ¢ of some given system can be expressed as a function of f independent
macroscopic state parameters {¢} = (q1,q2,...,q5), i.e, © = ®(q1,q2,...,qf).
For the analysis of nucleation processes, we can always express the thermodynamic
potential referred to its value at the critical cluster size. Consequently, ® can be
considered as a dimensionless function. We will assume that the set of variables {q}
is given in a dimensionless form as well.

Let us assume we consider two points ({¢} and {q¢ + dgq}) on the surface ®
located in the immediate vicinity of each other. The change of the thermodynamic

potential in the transition from {q} to {q + dg} can be expressed then as

f f
0P oP
®({g+dg}) —®({q}) = —aq.dqi or  dd=>) :—aq.dqi . (1.28)
i=1 1t i=1 1t

Now, let us consider some trajectory on the hypersurface ®({q}). Along the
given trajectory, the coordinates can be expressed in a parametric form via a scalar
variable [. If we denote the distance between the two considered points by Al, we

can then introduce the derivative along some given trajectory as

10~ 0% dyg
dl

T dl (1.29)

1=1

Now, based on Egs. (1.28) or (1.29), we can introduce an f-dimensional

Cartesian system of coordinates with the set of unit vectors {€,}. Then we can write

f
7= uda; (1.30)
1=1



J. Chem. Phys., Vol. 121, No. 14, 8 October 2004 Nucleation versus spinodal decomposition 87

and define a gradient in the respective system via

f
L 0P
Vo = ;eqia—qi . (1.31)
With these notations, we have
d® = (V®)dg or  d® = |VP||dq] cos (VD" d]) . (1.32)

The absolute value of V& does not depend on the chosen direction.
Consequently, the absolute value of d® has its maximum (for a given value of |dq]),
if dq is directed parallel or antiparallel to V®. This way, searching for the trajectory

with the steepest descent of the thermodynamic potential, we can demand

dqi o 0P

Tt (1.33)

Instead of {¢}, we may employ also alternative sets of variables {Q} for the
description of the thermodynamic state of the system. So, we have to have some

one-to-one transformation of the form

Qj:Qj(QI7QQ7"'7Qf)7 j:1727"'7f7 (134)

and the inverse transformation

QJZQJ(Q17Q277Qf)7 ]:17277f (135)

Since the variables in each of the sets of parameters {¢} and {@)} are independent
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from each other, we have

90, 8% ik - (1.36)

aQ] Z 8@] aQZ a% Z 8(]] an

aQs, 9g 90: O g,

With the new variables, we can carry out the same procedure as earlier and

arrive, similarly to Eq. (1.28), at

Z 30, dQZ- . (1.37)

The validity of this relation can be shown also directly. Going over in Eq. (1.28) to

new coordinates, we may write

0P 0Q; 4
i Z < 9Q; Jas Z

k=

(1.38)

A substitution into Eq. (1.28) employing Eq. (1.36) results immediately into
Eq. (1.37).

Starting with Eq. (1.33) and going over to the new variables, we have

aq) aQJ _ 8% de -
z_:ﬁ@J 9 Za@; a - ThEeT (1.39)

This set of relations allows one to determine the dependencies (d();/dl) which give
the direction of motion in the new system of coordinates. Now, by multiplying this

relation with (0Q;/0q;) and taking the sum over i, we arrive with Eq. (1.36) at

dQy 90,00,
_ZM;%% (1.40)
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This way, in the new system of coordinates {()}, a relation similar to Eq. (1.33) holds

then and only then, if the conditions

/
0Q; 0Qy,
T Tk 5., (1.41)
i dq; g

are fulfilled for any allowed values of j and k. In general, we have to employ
Eq. (1.40) or equivalent expressions.

One of the sets of coordinates of particular importance for the analysis
performed in the present paper is (7, Tog, T3q, - - - , Tke) determining the evolution in
the size-composition space. It is connected with the original one (114, 24, - - - Nka)

by Eq. (1.6) and the following transformations

R n; 4
r=—, Tio = — | Ng = ana : (1.42)
j=1

Here R and R, are the radius of the cluster and the critical cluster radius,
respectively. From Egs. (1.6) and (1.42), we obtain then
or Wig 0o 1

- = —(0ij = Tja) - 1.43
O IR om0 o) (1.43)

The path of evolution in the new space of variables is determined by the general
set of equations Eq. (1.40). In the particular case considered, we arrive with Egs. (1.6)

and (1.42) also directly at

k

dr 1 dnjq,
@ T (144

According to Eq. (1.4), we can replace now the derivatives (dn;,/dl) by
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—(8@/8nm), 1.e

Going over then to the description in size-composition space, we arrive at

1 k
0 1 od Or 0P 0Oxy,
@ T {5% "2 m, a”m} |

In the evaluation of Eq. (1.46), Egs. (1.43) have to be utilized.

Similarly to above given considerations, we obtain from Eq. (1.42)

k
dSL’ia - 1 dnm dnga
dl — ng { Z }

A substitution of Eq. (1.4) into Eq. (1.47) yields

k
dl’m o 1
dl {&rzm Z nja}

After some straightforward transformations we arrive finally at

k
dri, 1 or or \ 00
dl n, { <8nm Fia Z 8nja> or i

90

(1.45)

(1.46)

(1.47)

(1.48)

(1.49)

For phase formation in a two-component system, we obtain as a special case

dr

r
E a 3 (nla + n2a)2

1 2r 0P 0P
[? or (1= 22a) 8%] ’

(1.50)
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dx 1 r 0P 0P
¢ — — (1 —2z,) — 24 (1—2,)° 1.51
dl (nla + nga)2 {3 ( l’a) 67" + |:xa + ( $a) :| 81@} ) ( 5 )

where z, = x9, holds.

10.

11
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1.7. BucHoBKkHM 10 po3aiay 1

Pesynbrati nociiikeHb, IpeCTaBIeHUX Yy AaHOMY O3/, OMyOIiKOBaHO B
crarti [1] (Jomatox A. Crniucok myOumikaiiii 3100yBava 3a TemMoro nucepraiiii). Cepen

OCHOBHHUX pE€3YJIbTATIB y SKOCTI BUCHOBKIB MOXHA BUIIUTH HACTYIIHI:
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e B y3aranpHeHomy Mmetoai ['100ca 3MiHa po3Mmipy Ta CKJIaay KiacTepiB
HOBOi (ha3u B MPOIEC] 3aPOKEHHS SKICHO BIAPIZHSAIOTHCSA MOPIBHSIHO 3 KIACHYHOIO
kaptuHoto. [lokazaHo, 10 3apopkeHHs, TOOTO mepia craais GopMyBaHHS KiacTe-
pa, TMOYMHAIOUM 3 METAcTaOUIbHUX IOYAaTKOBHX CTaHIB, BUSIBJISE BIACTHUBOCTI, IO
HaraayloTh CHIHOJAIBHHUM PO3MAa: CIOYaTKy PO3MIp KIacTepa 3aJUIIAEThCS MaikKe
MOCTIMHMM, a MOro CKjaj 3MIHIOEThCS, XO4da HAsSBHICTh aKTHBAIIMHOTO Oap’epa

BIJIPI3HAE MPOIEC 3aPOKEHHS BiJ] CIIPaBKHbOIO CIIHOAAIBHOTO PO3MATy.

e VYTBOpeHHs (a3 SK y MeTacTadiIbHUX, TaK 1 HECTAOLIbHUX IMOYATKOBHX
CTaHax MOOJM3Y KJIACMYHOI CIIHOJAI, MOXKE TPOTIKATH Yepe3 MPOXOMKEHHS XpeOTa
TEPMOAMHAMIYHOIO IOTEHLIaTy, TOOTO uepe3 JesKUil akTUBaIIiHUI O6ap’ep, HE3BaXKa-
I0YM Ha T€, IO JJIsl HECTAOUTbHUX MMOYATKOBHX CTAHIB 3HAYEHHS poOOTH (POpMYyBaHHS
KPUTHUYHOTO KJIacTepa, 1110 BIAMOBIA€E C1JJIOBOT TOUIll TEPMOAMHAMIYHOTO MOTEHITIAITY,
JOPIBHIOE HYIIO. TakUM YMHOM, IMOKa3aHO, IO KOHIICMIIS HyKJeamii — B Moaudiko-
BaHIM (opMi MOPIBHSIHO 3 KJIACHYHOIO KAPTUHOI — MOXE TaKOXK OyTH MPUJIaTHOIO
JUTISL aHaJI3y MPOIEeCY YTBOPEHHs HOBOI (ha3u y HeCTaOLIbHOMY MOYaTKOBOMY CTaHi,
TOOTO, Ha BIIMIHY BiJl KJJacuyHOTO miaxony ['1060ca, y3aransHenuit meton 1'100ca nae
onuc (hopMyBaHHS HOBOI (Da3u AK A1t O1HOAAIBHOI, TaK 1 JAJIsI CIIIHOAANBHOI JIISTHOK
¢dazoBoi giarpamu.

e OCHOBHUM pPE3yJabTaTOM, [0 Ma€ MPAKTHYHE 3HAYCHHS, € Te, MO0 podoTa
YTBOPEHHS KJIacTepa KPUTUYHOTO PO3MIpY B y3araibHeHOMY Mmetoni ['1606ca meHia,
HIXK y KJIaCHYHHUH Teopii HyKJealli y KaniIspHOMY HaOMWKEHHI, 1 3MEHIIIYEThCS 0

HYJISl Ha CIIHOZAI.
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PO3JILI 2

HYKJIEALISI ABO CITHOJAJIBHUM PO3MA B OBMEKEHUX
BIHAPHUX PO3YNHAX

VY npyromy po3ziiai OCHOBHI OCOOJIMBOCTI CIIHOIAJIBHOTO PO3Iaay, 3 OJHOIO
OOKy, Ta HyKJeaIllii, 3 1HIIOro, Ta IMepexi MK oOoMa MexaHi3MaMU aHaJi3YIOThCS
B paMKax TE€PMOAMHAMIYHOI KJIACTEpHOI MOJIE]l HAa OCHOBI y3arajibHEHOTO METOAY
['i66¢ca y mozeni perymsipHoro 6iHapHOro po3uuHy. [Ipu iboMy kiactepu HOBOI (azu
MOXYTh 3MIHIOBAaTUCS 3 4acoOM fK 3a po3MipamH, TaK 1 32 CBOIMU IHTEHCHUBHUMH
napaMeTpaMH CTaHy, Hamnpukiaja, TYCTHHOIO abo CKIaZoM. AHAaNI3yeTbCs TaKOXK
BILIMB 3MiHU TTapaMeTPiB CTaHy HABKOJIMIITHHOTO CEPEIOBHUIIA Ha CBOJIIOIIIIO KIacTepa.
Hacniaku Takoi 3MiHM MaroTh BaKJIMBE 3HAUYEHHS SIK Ui aHali3y (a3oyTBOPEHHS B
oOMexeHuX (HaHOPO3MIPHUX) CHCTEMax, TaK 1 JUIsl PO3YMIHHS €BOJIIOLIT aHcamOIiB

KJIACTEPIB y BEIUKUX (HEOOMEXKEHUX) CUCTEMAX.
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Basic features of spinodal decomposition, on one side, and nucleation, on the
other side, and the transition between both mechanisms are analyzed within
the framework of a generalized thermodynamic cluster model based on the
generalized Gibbs approach. Hereby the clusters, representing the density or

composition variations in the system, may change with time both in size and
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in their intensive state parameters (density and composition, for example).
In the first part of the analysis, we consider phase separation processes in
dependence on the initial state of the system for the case when changes of the
state parameters of the ambient system due to the evolution of the clusters can
be neglected as this is the case for cluster formation in an infinite system. As
a next step, the effect of changes of the state parameters on cluster evolution
is analyzed. Such depletion effects are of importance both for the analysis of
phase formation in confined systems as well as for the understanding of the
evolution of ensembles of clusters in large (in the limit infinite) systems. The
results of the thermodynamic analysis are employed in both cases to exhibit
the effect of thermodynamic constraints on the dynamics of phase separation

processes. (©)2004 American Institute of Physics. [DOI: 10.1063/1.2774989]

2.1. Introduction

Nucleation and spinodal decomposition are two major mechanisms how first-
order phase transitions may proceed in a variety of systems [1-10]. Which one of
the mentioned mechanisms dominates in the decomposition process is commonly
assumed to depend on the degree of instability of the initial state of a phase-separating
system. The phase transition is supposed to proceed via nucleation and growth
for metastable systems [1, 2], while for thermodynamically unstable systems the
mechanism of spinodal decomposition is expected to govern the process [3,4,9,10].

Following the basic ideas anticipated in its basic premises already by Gibbs
[11], in nucleation a nucleus of initially small size is supposed to be formed
stochastically with state parameters widely similar to the properties of the newly
evolving macroscopic phases. In contrast, spinodal decomposition is characterized
by initially smooth changes of the state parameters of the system (composition,

density, etc.) extended, in general, over large regions in space. These differences in the
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basic models lead to essentially different theoretical approaches to the description of
nucleation-growth and spinodal decomposition processes, respectively. In the simplest
formulation, spinodal decomposition is treated as a process of spontaneous growth of
a set of long-wavelength fluctuations of the density or composition of the initial state
[9,10]. In such description, the growth increment of these fluctuations is determined
in dependence on the wave numbers of the respective modes as performed for the
first time by Cahn and Hilliard [9, 10]. In the decay of initially metastable states via
nucleation, the bulk properties of the clusters are supposed to be widely similar to
the properties of the respective macroscopic phases [11] and the process of stochastic
formation, the further growth and shrinkage of such clusters is analyzed. Briefly
speaking, in the initial stages of spinodal decomposition the change of density and/or
composition is determined for a more or less fixed size of the new phase regions,
while nucleation-growth models draw the attention to a change of the size of the
clusters at given values of their intensive state parameters.

Historically, the mentioned different approaches have been developed employi-
ng (or reinventing) two different thermodynamic methods of description of
thermodynamically heterogeneous systems developed by Gibbs [11] (nucleation)
and van der Waals [12, 13] (spinodal decomposition), respectively. The classical
Gibbs’ theory was and is employed till now as the most frequently used tool
basically for the determination of the properties of critical clusters determining
the rate of cluster formation in metastable systems and, employing more or less
explicitly expressed additional assumptions, to cluster growth and shrinkage processes
(cf. [14-16]). Gibbs’ classical approach cannot give any predictions about phase
formation processes evolving in unstable initial states. In contrast, the van der Waals
& Cahn-Hilliard approach allows one to determine the properties of critical clusters
for metastable systems and the modes of highest density amplification for phase
separation in unstable initial states.

Both Gibbs’ and van der Waals’ methods of description of heterogeneous
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systems are considered hereby conventionally as essentially correct and equivalent.
However, as shown already long ago by Cahn and Hilliard [9], the predictions
concerning the properties of critical clusters in metastable systems derived via the
Gibbs’ and van der Waals’ methods are in deep contradiction to each other (for more
details see [15,16]). These contradictions are especially significant in the vicinity
of the classical spinodal curve separating metastable from unstable initial states. In
addition, mentioned above comparison of similarities and differences of nucleation
and spinodal decomposition processes is somewhat oversimplified. Modern theories
both of spinodal decomposition and nucleation exhibit more complicated features in
comparison to the models as described briefly above (see, for example, [3-5,16-20]).
Moreover, in contrast to the classical picture a smooth transition from metastability
to instability has been observed both in computer models of phase separating systems
[3,5,18,20] and in experiment [21].

In preceding papers [15,16], it was shown that the contradictions between Gi-
bbs’ and van der Waals’ methods of description of thermodynamically heterogeneous
systems in application to phase formation processes can be resolved by generalizing
Gibbs’ approach. In this generalization (for the details see [22, 23]), Gibbs’
idealized cluster model is employed again for the theoretical treatment of density
or composition fluctuations, however, the basic equations are generalized allowing
one to consider, in contrast to Gibbs’ classical approach, the interfacial tension, in
general, as a function of the state parameters of both ambient and cluster phases. It
was shown that this generalization of Gibbs’ approach leads, in addition to a variety of
other consequences, to the reconciliation of both mentioned thermodynamic methods
of description of heterogeneous systems. Moreover, the generalized Gibbs’ method is
shown to allow one to arrive also at an understanding of basic features of the kinetics
of spinodal decomposition [16].

In the present paper we extend the analyses performed in [15, 16]. Basic

features of spinodal decomposition, on one side, and nucleation, on the other side,
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and the transition between both mechanisms are analyzed within the framework of
described above generalized thermodynamic cluster model based on the generalized
Gibbs approach [22,23]. Hereby the clusters, representing the density or composition
variations in the system, may change with time both in size and in their intensive state
parameters (density and composition, for example). In the first part of the analysis, we
consider phase separation processes in dependence on the initial state of the system
for the case when changes of the state parameters of the ambient system due to the
evolution of the clusters can be neglected as this is the case for cluster formation in an
infinite system. As a next step, the effect of changes of the state parameters on cluster
evolution is analyzed. Such depletion effects are of importance both for the analysis of
phase formation in confined systems [3,25-31] as well as for the understanding of the
evolution of ensembles of clusters in large (in the limit infinite) systems [25,32-35].
The results of the thermodynamic analysis are employed in both cases to exhibit the
effect of thermodynamic constraints on the dynamics of phase separation processes.
As a model system for the analysis, we consider phase separation in a binary regular
solution, again (see also [15,16,36]).

The paper is organized as follows. In Section 9.2, basic equations employed
for the thermodynamic analysis of phase separation in solutions are summarized. In
Section 9.4, these results are applied to the analysis of phase formation in infinite
domains in the sense as specified above. In Section 8.4, finite size effects in the
kinetics are studied both in application to phase separation in systems of finite size and
with respect to the understanding of the evolution in macroscopic systems described
in terms of formation and competitive growth of ensembles of clusters [25,37]. A
discussion of the results and possible further developments in Section 8.5 completes

the paper.
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2.2. The model system

We consider thermodynamic aspects of new phase formation in a binary solid
or liquid solution in domains both of finite and infinite sizes. Since here we are
mainly interested in the discussion of the basic principles and consequences of the
newly developed generalized Gibbs’ approach in application to phase separation, the
solution is considered as a regular one representing one of the simplest models of
a system consisting of two kinds of interacting molecules. The domain, where the
processes of nucleation and/or spinodal decomposition are assumed to proceed, is
considered similarly to [29] as a sphere of radius Rjy. The limiting situation of an
infinite system is thus reached for Ry — oo, while finite-size effects take place for

finite values of Ry (see Fig. 2.1).

Fig. 2.1. Model employed in the analysis: A cluster of size, R, and molar fraction,
T4, is formed in a volume, V' = 47 R} /3, of an initially homogeneous binary solid
or liquid solution with a composition given by the molar fraction, xz. The initial

composition of the ambient solution we denote by .

Cluster formation in a binary solution results from a redistribution of molecules.
Following Gibbs’ model approach, we consider a cluster as a spatially homogeneous

part of the domain volume with a composition different from the ambient phase. Both
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size and composition of the cluster may vary in a wide range. As the dividing surface,
separating the cluster from the ambient phase in the thermodynamic description
underlying the method of analysis, we always employ here the surface of tension
[11,22,23]. As in our previous analyses [26,27] performed in terms of the classical
Gibbs’ approach and more recent investigations of related problems by several authors
employing different methods [29-31], the effect of the finite size is taken into account
only by the conservation laws for the numbers of particles of the different components
in the cluster (specified by the subscript «) and in the ambient phase (specified by
(). We may write then

n; = Nj, + Nz = const. 3=12,
n =nq, + ng = const. , (2.1)
Nog = Nia + N2a nﬁ:nlﬁ+n26-

The molar fractions of the second component in the ambient phase (z3) and the cluster
(z,) are defined as

n n
-2 Ly = —22 (2.2)
ni1g + Nag

T —
Nia + Non

The initial state is either a metastable or unstable homogeneous state, characterized
by 2, (0) = 25 (0) = =.

In line with the basic assumptions underlying the model of regular solutions
[36] and for simplicity of the notations, the volume per particle, w, is assumed to
be the same for both components and independent on composition (w, = wg = w).
Cluster size and particle number in a cluster are related then by the following simple

expression

4

—7TR3 = NoWw . (2.3)
3

Assuming further that a cluster of radius, R, and composition, z,, is formed in a

spherical domain of radius, Ry, and initial composition z, Egs. (2.1), (2.2) and (2.3)
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yield

N NT —NeTo T — Tq (R/R0)3 (2.4)
ST T, 1 — (R/Ry)® ’

The change of the Gibbs free energy, AG, connected with the formation of
one cluster in the initially homogeneous ambient phase can be written in a commonly

good approximation as [14-16]

AG =0cA+ Z Nja (Mja — 143) + an (jp — o) - (2.5)
j j

The first term in the right hand side of Eq. (2.5) reflects cluster surface effects (o is

the interfacial tension, and A is the surface area of the cluster) and the second term

cluster bulk contributions to the change of the Gibbs’ free energy. The third term

describes the influence of depletion effects (change of the composition of the ambient

phase due to cluster formation) resulting in differences of the chemical potentials per

particle in the initial state (y4;0) and the state of the ambient phase once a cluster has
been formed (143).

For the binary regular solution the chemical potentials of the different

components in the cluster, j1;,, and ambient solution, 13, are defined by [36]

Hia/8 = Hiayp + kBT In(l = 24)5) + Qa2 5, (2.6)

* 2
H2a/3 = MQa/ﬁ + kBT In La/B + Q (1 - xa/ﬂ) )

where kp is the Boltzmann constant, 7' the absolute temperature, and €2 is an
interaction parameter describing specific properties of the considered system. The
parameter, (), can be expressed via the critical temperature, 7, of the system (cf. also

Fig. 2.2) as

T,=— . (2.7)



J. Chem. Phys. 127, 114504 (2007) A.S. Abyzov and J. W. P. Schmelzer 103

1

o N\
S &

s 98 YV T=0.7T,

= AR N N
E o6f/1 5/

2 1 I

g | I

3 I

S 02k 1 |

E lxb lxsp

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Initial solute concentration, x

Fig. 2.2. Phase diagram of a binary regular solution with binodal and spinodal curves.
The spinodal curve separates thermodynamically stable from thermodynamically
unstable states of the homogeneous ambient phase. In the present analysis, we assume
that the temperature is equal to T = 0.77,. and vary the driving force of the phase
transformation process by changing the initial composition of the ambient phase, x.

The surface tension between two macroscopic phases with compositions z, and g,

respectively, 1s given, according to Becker ( [36], see also [38]) by
0 =0 (xa —x5)° . (2.8)

From Egs. (2.5), (2.6), (2.7) and (2.8), we have

A 3
A6 “nlBn2B (2, — 25)° + naf(zs,20) — nf(zs, ) (2.9
kgT 2
where
1 - xa Tc 2
f (g, 20)=(1—m,) {m = +2= (x2 — xﬁ)} (2.10)

+ o {m Ta y 2% [(1 )’ — (1 xgﬂ }

L

holds and the scaling parameter, n,, for the particle number in the cluster is specified
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as

25 4 1/3
nlf3 = kB—UT (g) W23 @.11)

In addition, we introduce via Egs. (2.3) and (2.11) also a scaling parameter, R, for

the cluster radius as

3Ny w 13 95w
R, — _ 2w 2.12
< 4 ) k)BT ( )

In the further analysis, we will always assume for an illustration of the results
that the temperature in the system is equal to 7" = 0.77,.. The concentration of the
solute in the initially homogeneous system is varied in the range from z = x;, = 0.086
(left branch of the binodal curve) to x = x4, = 0.226 (left branch of the spinodal
curve) covering metastable initial states and x,, < x < 0.5 covering unstable initial
states (see Fig. 2.2). Since the phase diagram of a regular solution is symmetric
[16], we may restrict the analysis to initial states in the considered range with initial
concentrations, r < 0.5. A specification of further parameters like ¢ and w is not
required, since we compute reduced characteristics, so that such system parameters

enter the description only via the scaling quantities (see also [16]).

2.3. Phase separation in infinite domains
2.3.1. Thermodynamic analysis

Above given equations allow us to determine the thermodynamic potential
surface as a function of the number of particles, ny, and ns,, in the cluster. The
results are shown for different values of the initial supersaturation in Fig. 2.3 both for

metastable ((a): x = 0.15, (b): z = 0.19, (¢): z = 0.22) and unstable ((d): z = 0.3,
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(e): x = 0.4, (f): x = 0.5) initial states. Depletion effects are neglected so far (we
consider infinite systems), so we set Ry — 00. As far as we are interested mainly in
the demonstration of the basic qualitative features, like in Fig. 2.3 and similar ones,

the numbers are omitted at the axes.

AG

Initial state,
X=X, AG=0

S—--

x=0.15 n

Fig. 2.3. Shape of the Gibbs free energy surface for metastable (z = 0.15, x = 0.19,
and x = 0.22; Figs. 2.3a-c) and unstable initial states (z = 0.3, + = 0.4, and
x = 0.5; Figs. 2.3d-f). As mentioned, the temperature is chosen equal to 7'/T, = 0.7
(for further details, see text).

For each of the metastable initial states, the thermodynamic potential surface
has, in the vicinity of the critical cluster coordinates, a typical saddle-shape. The

position of this saddle-point is determined by the set of equations

OAG (n1a,n2a) 0 OAG (14, N2a)

—0, (2.13)
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if we employ Eq. (2.5) for the description of the thermodynamic potential surface.
In an alternative approach utilizing Eq. (2.9), we may determine first the size of the

cluster for any fixed value of x, via

OAG (na, xa) o 1/3 o 1/3 (xa - fc)2
. =0 — ny°(xq) = —ny Fomn) (2.14)

A substitution of the expression for n, into Eq. (2.9) yields (cf. also Eq. (2.11))

A . 0\6 =3, ,2
G(na(%a), Ta) _ lng (20 — ) o, = 32r w (2.15)
kpT 27 f2(x, x0) 3 (kgT)’

The composition of the critical cluster and the work of critical cluster formation is
obtained then by searching for the minimum of AG(n,(z,),x,) with respect to the

cluster composition, x,, [14-16,23] as

dAG (no(z4), Ta)

dx,

—0. (2.16)

In order to allow us a better understanding of the shape of the thermodynamic
potential surface, contour lines through the saddle are included in the figures by full
curves and the curve of steepest increase of the potential surface starting from the
critical cluster coordinates by dotted curves. The full curve with arrows describes the
most probable trajectory of cluster evolution. It starts at some point along the dashed
curve determined by the initial conditions x, = x and AG = 0 (in the initial state,
the composition of the cluster is the same as in the ambient phase). Then it passes the
saddle point and follows further the trajectory of macroscopic growth with an initial
cluster size slightly above the critical size. As discussed in detail in [16], the trajectory
of evolution from the initial state to the saddle point can be assumed to coincide, in
general, with the path of cluster dissolution starting with initial states slightly below
the critical cluster size.

The most probable trajectory of evolution is determined thus for both regions
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by the macroscopic growth equations. For segregation in solutions, these equations

can be written in the form

dnia dAG
= D= 20)O(ma, m) =
(2.17)
dna, dAG
di = —DQIE‘ﬁ@(ma,nm)% :

where D, and D, are the partial diffusion coefficients of the different components in

the ambient phase, and the notation

@(nm, nZa) = @ong (2.18)

is utilized. The parameter x has the value x = 2/3 for kinetic-limited growth, and x =
1/3 for diffusion-limited growth and O is a parameter depending only on temperature
(we set, as mentioned, the temperature equal to 7" = 0.77,). As evident from above
considerations and the structure of Egs. (2.17), the path of cluster evolution depends
on the partial diffusion coefficients of both components of the solution (see for the
details [16]), however, qualitatively the picture remains always the same. On Fig. 2.3,
the trajectories are shown for D;(1 —x3) = Dsx . In this case, the kinetic prefactors
to the partial derivatives of AG with respect to nj, in Eqs. (2.17) are the same
and the evolution proceeds along the valley of the thermodynamic potential surface,
AG (n14,n24), passing the saddle point.

The analysis of Egs. (2.14) and (2.16) shows [14-16] that the composition of
the critical cluster decreases with increasing supersaturation and approaches the value
of the composition of the ambient phase for initial states near to the spinodal curve
(cf. Fig. 2.4). The work of critical cluster formation decreases monotonously with

increasing supersaturation and tends to zero at the spinodal curve (Fig. 2.5). Taking
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Fig. 2.4. Dependence of the composition of the critical cluster, z, ., on the initial
solute concentration. For x > x,, always the identity x, . = x holds [16].

into account Eq. (2.10) and the relations

Alrere) gy (22 - (L=22) wa (B) v,

0 f(z,2q) 1 1 T,
A A ) Y 2.1
0x2, xa+1—aza (T) ’ (2.19)
Fflr,va) 12,
ox3 221 —x,)?

it can be shown that the critical cluster radius, ., behaves as

1
lim R. o lim (2.20)

T Tsp T=%a (xa - ZU)

In this derivation, the equation (0 f(z,x,)/022)| _ = 0has been employed [15].

=Tsp

The dependence of the critical cluster size on supersaturation is illustrated in Fig. 2.6.

The results summarized above are reflected also in Figs. 2.3a-c. As evident

from the figures, with an increase of the supersaturation (molar fraction in the ambient
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Fig. 2.5. Dependence of the minimum work of critical cluster formation,
AG it /(nykpT), on the initial solute concentration, x, for infinite domains
(specified by the abbreviation, inf) when changes of the state of the ambient solution
due to cluster formation can be neglected.

phase) the nucleation barrier decreases, the location of the saddle point is shifted
closer to the line of initial states, x, = x, and at the spinodal, v = x,, the position
of the critical cluster tends to the composition of the ambient phase, i.e., the critical
cluster is located in this limiting case on the line of initial states. Since, for the initial
states corresponding to the spinodal curve, the condition z, — =z holds, for such
states the work of critical cluster formation (determined via the generalized Gibbs’
approach employed here) tends to zero.

For unstable initial states, x5, < x < 0.5, the situation is different. Here
the critical cluster has always a composition equal to the composition of the ambient
phase (cf. Fig. 2.4 and [16]). The critical cluster size cannot be expressed here directly
employing Eqgs. (2.14) and (2.19), since for x, = x the relations

AG 0 [AG 0 [AG
L= N 83704 kBT To=7 B @na kBT

kpT

=) (2.21)

To=2
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Fig. 2.6. Dependence of the critical cluster radius, R, ,/R,, on the initial solute
concentration, x, for phase formation in an infinite domain at metastable (z; < x <
Zsp) and unstable (z > x),) initial states of the ambient solution.

hold independently of the value of n, in Eq. (2.9). In the definition of the critical
cluster size for unstable initial states we have to rely thus on the second-order
differential of AG with respect to n,, and z,. As can be proven easily, the second-
order differential of AG for states with x, = x is given by d’AG =
(0*AG/022)|

T, = x can be expressed as
(A
8:13(% ]{IBT

where the notations

To=2

dz?. The second-order derivative of AG with respect to x, at

1/3
= 3nl/3n2/3 {1 — ( fa ) } : (2.22)
To=2 na,c

To=T

s _sndt 10 f(r)
’ 2 012

e 2K

1 T, 1 1
:L'a:z:§ [4(T> _;_ 1_$:|
(2.23)

are employed.

In the range of metastable initial states z;, < x < x4, the critical cluster



J. Chem. Phys. 127, 114504 (2007) A. S. Abyzov and J. W. P. Schmelzer 111

corresponds to a minimum of AG(n,(x,),x,) with respect to the variations of the
state of the cluster, i.e., (I>AG/dx?) > 0 holds [23]. For unstable initial states, states
along the trajectory x, = x with AG = 0 correspond again to minima with respect
to variations of the state parameters of the cluster phase at fixed values of the cluster
sizes if the inequality (n,/nq.)"/? < 1 is fulfilled (cf. Eq. (2.22)). However, there
exists a cluster size, n, ., where the state along the line z = x, switches from a
minimum to a maximum of AG with respect to variations of the cluster composition
at fixed values of the cluster sizes. Possible trajectories of evolution for n, > ng..
are shown by full curves with arrows in Figs. 2.3d-f.

Moreover, on Figs. 2.3 d-f, the solid curve, AG = 0, divides regions with
AG > 0 and AG < 0 as compared with the states corresponding to x, = x. In the
first region (that is in the region with 9?AG// 6x3‘xa:x > 0 or (ng/na.c) < 1) cluster
composition changes lead to the growth of the Gibbs free energy, and the cluster is
stable in such region. In the second region (9*AG/ 6x2‘%:x < 0or (ng/nae) >1)
any composition change (both increase and decrease of the concentration of the cluster
concentration) results in a decrease of the Gibbs free energy. In such region, the
cluster 1s unstable and the decomposition proceeds via growth of the concentration
differences, i.e., according to the basic mechanism commonly assigned to spinodal
decomposition. Thus, for x > x,, the system is stable for small clusters and unstable
for clusters with a size n, > ng,. So, changing the size of the clusters with
compositions equal to the composition of the ambient phase, we arrive at a transition
from metastable to unstable states and at n, = n, . the minimum transforms into a
maximum via a singular point of third order. Reminding the physical meaning of a
critical cluster size as the lowest size of a cluster for which a spontaneous further
growth in accordance with the thermodynamic evolution laws is possible, n, . as
defined via Eq. (2.23) is obviously an appropriate definition of the critical cluster size

for unstable initial states.
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In terms of the radius, we may express the critical cluster size in infinite domain

as

3R
Reint = 2—1(0 : (2.24)
The parameter K is positive for values of x in the range of unstable initial states
and tends to zero at the spinodal curve (cf. [15, 16]) resulting in a divergence of the
critical cluster size for unstable initial states near the spinodal curve (cf. Fig. 2.6).
The work of formation of such critical cluster is, in the range of unstable initial states

of the ambient phase, always equal to zero (cf. Eq. (2.9)).

2.3.2. Kinetics versus thermodynamics in phase separation

In discussing the trajectories of evolution in phase separation processes, we
assumed here in line with the commonly employed assumption that the evolution to
the new phase proceeds via the saddle point of the thermodynamic potential surface.
Ridge crossing as another possible channel of formation of the new phase [39-41]
we believe to be of importance only in the vicinity of the spinodal curve [16] since
otherwise the increase of the potential barrier required for ridge crossing as compared
with the evolution via the saddle point overcompensates as a rule the advantages
connected with the eventually easier realization of the kinetics of the process. Of
course, the trajectories of evolution via the saddle point will depend on the kinetics
and, for the model system considered, on the ratio of the partial diffusion coefficients
of both components. The different paths of evolution of the critical clusters and
their further growth in dependence on the ratio of the diffusion coefficients of both
components are illustrated in Fig. 2.7.

For this purpose, we choose a volume of radius R in the center of some

spherical domain (see Fig. 2.7, left side). This selected volume has initially the same
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Fig. 2.7. Schematic illustration of trajectories of evolution in dependence on the
ratio of the partial diffusion coefficients of the different components in the solution.
At the right-hand side, the change of the composition of the clusters in dependence
on reduced cluster sizes, R/ R,, is shown for the three different cases considered: a)
Dy > Dy,b) Dy = Dy, ¢) Dy < Ds.
composition as the ambient phase, therefore it is not a cluster yet. If atoms of the
second component are incorporated into this volume, the concentration, x,, of this
component in the cluster increases, its size increases, and it becomes a (super)critical
nucleus of a new phase. Such scenario is realized (cf. [16]) when the mobility of the
atoms of the second component is higher than for the atoms of the first sort (Fig. 2.7a).
The dependence of concentration of the cluster on its radius is given on the right hand
side.

In the opposite case, when the mobility of atoms of the first kind is higher, the

formation of the critical cluster proceeds in such a way that atoms of the first kind
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leave the region where the cluster will be formed. In such case, the concentration,
T4, Of the cluster increases but its size decreases (Fig. 2.7¢). Again, the dependence
of cluster composition on cluster size is shown on the right hand side. Once the
critical cluster is formed in such process, its further growth is then determined by the
motion of the second less mobile component, again. So, here we have the situation
that growth processes will proceed with much smaller effective diffusion coefficients
as the nucleation process. And, finally, in the case when atoms of the first kind in
the cluster are replaced by atoms of the second one, i.e., when the mobilities of
both components are nearly equal (or more precisely, if the relation D;(1 — x) =
Dox holds, cf. Eq. (2.17)), the change of the composition of the cluster proceeds
at nearly constant size (Fig. 2.7b). In all these cases, the critical cluster is the same
(determined thermodynamically) but the trajectories of evolution differ (see also [16])

due to different ratios of the partial diffusion coefficients of the different components

involved in the process of formation of the new phase.

2.4. Phase separation in finite domains

2.4.1. Thermodynamic analysis

It was shown in the preceding analysis that, neglecting depletion effects, the
critical cluster size diverges in the vicinity of the spinodal curve (Fig. 2.6). Taking into
account that phase separation processes in real systems proceed always in systems of
finite size, the model of an infinite domain is not appropriate in a variety of cases
already by this reason. In the further analysis, the effects of finite domain size on the
phase separation processes are studied.

Similarly to Figs. 2.3, Figs. 2.8-2.11 give an impression about the shape of the
Gibbs free energy surface AG(n1,,n9,) in dependence on the domain size, Ry, for

different values of the initial solute concentration (Fig. 2.8: x = 0.15 < z,, Fig. 2.9:
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T = x5 ~ 0.226, Fig. 2.10: x = 0.3 > w,, and Fig. 2.11: o = 0.4 > x,,). As

R0= 14.55RG \ Roz 14'1Ro \ RO= 13.3»212(Y \ RO= 12.66R(T nll
m m ny

Fig. 2.8. Shape of the Gibbs free energy surface for z = (.15 and for different values

of the domain size, R,.

evident, at a given value of the supersaturation, the degree of instability of the system
decreases with the decrease of the domain size. For example, for the case of an initial
molar fraction equal to z = 0.15 (Fig. 2.8), the critical cluster sizes, R., and the
nucleation barrier, AG,, increase with the reduction of the size of the domain, R.
The free energy difference, AG, corresponding to a stable coexistence of a single
cluster with radius, R, in the ambient phase noticeably grows, the size of this stable
cluster, s, decreases considerably. The free energy difference, AG ¢, reaches a value
equal to zero at Ry/R, = 14.55. At such system size, initial (homogeneous) and
final (heterogeneous) states become equivalent from a thermodynamic point of view.
With the further reduction of Ry, AGf becomes positive, and for Ry/R, = 12.66

the relation AG; = AG. holds and the transition to a two-phase system becomes
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Fig. 2.9. Shape of the Gibbs free energy surface for x = x, and for different values

of the domain size, R.

impossible due to finite-size effects.

For the considered supersaturation, in the range Ry/R, > 14.55, the initial
state of the finite system is metastable. The final two-phase state is characterized
by smaller values of the Gibbs free energy, AG; < 0, as compared with the
homogeneous initial state. As a consequence, once a stable state of the cluster in the
ambient phase has been formed, the reverse transition is, as a rule, highly improbable.
For Ry/R, = 14.55, the initial state of the system is also a metastable state, however,
now homogeneous and heterogeneous states are characterized by the same values of
the Gibbs free energy, i.e. AG; = 0. By this reason, the heterogeneous state can be
transferred by appropriate processes back to the homogeneous initial state. Thus the

inequality

AG; <0 (2.25)
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Fig. 2.10. Shape of the Gibbs free energy surface for x = 0.3 and for different values
of the domain size, R.

can be considered as the condition of metastability for the homogeneous initial state.
Similar processes occur with even higher probability in the range 12.66 < Ry/R, <
14.55. Here the initial state of the system is metastable, again, but the final state has
larger values of Gibbs’ free energy as compared with the homogeneous initial state,

1.e.

AG. > AGy >0 (2.26)

holds. So, Eq. (2.26) is the condition of metastability for the heterogeneous state.
And, finally, even if phase transformations may occur in a sufficiently large system,
this is excluded for domain sizes Ry/R, < 12.66. For such system sizes, the system

1s to be considered here as stable.
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Fig. 2.11. Shape of the Gibbs free energy surface for x = 0.4 and for different values
of the domain size, R.

The results discussed here for a particular value of the initial supersaturation in
the range of metastable (for infinite systems) initial states — i.e., increase of the critical
cluster size, ., and the work of critical cluster formation, AG, the increase of AG/;
and decrease of 7y — are general consequences of depletion effects in nucleation. They
have been derived analytically in the framework of the classical Gibbs’ approach
both for condensation in gases and phase formation in solid solutions earlier [24—
27,32-35]. It can be shown that the respective conclusions remain valid when the
generalized Gibbs’ approach is employed for the description of the thermodynamics

of cluster formation [42]. From a more general point of view, such dependencies can
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be considered as consequences of the principle of le Chatelier-Brown [25,43].

However, as to our knowledge, so far the effect of finite size on the kinetics has
not been studied for the case that the process starts from unstable initial states. This
task will be performed in the subsequent analysis. Shapes of the Gibbs free energy
surface AG (114, n9,) for x = Tsp ~ 0.226 and for different values of the domain
size, Ry, are presented on Fig. 2.9. The shapes of the free energy are qualitatively
very similar to the respective results shown on Fig. 2.8.

The respective dependencies, AG(n14, N2y ), for unstable initial states with = =
0.3, are shown on Fig. 2.10. In addition, the dependence of AG along the evolution
path are shown on Fig. 2.12 (here the path, s, is the distance in (n14 /14, 124/ )-
space, that is ds = (dn?, + dn3,)"/?/n, holds, and s > 0 for 2, > = and s < 0 for

ro < ). For Ry/R, > 6.83, spinodal decomposition is a possible mode of evolution

AG/ngkgT Stable

Ry/R =47
0.001 FR/R =133 0°

RO/RG:4‘87

—0.001

~0.002 _
Ry/R =493

—0.003

—0.004

Unstable

~0.005 | E\

-2 0

Ry/R5=6.83

4 6

Path

Fig. 2.12. Gibbs free energy along the preferred trajectory of evolution to the new
phase for initial states of the ambient phase with x = 0.3 and for different values of
the domain size, Ry.

to the new phase. For low system sizes, here at Ry/R, < 6.83, a nucleation barrier
arises and the system transforms to a metastable one. With the further reduction of

the domain size the behavior of system is the same as for x < z,,. For x = 0.4,



J. Chem. Phys. 127, 114504 (2007) A. S. Abyzov and J. W. P. Schmelzer 120

the surface AG(nyq,n2,) is shown on Fig. 2.11. The shapes of the thermodynamic
potential surfaces are similar to the case x = 0.3, only the characteristic values of
the system size R, at which the transition from spinodal decomposition to nucleation
occurs, are smaller.

Equation AG.(Ry,z) = AGf(Rp,x) defines the minimal domain size,
Ry (), which allows nucleation in the initially homogeneous system, it defines the
binodal depending on the domain size. Let us define as the next step the spinodal

curve for the domain of finite size. Eq. (2.22) may be rewritten as

R\’ R R\’ R\*®
= 2K 1— 11— — 1—( —
To=1T <Rc,inf> { Rc,inf (RO) } [ <R0>

and then Eq. (2.21), which determines critical size in spinodal region, takes the form

-2

O*AG

2
0x?

9

(2.27)

R}~ R.RY+ R3Rejur = 0. (2.28)

The equation has only one root for

4473 2 T. 1 1 \!
——Reut() = Ry24%3 (4— - —) . (229

Ry = Ry o(2) =
0= Foy(w) = = 3 T 7 1—-=2

and two real roots for Ry > Ry, (x), and at Ry < Rys(x) Eq. (26) does not
have any roots. Consequently, the function Ry s,(x) determines the minimal domain
size Ry sp(), which allows spinodal decomposition in the system, i.e., it defines the
spinodal depending on the domain size.

Dependencies of minimal domain sizes Ry;/R, and Ry s,/R, on the initial
solute concentration, x, are presented on Fig. 2.13. Metastable region is located
between curves Ry, () and Ry sy, (x), unstable (spinodal) region is located to the

right from Ry 5, ().
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Fig. 2.13. Dependence of the reduced minimal domain size, Ry;/R, and Ry s,/ R,,
on the 1nitial solute concentration, x.

The critical radius for the minimal domain size is determined by

-1
R.p(x) = R, (Rosp, ) = Rgg (4% — i 1 i :c) . (2.30)
The dependence of the reduced critical radius R, on the initial solute concentration x
for different values of the domain size R, is illustrated on Fig. 2.14. In the metastable
region, R, (x) is determined by Egs. (2.13), in the unstable one, by the solution of
Eq. (2.30). Critical radii corresponding to the minimal domain size for the metastable
region R.,(x) = R.(Rop, ), and for the unstable one, R.,(z), are shown on
Fig. 2.14 by dashed-dotted and dotted curves, respectively. Note that in the unstable
region two critical radii exist: the smaller one 1s determined by the balance between
volume reduction and the increase of the thermodynamic potential due to surface
formation (as for an infinite domain), the larger one is determined by the effect of
changes of the state parameters (depletion effect). Indeed, we see that the larger value
of R, is comparable with the domain size, R.
Dependence of the minimum value of the work of critical cluster formation,

AG./nskgT, on the initial solute concentration, x, for different values of the domain
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Fig. 2.14. Dependence of the reduced critical radius, R./R,, on the initial solute
concentration, x, for different values of the domain size.

size, Ry, 1s shown on Fig. 2.15. In the region x < x,, with domain size reduction
AG, increases insignificantly, while for z > z,, AG. = 0 for Ry — oo , and nonzero
value of AG,. arises only for finite values of Rj. Dependence of the composition of
the critical cluster, x, ., on the initial solute concentration x, for different values
of the domain size, Ry, is shown on Fig. 2.16. We see that with growth of solute
concentration x, . decreases down to value z,. = x, which corresponds to the

unstable region.

2.4.2. Kinetics

Having performed the respective thermodynamic analysis, we will consider,
now, the time evolution of the clusters in segregation processes in systems of finite

size. We assume that the composition in a certain region of the ambient phase is
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Fig. 2.15. Dependence of the minimum value of the work of critical cluster formation
AG./kgT on the initial solute concentration, x, for different values of the domain

size.

slightly shifted as compared with the composition of the matrix by a value dn;,, i.¢.
Nia = N1a,0 + 6n1a ) N2 = N2a0 + 6”2& . (231)

It is assumed further that the growth is kinetically limited (i.e., we set u = 2/3 in

Eq. (2.18)) A substitution of Egs. (2.31) into Egs. (2.17) yields

don, dAG
dtl = —Di(1 — 25)O(n1a, nga)w cos | (2.32)

ddnag, dAG .
dt2 = —Dyx30(n1a, nza)w Sin © . (2.33)

Here dAG/ds is the absolute value of the gradient of the function AG (n1,, 12, ) at

values of x,, near to x, = z, ¢ 1s the angle between the direction of the gradient and
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Fig. 2.16. Dependence of the composition of the critical cluster, x, ., on the initial

solute concentration x, for different values of the domain size.

the axis n,. It is defined by the equation

1—
tgp=— 20 _ 7% (2.34)
N1a,0 T N2a,0 x

Dividing Eq. (2.33) by Eq. (2.32) and taking into account Eq. (2.34), we obtain

Dy

My = ——0N9g - 2.35
n1 D2 D) ( )
Using the variable x,, instead of dns,,
[e% (0% 5 (0%
O S M20.0 1 0Tz , (2.36)
N1 + Na2a Dy
N1a,0 T N2a,0 + <1 — —> 0N2q
Do
we get the equation
o _ gt —ay () wpy v (- )il (- 226 ) ()
— =0z (l—2)( —=— ) |z —x — Ty —T) ,
dt ! R : ’ 02 |,_,.
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where R is initial cluster radius, and (02AG / 8:1:(21) ‘x:x is determined by Eq. (2.27).
This linear equation has a solution of the form (z, — ) ~ ¢"®)?, where the growth

increment (or amplification factor) (R) is determined via

(Rewt\' [ 0AG
wen(B) (L) e

and

holds.

For finite systems with a domain size lower than some upper value Ry,

4B 0T 1 1\ !
Ry < Rom = 2Ry, = Ry—— (4— S > : (2.40)

3 T = 1—=x

the function v = v (R) has a maximum. The value of the maximum increases with
increasing domain size. Moreover, at Ry > Ry, a second maximum of equal height
arises. After this second maximum appeared, the height of the maxima does not vary
any more with the further increase of the size of the domain (Fig. 2.17). The growth

increment reaches the maximum value for a domain size equal to

Romaz(R,x) = <R%)4/3 (R% - %) o for R > R\ nas

Rom for R < R, 1z

(2.41)

where R 0. = (8R,/3K).
The dependence of the growth increment, ~y (R), on cluster radius for various
fixed domain sizes, Ry (full curves), and for Ry = Ry .. (R, x) (dashed curve) is

shown on Fig. 2.17 for the case D; = Dy and x = 0.45, i.e., for macroscopically
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Fig. 2.17. Dependence of the growth increment on the cluster radius, R/R,, for
various domain sizes (full curves) and for Ry = Rymax(R,z) (dashed curve) for
x = 0.45.

unstable initial states.
Equation (2.38) looks similar to the expression for the growth increment in
the classical Cahn-Hilliard theory of spinodal decomposition [9, 10]. Indeed, let us

introduce a wave vector via k = R,/ R, then Eq. (2.38) gets the form

2
OAG > , (2.42)

— 41 _
v (k) = Mk < o2

D*AG

2
Ox?

2K 1 ko\® N
= — —— 1= = 1—(— . 2.43
R ] e
Employing these relations, on Fig. 2.18 the Cahn plots v (k) /k* vs k? are shown
for various fixed domain sizes, Ry (full curves), and for Ry = R e (R, x) (dashed
curve), where the notation k. = R,/R, is used. On Fig. 2.19, the result for Ry =

Ry maz (R, x) is compared with experimental data for spinodal decomposition in the

glass Si05-12.5 NayO [44]. The Cahn-plot, obtained in this way, is different in its
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Fig. 2.18. Dependence of the ratio y/k* on k? for various domain sizes (full curves)
and for Ry = Ry max(R, z) (dashed curve) for x = 0.45.

shape as compared with the linear classical dependence [9,10], it is in good agreement
with the experimental curves shown for comparison. Thus, the linear analysis of
Egs. (2.32) and (2.33) allows us to determine the growth increment for spinodal
decomposition (Eq. (2.42)) depending on supersaturation, cluster and domain sizes in
a way giving a better agreement with experimental data as the classical theory.

The numerical solution of Egs. (2.32) and (2.33) allows one not only to analyze
the initial states of spinodal decomposition but to trace the whole process of evolution
of the cluster. In doing so, we assume kinetic limited growth (u = 2/3 in Eq. (2.18))
and set the temperature equal to 7' = (.77, again. Domain size and the initial cluster
radius are chosen to correspond to the maximal growth increment, i.e., Ry = R,
and R = R, max (see Eqgs. (2.40) and (2.41)), the initial cluster composition is given
by Zaly—g = 2 (1+9).

Results of calculations of the cluster evolution for a regular solution with a

molar fraction of the segregating component in the ambient phase equal to x = 0.45
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Fig. 2.19. Dependence of the ratio v/k® on k% result of calculation for Ry =
Romax(R,z) for © = 0.45; circles refer to experimental data for the glass
S10,5-12.5 NayO at 530 °C obtained by small-angle x-ray scattering [44].

and 0 = 0.01 are presented on Figs. 2.20-2.23.

The shape of the Gibbs free energy surface and the trajectory of cluster
evolution in the (n1,/ny, 2o /ny) space (n, is determined by Eq. (2.11)) are shown
on Fig. 2.20 for different values of the partial diffusion coefficient D; and D, ((a)
Dy/Dy = 100, (b) D1/Dy = 1, (¢) D1/Dy = 0.025 and (d) D1/Dy = 0.001; as
earlier, we assume DDy = const.). The process starts in the point S and develops
either increasing (path S — F, curves (a), (b), (¢), and (d)) or decreasing (S — F",
curves (a’), (b’), (¢’) and (d’)) the concentration of the second component. For
x # 0.5, the minima of Gibbs free energy, the system may approach following the
different pathes of evolution, have different depths (for x < 0.5 AGr < AGw).
Preferred is the path S — F', therefore further we consider only this version.

The dependencies of compositions of cluster and ambient phase both on time

and on cluster radius are shown on Figs. 2.21 and 2.22, respectively (cf. also Fig. 2.7).
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Fig. 2.20. Shape of the Gibbs free energy surface and trajectory of cluster evolution
in the (n14/Ne, N2 /ne) space for a regular solution with a molar fraction of the
segregating component in the ambient phase equal to x = 0.45 for different values
of D1/Ds: a) D1/Dy = 100, b) D1/Dy = 1, ¢) D1/Dy = 0.025 and d) D1/Ds =
0.001.

For the case of a quickly moving first component (D1/Dy = 100, curve (a)), the
evolution along the path S — T proceeds via emission of particles of the first
component from the cluster. As the result, the cluster shrinks in size (see also
Fig. 2.21b). After a time, 7.y, the composition of the cluster almost reaches its final
value, x, & x5 ~ 0.853 (the point 7, on Figs. 2.20 and 2.22, note also that this state
corresponds to the minimum of Gibbs free energy). During the initial time interval,
T < Taf, the compositions of cluster and ambient phase change approximately with
equal rate. This rate can be determined by the analytical expressions Eq. (2.38)
with good accuracy (dotted curves on Fig. 2.21). Once this stage of evolution is
completed, the cluster begins to grow with approximately constant composition while
the composition of the ambient phase continues to change. Since the condition of

constancy of cluster composition requires attachment of atoms of both kinds in
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Fig. 2.21. Dependence of the compositions of the cluster, x,, and ambient phase,
xg, on time for different values of Dy/Dy: (a) Dy/Dy = 100, (b) D1/Dy = 1,
(c) D1/Dy = 0.025 and (d) D;/Dy = 0.001.
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Fig. 2.22. Dependence of the compositions of the cluster, x,, and ambient phase,
xg, on the reduced cluster radius for different values of D;/Dy: (a) D1/Dy = 100,
(b) D1/Dy =1, (¢c) D1/Ds = 0.025 and (d) D1/Dy = 0.001.

a certain well-defined proportion, the rate of evolution along the path T" — F
is limited by the rate of attachment of atoms of the slow second component (see
Fig. 2.21c). In the time 737, the composition of the ambient phase reaches its final
value, x5 ~ rg; ~ 0.194.

For the case of nearly equal partial diffusion coefficients, Dy = Dq, the
evolution proceeds similarly with the difference that the cluster size changes only
insignificantly at the initial stage of evolution, 7 < 7, (see Fig. 2.21b) and the time
interval 757 1s considerably shorter as compared with the previous case. Such two-
stage behavior is preserved in a wide interval of components mobility, actually only at
D1/ D5y =~ 0.025 cluster size and concentration begin to change monotonically down
to end (see Fig. 2.22, curves (c) and (c”)).

At Dy < Do, the situation is to some extent opposite. Along the path S —
T, the cluster grows quickly due to the incorporation of atoms of the second fast
component. Then, after a time x5 ~ x3¢, the composition of the ambient phase has
almost reached its final value 3 ~ 3¢, and a slow reduction of the cluster size due

to emission of atoms of the first component is found along the path 7" — F.
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Fig. 2.23. Dependence of the characteristic times 73¢, 7, and 7., on the D,/ Dsratio.
Fig. 2.23 shows the dependence on the (D;/Ds)-ratio of the characteristic
times of change of cluster composition, 7., of ambient phase change, 757, and

1me 7. Latter parameter can be computed via the analytical expression, Eq. (2.38),
t . Latter p t b puted th lytical exp Eq. (2.38)

resulting in

1 Taf — ZC]

To = In : (2.44)
Ty (£ max) [ 0

The minimum time, min (7, ¢, 757), of change of the composition of the cluster or the

ambient phase differs only slightly from 7., while the full time of decomposition is

determined by the maximum time max (7., 73¢), which is twice as large as 7, for

Dy/Dy =~ 0.01, and for Dy > D, 75y larger than 7,y and 7, by more than an order

of magnitude.

2.4.3. Transition from independent cluster growth to coarsening

So far, we have considered phase separation in finite domains of size, R,

considering the evolution of one cluster. However, the results of the analysis can
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be employed more generally allowing one to derive important conclusions about the
initial stages of phase separation processes for systems of arbitrarily large sizes. The
model considered above actually represents the case of an infinite domain with an
ensemble of identical clusters. The analysis of such systems has been shown to be
very fruitful already in previous investigations of the kinetics of phase separation in
solutions when the classical Gibbs’ approach was employed for the thermodynamic
description of the clusters and cluster ensembles [25,32-35]. The respective analyses
are attempted to be generalized in future.

For a more detailed analysis of the kinetics of phase formation, the existence
and evolution of the cluster size distributions has to be taken into consideration.
Independent growth of clusters of nearly the same sizes is possible only at the initial
stage of the process, and such distributions are unstable. Once the depletion effects
begin to dominate, the d-shaped or Gaussian type distribution functions are inevitably
widened and the system passes into the coalescence stage [37]. In the simplest way,
this can be done by solving the equations of motion of the clusters numerically.
Such approach has been performed in terms of the classical description of cluster
formation and evolution by a variety of authors. Here we would like to show that
these analyzes can be generalized by the mentioned approach accounting both for
variations of cluster sizes and compositions. In order to illustrate these features, here
we restrict the analysis to the evolution of cluster ensembles consisting only of few
clusters.

Completing the analysis, we demonstrate that the transition to the competitive
growth stage can be described adequately in terms of the approach employed here
independently on whether the system starts the transformation from a metastable or
unstable initial state. For this purposes, we consider the evolution of a system of three

clusters in one domain. The clusters due not interact directly but only via consuming
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particles from the ambient phase. The conservation law, Eq. (2.1), gets then the form

ng = Z (nﬁf) + né?) = const. , (2.45)

where the indices ¢« = 1, 2, 3 specify the different clusters evolving in the system. The

concentration of the second component in the ambient solution is given then by

-1
5= nd) (Z ng'>) , (2.46)

and in the i-th cluster by

(i)
2 = ()LO‘() . (2.47)
nla + n2a

The evolution of the system is determined by the set of equations

dn(2 d i i
d—; = —Di(1— l’ﬂ)@ﬂAG ({ngo)é} : {ngg}) ) (2:48)
UST
dnl) d (i (i)
& = —DoxgO0——AG ({n a} : {n a}) ; (2.49)
At 243 dngo)é 1 2
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where

o (il )) = 5 o >”< ) e

+Zn (25, 29) = nof(xg,z) .

As before, the functions f(xg, xg)) and f(zg,z) are determined by Eq. (2.10), and
ny by Eq. (2.11). Domain size and the initial cluster radii are assumed to be equal to
the maximum growth increment, i.e., Ry = 3Y3R,,, and R = R max (see Egs. (2.40)
and (2.41)), the initial cluster compositions are chosen as z,; = z (1 + ¢;), where
01 = 0.004, 69 = 1.12-61, 61 = 1.2- 97 (thus, the first cluster has the lowest deviation
from the initial composition, the second a larger and the third the highest one). The
results of the computations are shown on Figs. 2.24 and 2.25.

On Fig. 2.24, a cross-section of the Gibbs free energy surface and the trajectory
of evolution of the first cluster is given in the <n§2 /N ngg / n0> space. On Fig. 2.25,
the dependence of the compositions, xg), the radii, R, of the clusters (t=1,2,3),
and the composition of ambient phase, x 3, are shown in dependence on time. For three
clusters the phase space is six-dimensional, therefore we plot only its two-dimensional
sections for the first cluster (which is dissolved as the first one) for different moments
of time (as specified on the figure).

At the first stage of the process, for 7 < Ta (Ta ~ 135, 70([2) ~ 128, and

T(Sf’) ~ 122), all three clusters evolve in an almost equal manner: the concentration
of the second component grows, the sizes of the clusters decrease (see Fig. 2.24b).
In the initial state, the Gibbs free energy has a shape characteristic for the instability
region (see Figs. 2.24a and 2.20), but already at 7 = 7, =~ 120 a saddle point evolves
being a characteristic feature of metastable states (Fig. 2.24b). At 7 = Tél), the
concentration of the second component in the first cluster approaches the maximum
value (see Fig. 2.24c, it corresponds to the path S — T on Fig. 2.20). After that,

the cluster begins to grow, and at 7 = 7. ~ 160 it reaches the maximum size. The
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Fig. 2.24. Cross-section of the Gibbs free energy surface and trajectory of the first

cluster evolution in the <n§2 /N, néla) / nc) space for a regular solution with a molar
fraction of the segregating component in the ambient phase equal to x = 0.3 for

Dy/Dy = 1.

Gibbs free energy reaches then a local minimum (see Fig. 2.24d). In the case of a
single cluster, the process would have finished at such state, however, the second
and the third clusters continue to consume atoms of the second component, lowering
their concentration in the ambient phase. As the result of such depletion effects,
the first cluster shrinks, the concentration of the second component decreases. This
process corresponds to the beginning of dissolution of the first cluster. The process is
completed in a time 71 =~ 467, when the composition of the first cluster composition

(1)

approaches the composition of the the ambient phase, o’ = x3. At this moment,
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Fig. 2.25. Dependence of the compositions, ng), radiuses, R\, of the clusters (

1 = 1,2,3), and composition of ambient phase, x3, on time.

the radius of the cluster remains finite (see Fig. 2.24b). The evolution of the second
cluster proceeds similarly, and in time 7o ~ 729 it is dissolved. At 73 ~ 937 the

process is finished and only one cluster remains in the domain.

2.5. Results and discussion

In the present paper, basic features of nucleation-growth and spinodal
decomposition processes in solutions are analyzed within the framework of a
thermodynamic cluster model based on the generalized Gibbs’ approach. This
approach allows one to determine the thermodynamic potentials of clusters
and ensembles of clusters in the otherwise homogeneous ambient phase for

thermodynamically well-defined (cf. [22,23]) non-equilibrium states of the considered
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heterogeneous systems. Hereby the cluster, representing the density and/or composi-
tion fluctuations may change with time both in size and intensive state parameters.
The thermodynamic analysis is employed further as the basis for the description of
the kinetics of the decomposition processes.

The thermodynamic analysis of cluster formation is performed in dependence
on supersaturation for metastable and unstable initial states and domains of infinite
and finite sizes. For domains of infinite sizes, in particular, the parameters of the
critical clusters — size, intensive state parameters, work of critical cluster formation —
are determined for metastable initial states of the solutions. It is shown that — in the
framework of the generalized Gibbs’ approach — the notation of a critical cluster can
be extended also to unstable initial states. Here the composition of the critical clusters
is equal to the composition of the ambient phase and the work of critical cluster
formation is equal to zero. The size of the critical clusters for unstable initial states
behaves like the size of the regions with highest amplification of density/composition
differences in the classical Cahn-Hilliard approach to the description of spinodal
decomposition. As shown, moreover, there is no qualitative difference between
nucleation and spinodal decomposition with respect to the basic mechanism of cluster
evolution. Nucleation processes, starting from thermodynamically metastable initial
states, proceed qualitatively widely similar as compared with processes of phase
formation governed by spinodal decomposition. As it turns out further, the classical
model of nucleation is not correct in application to phase formation in solutions (cf.
also [14,16]).

As an additional step, the effect of finite domain sizes on cluster formation is
analyzed. It is shown, as a general consequence, that the degree of stability of the
system to phase formation increases with decreasing system size due to depletion
effects. In particular, the parameters of the critical clusters depend on system size. In
addition, systems of finite size may be metastable or even stable even if the infinite

samples are unstable. In this case the evolution of the system starts via spinodal
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decomposition. Then, due to the growth of the clusters, the supersaturation decreases,
and the system becomes metastable. Anyway, cluster growth continues. Finally, the
supersaturation decreases to such extent that the dissolution of the clusters with
smaller sizes becomes the prerequisite for the growth of the larger one, and the stage
of coarsening starts [37]. Thus, the approach allows us to describe the evolution of
the system from spinodal decomposition up to the coalescence stage accounting both
for changes of the sizes and the intensive state parameters of the clusters in the course
of this process. An analysis of experimental results on phase separation in solutions at
high supersaturations is performed in terms of the generalized cluster model showing
that the generalized cluster model allows us a more correct interpretation of the
dynamics of phase separation as compared with this classical theory.

In our approach only the knowledge of macroscopic properties of the ambient
and the newly evolving phases is required for the analysis of phase formation
processes. By this reason, the approach presented here seems, to our opinion, to
be preferable in the analysis of experimental results. The results of the analysis,
as performed above, were obtained employing the model of regular solutions. They
can be quantitatively modified by a more detailed account of the thermodynamic
properties of the real system, by taking into consideration additional thermodynamic
factors like special properties of domain boundaries or elastic stresses, which may
be of importance in a number of cases, or by accounting for peculiarities of the
process of diffusion not elaborated here. Nevertheless, we believe that the scenario
outlined will be valid generally for processes of segregation in solid or liquid
solutions. The application of the methods and results obtained to the interpretation
of experimental data will be addressed in future publications. Another question is
whether the results are applicable for other types of phase formation processes like,
for example, condensation and boiling. This topic will be addressed in a forthcoming

analysis.
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2.7. BucHoBkH 10 po3aiay 2

Pesynsraru mociimkeHb, MPEACTABICHUX Yy JaHOMY PO3MIiIi, OIyOJiKOBaHO
B ctatTi [2] (Jomarok A. Cnucok myOumikaiiiii 3100yBaya 3a TeMoro aucepraitii). Cepen
OCHOBHHUX pE€3YJIbTATIB Y SKOCTI BUCHOBKIB MOXHA BUIJIMTH HACTYIIHI:

e [lokazano, mo B y3araipHeHoMmy Metoal [160ca 3 mporecu HykJeanii,
MOYUHAIOYM 3 TEPMOJUMHAMIYHO METACTAOLIbHUX MOYATKOBUX CTaHIB, MPOTIKAIOTh
SKICHO 3HAUYHOIO MIpOIO aHAJOTIYHO MPOIECYy YTBOPEHHS HOBOI (ha3u 3a MexaHi-
3MOM CHIHOJAJIBLHOTO po3mnany. Ll cXoxkicTh 0COONMBO MOMITHA, SIKIIO PO3IVISAATH
HecmaobilbHy CUCTEMY MAaJloTO po3Mipy. Y I1IbOMY BHUIAJKy €BOJIOIS CHUCTEMH
MOYMHAETHCS 32 MEXaHI3MOM CITHOJATIBHOTO PO3Tay, ajie 4epe3 3pOCTaHHS KIIacTePiB
MePECUYCHHS 3MEHIIYEThCS, CUCTEMA CTae MeTacTaluIbpHO0. HapemnTi, nepecuyeHHs
3MEHIIYEThCSI HACTIIBKU, 10 PO3YMHEHHS KIACTEPIB 3 MEHIIUMHU pPO3MIpaMHu CTa€
HEOOX1THOIO YMOBOIO JIJIsi 3POCTaHHS KJIACTEPIiB OLIBIIIOT0 PO3MIPY, 1 MOYHMHAETHCS

cTaqls KoajleCIleHII].

e Takum umHOM, y3arajabHeHUH miaxin ['m606ca m103BoJIsSE ONMMUCATH €BOJIOIIIO

CHUCTEMH BiJl CIIIHOAJILHOTO PO3MaAy A0 CTajli KoaleCIeHIIi.
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PO3JILT 3

EBOJIIOLIA PO3IIOALTY KJIACTEPIB 3A PO3MIPOM Y INTPOLHECAX
3APOIXKEHHA-3POCTAHHSA TA CHIHOAAJIBHOI'O PO3IIAAY B
PET'YJIAPHOMY PO3UYHMHI

VY mepmioMy Ta Apyromy posaiiax aHali3 Mpolecy Hykiearii OyJlo mpoBeIeHO
METOJIOM HAWIIBUJIIIOTO CIYCKY Ha TINMEePIIOBEPXHI TEPMOIUHAMIYHOTO IMOTCHITIAIY,
KU J1a€ TUIbKM OCHOBHHUM IILISX €BOJIOLII KiacTepa HOBOI (pa3u 3a po3mipoM Ta
CKJIaJIOM. Y TPEThOMY PO3/il MPOBEICHO OUIbI JETaJbHUN aHali3 3a JOMOMOTOIO
YHCEIBHOIO MOEJIIOBAaHHS Ha OCHOBI KIHETMYHOI Teopii HykKjeallii, TepMOAHMHAMIKA
dbopMyBaHHSI KJIacTepiB aHANI3ye€ThCsl HA OCHOBI Yy3arajibHeHoro merony [100ca
JUISE MOJIEJIl peryispHoro OiHapHOro po3unHy. [IpoanamizoBaHa eBomrOIis (GYHKINT
PO3IOAUTY KJIACTEPIB 3a PO3MIPOM Ta CKJIAJOM SIK Il METacTabUIbHUX (HyKJIealris),

TaK 1 JJ1s1 HecTabUIbHUX (CIIHOMAJIBHUM PO3I1ajl) MOYaTKOBUX CTaHIB.
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ABSTRACT

Nucleation-growth and spinodal decomposition processes are two of the
basic mechanisms first-order phase transitions — like condensation and
boiling, segregation or crystallization and melting — may proceed. Their
adequate theoretical description is essential in order to understand the basis
mechanisms of self-structuring of matter at nano-scale dimensions. The basic
features of evolution of cluster size-distribution are discussed in detail both
for meta-stable (nucleation) and unstable (spinodal decomposition) initial
states for a simple model of a binary mixture. The results are obtained by the
numerical solution of a set of kinetic equations where the thermodynamics
of cluster formation is formulated based on the generalized Gibbs’ method.
It is shown, that nucleation will not proceed, in general (especially in
meta-stable initial states near to the spinodal curve), via the saddle point
but in trajectories of evolution by-passing the saddle point. For systems
in unstable initial states, spinodal decomposition can proceed similarly to
nucleation forming clusters evolving to the new phase via the ridge of
the thermodynamic potential hyper-surface. (©)2010 Elsevier B.V. All rights

reserved.

3.1. Introduction

In the preceding analysis of nucleation-growth processes in solutions performed
by us [1-4], we always assumed, as it is generally done, that the flux of the clusters to
the new phase passes the saddle point of the characteristic thermodynamic potential.
Such scenario can be considered as appropriate for initial states near to the binodal
curve, where the thermodynamic barrier to nucleation is relatively high and in the
mean part of the meta-stable region, where the thermodynamic barrier is relatively

low, but the critical radius is small as well. But near to the spinodal curve, the
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thermodynamic barrier is low, the critical radius (computed via the generalized Gibbs
approach or density functional computations) grows, again, and in order to evolve into
the new phase via the saddle point very large clusters have to be formed. Such kind of
evolution path is unfavorable from a kinetic point of view. In such situations, not the
thermodynamic but the kinetic factors will govern the process, and the main flux to the
new phase passes not the saddle but some ridge point of the thermodynamic potential,
which corresponds to the smaller size of cluster. Such suggestion was formulated by
us also in the already cited references [1-4] following earlier suggestions by other
authors [5-11]. Here we will analyze these peculiarities in detail by solving directly
a set of kinetic equations governing nucleation and growth processes employing the
generalized Gibbs’ approach for the description of the properties of sub-, critical and

super-critical clusters.

3.2. Model system

We consider kinetic aspects of new phase formation in a binary solid or liquid
solution. Since here we are mainly interested in the discussion of the basic principles
and consequences of the newly developed generalized Gibbs’ approach in application
to phase separation, the solution is considered as a regular one representing one of
the simplest models of a system consisting of two kinds of interacting molecules.

Cluster formation in a binary solution results from a redistribution of molecules.
Following Gibbs’ model approach, we consider a cluster as a spatially homogeneous
part of the domain volume with a composition different from the ambient phase. Both
size and composition of the cluster may vary in a wide range. As the dividing surface,
separating the cluster from the ambient phase, in the thermodynamic description
underlying the method of analysis, we always employ here the surface of tension
[12—-14]. In line with the basic assumptions underlying the model of regular solutions

[15] and for simplicity of the notations, the volume per particle, w, is assumed to be
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the same for both components and independent of composition (w, = wg = w, the
subscript « specifying the cluster, and (3, the parameters of the ambient phase). Cluster
radius, R, and particle number in a cluster, n,, are related then by the following simple

expression

4

—WR?’ = NoW . (3.1)
3

The change of the Gibbs free energy, AG, connected with the formation of

one cluster in the initially homogeneous ambient phase can be written in a commonly

good approximation as [2,16,17]

AG=0A+ Y 1 (1jo — Hyp) - (3.2)

J

The first term in the right hand side of Eq. (3.2) reflects cluster surface effects (o is
the interfacial tension, and A is the surface area of the cluster) and the second term
cluster bulk contributions to the change of the Gibbs’ free energy, n; are the numbers
of particles of the different components in the cluster, n, = n; + no (the subscript «
1s omitted for n; and no for convenience of the notations).

For binary regular solutions, the chemical potentials of the different components

in the cluster, 14,4, and ambient solution, 13, are given by [15]

o = i, + kT In(1 — z,) + Q22 | (3.3)
figa = 15y + kpTInz, +Q (1 — z4)° |

pip = pig + kpTIn(1 —x) + Qa?

pop = pag + kT Inx 4+ Q (1 — ),

where kp is the Boltzmann constant, 7' the absolute temperature, z, and x are

the molar fractions of the second component in the cluster and the ambient phase,



A.S. Abyzov et al. / Journal of Non-Crystalline Solids 356 (2010) 29152922 148

respectively,

no

Lo = )
ny + no

and () is an interaction parameter describing specific properties of the considered
system. The parameter, {2, can be expressed via the critical temperature, 7., of the

system (cf. also Fig. 3.1) as
T.=—. (3.4)

The surface tension between two macroscopic phases with compositions x, and =,

respectively, is given, according to Becker ( [15], see also [18]) by

=70 (zq—x) . (3.5)

From Egs. (3.2) — (3.5) we have

A ay
00 Z0) _ Bbionll (v 2" + ma (o, (6)
kgT 2

where

fx,zs) = (1 —x4) {ln 11__3;a + 2% (22 — x2)} (3.7)

X

+ 74 {m@ +2% [(1 —z)’— (1 —@ﬂ}

holds and the scaling parameter, n,,, for the particle number in the cluster is specified
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Fig. 3.1. Phase diagram of a binary regular solution with binodal and spinodal curves.
The spinodal curve separates thermodynamically stable from thermodynamically
unstable states of the homogeneous ambient phase. In the present analysis, we assume
that the temperature is equal to 7' = 0.77, and vary the driving force of the phase
transformation process by changing the initial composition of the ambient phase, x.

as

2% [4r\'?
ni/?’ = ]CB—T (3) w2/3 . (38)

In addition, we introduce via Egs. (3.1) and (3.8) also a scaling parameter, R, for

the cluster radius as

3ny,w 13 95w
R, = - — . 3.9
< 4 ) kBT ( )

In the further analysis, we will always assume for an illustration of the results
that the temperature in the system is equal to 7" = 0.77.. The concentration of
the solute in the initially homogeneous system is varied in the range from x =
xp, = 0.086 (left branch of the binodal curve) to v = x,, = 0.226 (left branch of
the spinodal curve) covering meta-stable initial states and z,, < x < 0.5 covering
unstable initial states (see Fig. 3.1). Since the phase diagram of a regular solution

is symmetric, we may restrict the analysis to initial states in the considered range
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with initial concentrations, x < 0.5. A specification of further parameters like o
and w is not required, since we compute reduced characteristics, so that such system
parameters enter the description only via the scaling quantities (see also [2]).

Above given equations allow us to determine the thermodynamic potential
surface as a function of the number of particles, n; and ns, in the cluster. The results
are shown for different values of the initial supersaturation in Fig. 3.2 both for meta-
stable ((a) x = 0.17) and unstable ((b) * = 0.3) initial states. As far as we are
interested mainly in the demonstration of the basic qualitative features, in Fig. 3.2

and similar ones, the numbers are omitted at the axes.

x=0.17 x=0.3

AG‘/
d Valley, x,=x, AG=0

Initial clusters, x,=x;,

Valley, x,=x, AG=0

Fig. 3.2. Shape of the Gibbs free energy surface for meta-stable (z = 0.17, Fig. 3.2a)
and unstable initial states (x = 0.3, Fig. 3.2b). As mentioned, the temperature is
chosen equal to 7'/T, = 0.7 (for further details, see text).

For each of the meta-stable initial states, the thermodynamic potential surface

has, in the vicinity of the critical cluster coordinates, a typical saddle-shape. The
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position of this saddle-point is determined by the set of equations

8AG (nl, ng)
(9n1

8AG (nl, TlQ)
8n2

=0,

~=0. (3.10)

In order to allow us a better understanding of the shape of the thermodynamic
potential surface, contour lines through the saddle are included in the figures by full
curves and the ridge position by dashed curves. The thick full curve with arrows
describes the most probable trajectory of cluster evolution. It starts at some point
along the dashed curve determined by the initial conditions x, = x;, (in the initial
state the composition of the cluster is different from the ambient phase, x;, > x, the
detailed explanation see below). Then it passes the saddle point and follows further
the trajectory of macroscopic growth with an initial cluster size slightly above the
critical size. As discussed in detail in [2], the trajectory of evolution from the initial
state to the saddle point can be assumed to coincide, in general, with the path of
cluster dissolution starting with initial states slightly below the critical cluster size.
The most probable trajectory of evolution is determined thus for both regions by the
macroscopic growth equations. For segregation in solutions, these equations can be

written in the form

dny dAG

— = —Dq(1 — 11

o 1(1 —25)0(n1,n2) any (3.11)
(3.12)

an dAG

E = —sz@(nlﬂ”@) dny )

where D and D- are the partial diffusion coefficients of the different components in

the ambient phase, and the notation

©(ny1,ng) = Ogny (3.13)

(0%
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Fig. 3.3. Dependence of the minimum work of critical cluster formati-
on, AG./(nykgT), and the minimum work of ridge cluster formation,

AGigge/(nokpT), on the initial solute concentration, x.

is employed. The parameter x has the value k = 2/3 for kinetic-limited growth,
and k = 1/3 for diffusion-limited growth and © is a parameter depending only
on temperature (we set, as mentioned, the temperature equal to 7" = 0.77.). As
evident from above considerations and the structure of Egs. (3.11), the path of cluster
evolution depends on the partial diffusion coefficients of both components of the
solution (see for the details [18]), however, qualitatively the picture remains always
the same. On Fig. 3.2, the trajectories are shown for D = Ds.

The analysis of Egs. (3.10) shows [2, 16, 17] that the work of critical cluster
formation decreases monotonically with increasing supersaturation and tends to zero
at the spinodal curve (see Fig. 3.3, solid curve). The dependence of the critical cluster
size, R., on supersaturation is illustrated in Fig. 3.4 (solid curve). We can see, that -
computed in terms of the generalized Gibbs approach - near the spinodal curve the
critical radius increases, and in order to evolve into the new phase via the saddle
point very large clusters have to be formed which is unfavorable from a kinetic point
of view. In such situations, we can predict, that not the thermodynamic but kinetic

factors will govern the process, and the main flux to the new phase passes not the
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Fig. 3.4. Dependence of the critical cluster radius, R./R, (solid curve) and ridge
crossing radius, 1,44 (dashed curve), on the initial solute concentration, x, for phase
formation at meta-stable (x;, < ¥ < x,,) and unstable (z > x,,) initial states of the
ambient solution.
saddle but some ridge point of the thermodynamic potential, which corresponds to
smaller sizes of the cluster. This expectation will be confirmed by the results of the
numerical computations.

Having at our disposal the expression for the thermodynamic potential, we can
now formulate the set (for any possible values of n; and n9) of equations, which

defines the evolution of the distribution function of clusters, f (nq,ns):

of (n1,n2) o

= (3.14)
=wy (n1+1,n) f (01 +1,n9) + i (01— 1,n2) f (01 — 1,n) +
+wy (n,na+1) f(n1,ne + 1) +wy (n,ne — 1) f (ng,ne — 1) —

— [wi (n1,m2) + wi (n1,m2) + wy (n1,m2) +wy (n1,m2)] f (na,m2) .

Here the kinetic coefficients wf@) have the meaning of the probability of incorporation

into the cluster of atom of sort 1(2), and W) the probability of emission. These
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kinetic coefficients are given by

wy (1 +1,n9)

(3.15)
wy (n1,n2)

wy (n1,ng)

wy (ny1,m2 + 1)

{

wi (n1,n2) _ eXp{M} | (3.16)
{
{

Agg (nl, N9 + 1)
— 3.17
wy (n1,n9) exp kgT ’ (3.17)
wy (N1, n2) Ags (n17n2)}
— ex , 3.18
Wy (nl, Tlg) b kBT ( )

wi (n1,n9) = 4w Dy (1 — 2)w™23nt/3 (3.19)
wy (n1,na) = 4w Daaw>*n/? (3.20)
where
Agi (n1+ 1,n9) = AG (ny1 + 1,n2) — AG (ny1,ns) (3.21)
Agy (ny,n9) = AG (n1,n2) — AG (ng — 1,n9) , (3.22)
Ags (n1,n9+ 1) = AG (n1,n2 + 1) — AG (n1,na) (3.23)
Ags (n1,m2) = AG (ny,n9) — AG (n1,n2 — 1) . (3.24)

Let us introduce, now, the new reduced variables

t' =t - 4w/ DDy 3023 (3.25)
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D
DyDs’

R' = R/R, , Ny = n12/Ng D, = (3.26)

:

where R, and n, are defined via the Egs. (3.9) and (3.8), respectively. We will omit

the primes for convenience of the notations, and then Eq. (3.15) gets the form

W _ (3.27)
— wi (1, 12) [ (n1 + 1, no) exp {Agl (7;:3;1’"2)} —f (nl,m)-
+wf (n,ma) I (1,9 + 1) exp {Ag? (7;;’;2 i 1)} _ f(nl,ng)-
—wi (g — 1,;12) (1, ma) exp {Agléz; ”2)} — f (1 — 1,n0)
—wy (n1,n2 — 1) :f (n1,n2) exp {Ag2k(z; n2)} — f(ni,ne = 1)),

where

wi (n1,m2) = Di(1—2)n'® | wi (m,ny) = Doan'/? . (3.28)

The total flux of clusters in the space (n1,n2) can be written in the form

J(ni,n9,t) = Jp(ny,ng, t) + Js(ny,noyt) (3.29)
where
Ty i(n1, ma, ) = —wr (1, m) J (2;;;2) GAGa(:;L;, ns) (3.30)
is the regular part of the flux (¢ = 1, 2), and
Js.i(ni,ng, t) = —w;™ (ny, ne) %ﬁ;m) (3.31)

is the fluctuational part of the flux.
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Let us note that the formal use of the potential Eq. (3.2) with Eq. (3.28) leads
to a non-physical result, that is, the clusters in the space (n1,n5) are floating towards
the bigger sizes along the bottom of the valley, AG = 0, corresponding to the initial
concentration x. Therefore we can formally choose in any place of the initial phase
the domain of the corresponding size, and because such “cluster” is not distinguished
from the environment its formation work equals zero and therefore all these states are
virtual. It is evident that the process of cluster formation can be influenced only by the
domains with a concentration which is different from the initial one by some value,
which is defined by the structures of the new and the initial phase. For example, if
in the domain of the initial phase consisting of 1000 atoms of kind A one atom is
replaced with the atom of kind 5B one gets a cluster with the concentration of atoms
of kind B, z,, equal to 0.001, if this domain consists of 50 atoms, one gets the
concentration x, = 0.02, in the case of 100 atoms z, = 0.1. Obviously the first
case is physically unrealistic, as opposed to the third and, probably, second cases, so
one should put a limit where a cluster starts being considered as different from the
environment.

In the further analysis, we set the limit in such a way that the initial cluster
has a concentration, x;,, which is by 10% or more different from the initial one. For
example, for the concentration of the initial phase z = 0.2 the clusters have then a
minimum concentration x > x;, = 0.22 to be treated as a cluster of the new phase.
Such an approach is approximate, because in the general case, x;, depends on the size
of the cluster, and also the exact solution of this problem significantly depends on the
properties of the specific materials and therefore is not considered in the present work.
We do not take into account the fluctuations with x, < x as well, because for the case
under consideration, x < 0.5, they will be significant only in the very unstable region,
but in such case we need to take into account the law of conservation of matter which
1s not considered in the present work (we assume that the number of clusters and their

sizes are sufficiently small so that the state of the ambient solution is not changed).
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3.3. Results and discussion

Eq. (3.28) was solved numerically for particle numbers in the cluster in the
range n12 = 1,2,...,100, the composition of the initial clusters was chosen as
n1(0) = 0, na(0) = 2, thatis f(0,2)|,_, = 10'° and f (ny,n2)|,_, = 0 for ny # 2.
The distribution function for the different moments of time, ¢ = 100, 1000, 3000,
and ¢ > 10000, is presented on Figs. 3.5a-d, respectively. The molar fraction of the
ambient phase was chosen here to be equal to z = 0.17, and the diffusion coefficients

are supposed to obey the relation Dy = Ds.
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Fig. 3.5. Cluster distribution functions for different moments of time: a) ¢ = 100, b)
t = 1000, ¢) t = 3000, and d) ¢ > 10000.
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In Figs. 3.6a-d, the shape of the Gibbs free energy surface and the path of the
cluster evolution is shown in the (n1,n5)-space for the molar fraction of the ambient
phase equal to x = 0.13, 0.17, 0.21, and 0.25, respectively. We set, as mentioned,

the temperature equal to " = 0.77.. One can see, that at first the clusters in the

50

40F™

20

saddle

Fig. 3.6. Shape of the Gibbs free energy surface and schematic illustration of the
trajectories of evolution for different values of the supersaturation: a) x = 0.13,
b) z = 0.17, ¢) z = 0.21, and d) x = 0.25. In all cases, we have set here Dy = D;.

space (nq,ns) are floating towards the bigger sizes along the bottom of the valley, the
distribution function has a maximum at x = z;,. Such clusters can be considered as
homo-phase fluctuations of the initial state. Then the nucleation process starts, and a

maximum of the distribution function is formed, which corresponds to the new phase
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(hetero-phase fluctuations). As it was mentioned before, we do not take into account
here the law of conservation of matter, so after the time ¢ ~ 10000, the process
becomes a steady-state one.

On Fig. 3.6, the dashed line shows the position of the ridge of the Gibbs free
energy surface, which is determined from the condition that the regular part of the
flux of clusters, J, = (J,S) (J, is defined by Eq. (3.30), S is normal vector to
the ridge), equals zero, and the solid line shows the maximum of the full flux of
clusters Eq. (3.29). It can be seen, that in the case of small supersaturation (r =
0.13, Fig. 3.6a), the nucleation goes through the saddle point, but with increasing
supersaturation (r = 0.17, Fig. 3.6b and x = 0.21, Fig. 3.6¢) the point where the
flux crosses the ridge (with a radius R,;4,.) more and more deviates from the saddle
point, more precisely, the critical radius, R., which corresponds to the saddle point,
increases to infinity at v = x,, while R,;44 decreases but insignificantly (see also
Fig. 3.4, solid and dashed lines correspond to the R, and R, 4., respectively). Ridge
crossing as another possible channel of formation of the new phase in the framework
of classical nucleation theory has been considered for the first time by Trinkaus [5]
and later in [6-11].

Let us note, that for unstable initial states the critical cluster has always a
composition equal to the composition of the ambient phase, and the critical cluster
corresponds to a cluster size where the state along the line * = x, switches from a
minimum to a maximum of AG with respect to variations of the cluster composition at
fixed values of the cluster sizes. This critical point of third order differs from the usual
saddle point of second order which determines nucleation in the metastable region but
fulfils a similar role (for details see [1-4]). For R < R,, cluster composition changes
lead to the growth of the Gibbs free energy, and the cluster is stable in such region.
For R > R., any composition change (both increase and decrease of the cluster
concentration) results in a decrease of the Gibbs free energy. In such region, the

cluster is unstable and the decomposition proceeds via growth of the concentration
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differences, i.e., according to the basic mechanism commonly assigned to spinodal
decomposition. Nevertheless, we can see that in the region of weakly unstable initial
states (x = 0.25, Fig. 3.6d), the process evolves via a nucleation scenario passing the
ridge of Gibbs free energy surface.

The cross-sections of the distribution function for ¢ > 10000, x = 0.17, D, =
D, are presented in Figs. 3.7 for the ridge position and different numbers of atoms in

the cluster (that is for n; + no = const.). One can see, that these cross sections for

1010

x=0.17

Jxo)

0.2 0.4 0.6 0.8
Cluster concentration, x,

Fig. 3.7. Cross-sections of the distribution function for £ > 10000, z = 0.17, D; =
Dy for the ridge position and different number of atoms in the cluster (that is for

ni + ny = const.).

n = const. have two maxima, the first, at small values of n, corresponds to homo-
phase fluctuations of the initial state, the second one corresponds to the clusters of
the new phase or hetero-phase fluctuations.

In Fig. 3.8 the flux via the ridge in dependence on the size of the ridge position
(here expressed via nq) is shown, by a circle the position of the critical cluster is
specified. It is evident that the maximum of the flux is located near to the critical
cluster size only for relatively small and moderate initial super-saturations. In addition,

we can conclude that the transition to the new phase for a moderate entrance into the



A.S. Abyzov et al. / Journal of Non-Crystalline Solids 356 (2010) 2915-2922 161

O - saddle point position

—
o)

e
)

<o
~

Reduced ridge flux, J(n)/\J_ .
_C> ()
) (@)Y

o

Fig. 3.8. Flux density via the ridge in dependence on the size of the ridge position
(here expressed via ny), for different values of the supersaturation: x = 0.13, z =
0.17, x = 0.21, and = 0.25. By a circle the position of the critical cluster is
specified, in all cases, we have set here D = Ds.

unstable region (which is usually associated with spinodal decomposition) occurs by
a similar nucleation scenario. This happens because near to the spinodal curve the
characteristic size of the Cahn-Hilliard instability region is large (see e.g. [2,3, 19]
and Fig. 3.4), and it is much easier for the system to overcome the small potential
barrier by the nucleation scenario with the cluster of smaller size. Nevertheless this
process being activated by its nature has, again, features considered conventionally as
specific to spinodal decomposition, namely, during the evolution of the clusters their
composition changes significantly.

Finally, in Fig. 3.9 the flux density via the ridge Eq. (3.29) in dependence
on size of the ridge position is shown for z = 0.17 and for different values of
the (D1/D5)-ratio (D1 Dy = const.). The dependence of the maximal value of flux
density, J,4., and integral flux, J;,,;, via the ridge on the (D;/D,)-ratio is shown
in Fig. 3.10a; and the dependence of the minimum work of ridge cluster formation,
AGidge/(nokpT) and the size of the ridge position (here expressed via n;,), on
the (Dy/Dy)-ratio is shown in Fig. 3.10b. Dashed lines show the minimum work of

cluster formation and n . is the value for the saddle point. In all cases, we have set
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Fig. 3.9. Flux density via the ridge in dependence on the size of the ridge position
(here expressed via ny), for different values of the (Dy/D)-ratio and = = 0.17.

here x = 0.17. We see, that for large (D, /D-)-ratios the process evolves passing the
ridge of Gibbs free energy surface near to the saddle point, but with a decrease of
the (D;/D,)-ratio the ridge crossing point, (n; ., 12, ), more and more deviates from
the saddle point (n; ., no.), so that ny, ~ ng., but ny, < n;. and decreases with
a decrease of the (D;/D5)-ratio (see Fig. 3.10b). This happens because for a low
mobility of the atoms of the first kind it is much easier for the system to overcome
the relatively higher potential barrier, but with clusters consisting of a smaller number
of particles ny (see Fig. 3.10b). The maximal value of flux density, .J,,.., reaches a
maximum at D/ D, ~ 0.15 and the integral flux, .J;,,;, has a maximum at D;/D; =~
0.5 (see Fig. 3.10a).

The discussed above results are obtained under the assumption that the number
of the clusters is small and they do not influence the composition of the initial phase
significantly, so the law of conservation of matter is not taken into account explicitly
in computing the state of the ambient phase. Therefore, the results can be employed
only for the description of the initial stages of the process. This comment is especially
important when large super-saturations are considered, i.e., when the fast-growing

clusters deplete the surrounding phase. Nevertheless the results obtained in the present
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Jnax> Jints arb. U

AGridge /nGkBT

Fig. 3.10. a) Maximal value of flux density, .J,,.., and total flux, .J;, via the ridge
in dependence on the (D;/Ds)-ratio; b) minimum work of ridge cluster formation,
AGrigge/(nokpT) and the size of the ridge position (here expressed via n;,), in
dependence on the (D;/Ds)-ratio. Dashed lines show the minimum work of cluster
formation and n . value for the saddle point. In all cases, we have set here x = 0.17.

work qualitatively agree with the conclusions we have obtained earlier, where it was
also shown that taking depletion effect into account leads to the fact that in an unstable
region the process may proceed via the common nucleation scenario [3]. Of course,
it is more correct to calculate the kinetics of the process together with taking into
account from the very beginning the depletion effect. It can also be shown that in such
case the cluster distribution as a rule has a bimodal form, where the first maximum
corresponds to the fluctuations of the initial phase concentration, and the second one

corresponds to the clusters of the new growing phase. Both topics will be addressed

in detail in future analyses.
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3.5. BucHoBku 10 po3ainy 3

Pesynbpratu gociigkeHb, MPEACTABICHUX Yy JAHOMY PO3/LIi, OIyOJIKOBaHO

B ctatTi [3] (Jlomarox A. Crimcok myOumikaiii 3m00yBada 3a TeMoro aucepraitii). Cepen
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OCHOBHHUX PE3YJIbTATIB Yy SKOCTI BUCHOBKIB MOXKHA BUIJTUTH HACTYIIHI:

e IlpoBeneHo neraybHUI aHAI3 Mpollecy Hykjeallii HOBO1 ¢a3u 3 3a J0Mo-
MOTOF0 YHCEJIbHOTO MOJICITFOBAHHS Ha OCHOBI KJIACTEPHOI AMHAMIKH, TEPMOJAMHAMIKA
dbopMyBaHHS KJIacTEPiB aHAII3YEThCS HA OCHOBI y3arajibHeHOro Meroay ['100ca st

MOJIeJIl PETYJISIPHOro OIHAPHOTO PO3UUHY.

e [lpoananizoBaHa eBOJIIOIISA (DYHKIIT pO3MOILITY KJIACTEPIB 3a PO3MIPOM Ta
CKJIQJIOM SIK JIsl MeTacTaOUIbHUX (HyKJIeallisl), Tak 1 JjIsi HecTaOUIbHUX (CIiHOIAIb-

HUW po3Maj) MOYaTKOBUX CTAHIB.

e [IpoBeneHo MOPIBHAHHS IIBUIKOCTI HyKJI€allli OCHOBI y3arajJbHEHOTO Me-
tony ['166ca 1 nnst kinacuyHoi Teopii. [lokazaHo, M0 BUXiJ Ha KBa3iCTalllOHAPHUM
peXUM HyKJIealli B y3arajJbHeHOMY miaxo/1 ['100ca Bin0yBaeThCsl MOBLIBHIIIE, HIXK B

KJIACUYHOMY BHIIAJIKY, ajie¢ MIBUIKICTh HYKJIEAIil MOMITHO BHIIIE.

e Po3paxoBaHO MOTIK KJacTepiB HOBOI (pa3u B MPOCTOP1 pO3MIPiB, MOKA3AHO,
110 Y HECTAOIbHUX MTOYATKOBUX CTAHAX MOONMU3Y K1ACUYHOI CNIHOOAI] MAKCUMYM I10-
TOKY MO€ MPOXOJUTH 4Yepe3 TpediHb TINeprnoBepXHi TEPMOIUHAMIYHOTO TTOTEHIIIANY,
TOOTO yTBOpeHHS a3 MOXKE MPOTIKATH YEPe3 akmusayilinuii 6ap €p, HE3BAXKAIOUHN Ha
TE, 110 Yy IbOMY BUNAJKY 3HaueHHs poOOTH (POpPMYBaHHS KPUTHYHOTO KJacTepa, Io

BIJINOB1/Ia€ C1JUIOBOI TOYI[l TEPMOAMHAMIYHOTO MOTEHIIIATY, TOPIBHIOE HYIIIO.
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PO3/ILI 4

KIHETUKA MPOLECIB CETPETALIIl Y PO3UMHAX: EBOJIIOIIIS
YEPE3 CIIJI0OBY TOYKY ABO YEPE3 I'PEBIHb
TEPMOANHAMIYHOI'O HOTEHLIAJIY

VY derBepTOMY PO3AUTI 3a JOMOMOTOI YHCEIHHOTO MOJCITIOBAaHHS Ha OCHOBI
KJIACTEPHOI JAMHAMIKUA y OlHApHOMY PETYJISIPHOMY PO3UMHI BU3HAYAETHCS HANOLIBIIT
BIPOT1THUH TOTIK KJIacTePiB HOBOI (pa3u B MPOCTOPi PO3MIPIB 3aJIEKHO BiJ TOYATKO-

BOI'0 NMEpCCUYICHHA.
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ABSTRACT

Based on the solution of the set of kinetic equations, describing nucleation
and growth in solutions, the most probable path of evolution of the cluster
ensemble in nucleation and growth processes is specified in dependence on
the initial supersaturation. Hereby, on one side, the classical Gibbs’ approach

is employed for the description of the thermodynamic properties of the
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system (utilizing the capillarity approximation). As an alternative method,
the classical Gibbs’ method of description is replaced by the generalized
Gibbs’ approach. It is shown that significant deviations from the saddle
point trajectory of evolution are found only if in the thermodynamics of
cluster evolution the generalized Gibbs’ approach is employed allowing
one to account for and to determine changes of the state of the clusters in
dependence on supersaturation and cluster size. In addition, the basic origin
for the deviation of the most probable path of evolution from the path via
the saddle point of the thermodynamic potential surface is specified.

(©2013 Elsevier B.V. All rights reserved.

4.1. Introduction

In the analysis of nucleation-growth processes in glass-forming melts, it is
commonly assumed that nucleation processes proceed along a trajectory passing
the maximum or, more generally, the saddle point of the thermodynamic potential
surface [1,2]. Hereby the properties of the critical clusters are identified as a rule
with the properties of the newly evolving macroscopic phases in line with Gibbs’
classical theory of heterogeneous systems [3]. Extending Gibbs’ classical theory to
the description of heterogeneous systems in non-equilibrium states (for an overview,
c.f. [4]), we have re-analyzed in two recent publications the process of segregation
in solutions from thermodynamic [5] and kinetic [6] points of view by analytical
methods and by solving numerically the set of kinetic equations describing nucleation
and growth processes. Following earlier suggestions by other authors [7-13] it was
shown, in particular, that for sufficiently large supersaturation the transition to the
newly evolving phase does not proceed via the saddle but via a ridge of the
thermodynamic potential barrier and that such switch in the choice of the preferential
path of evolution to the new phase is of much more significance if the generalized

Gibbs’ approach is employed for the thermodynamic description of the cluster
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ensemble evolving in the ambient solution.

This analysis is continued and developed in more detail in the present paper.
Based on the solution of the set of kinetic equations, describing nucleation and growth
in solutions, the most probable path of evolution is specified in dependence on the
initial supersaturation (i.) if on one side the classical Gibbs’ approach is employed for
the description of the thermodynamic properties of the system (utilizing the capillarity
approximation), and on the other side, (ii.) if the classical Gibbs’ is replaced by the
generalized Gibbs’ approach. In addition, (iii.) the basic origin for the deviation of
the most probable path of evolution from the path via the saddle point is specified.
The starting point of the analysis and the problem to be analyzed can be described as
follows:

The critical cluster size, F,., and the work of critical cluster formation, AG,,
in dependence on the initial solute concentration, x, in the ambient phase can be

represented, according to [5,6], in a form as shown in Fig. 4.1. While in the respective

8 : :
; a) 1000} ; b)
T o : i
: O ! !
ﬁb 6 Re i i T
P | e L 1S
% sH T s ' ' 2
2 ! g < ! '3
E N 3 ER i
5 4L8 @ Z 10H8 :
= = g E ===
S 2f = o N e T
| S i AGenT()
1k 1
O E | i | | | | | |
01 015 02 025 03 035 01 015 02 025 03 035

Initial solute concentration, x Initial solute concentration, x

Fig. 4.1. Critical cluster size and work of critical cluster formation according to
the classical (employing the capillarity approximations, dashed curve, Rent(o.)s
AGcNT(0..)) and the generalized (full curve, R., AG.) Gibbs’ approaches (scaling
parameters, R, and G, for the cluster radius and the work of critical cluster formation
are introduced via Egs. (4.9) and (4.10)). If in the classical Gibbs’ approach a
curvature dependence of the interfacial tension is introduced in such a way that the
work of critical cluster formation tends to zero at the spinodal curve, then the critical
cluster size approaches zero as well (dashed-dotted curve, Ront(o(Rr))>» AGCNT(0(R)))
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dependencies obtained via the classical Gibbs’ approach, Rent(o, ) and AGenT(o.,)s
(employing the capillarity approximation) no peculiarities occur in the vicinity of the
spinodal curve, the critical cluster — computed via the generalized Gibbs’ approach
— diverges here and the work of critical cluster formation tends to zero remaining
equal to zero also in the region of unstable initial states. Provided we introduce in the
classical Gibbs’ approach a curvature dependence of the interfacial tension in such a
way that the work of critical cluster formation tends — as it should be the case — to
zero at the spinodal, then the critical cluster size tends to zero at the spinodal in such
approach as well (c.f. e.g. [14,15]). In the subsequent analysis we will not consider the
latter case but employ the capillarity approximation as usually done in the classical
theory of nucleation and growth. Note as well that in the framework of the generalized
Gibbs’ approach — in contrast to the classical Gibbs’ method of description — a critical
cluster size can be determined also for unstable initial states [5], it corresponds to
the lower limit of the size of the region where spontaneous density or composition
amplification may be realized according to the Cahn-Hilliard theory [16] of spinodal
decomposition. So, the question we would like to address here is: Will the evolution
of the system to the new phase proceed via some of the specified saddle points —
determined either by the classical or generalized Gibbs’ approaches — or will there
occur deviations from the saddle-point trajectory of cluster evolution and, if this is
the case, why.

In the analysis, we employ the methodology as outlined in detail in [5, 6] and
for the description of the thermodynamics the model of a binary regular solution. The
method and the model are sketched here only briefly. The reader is referred for the

respective details to above cited papers.
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4.2. Brief description of the methodology and the model system

Cluster formation in a binary solution results from a redistribution of molecules
in space. Following Gibbs’ model approach, we consider a cluster as a spatially
homogeneous part of the domain volume with a composition different from the
ambient phase. As the dividing surface, separating the cluster from the ambient phase,
in the thermodynamic description utilized in the analysis, we always employ here the
surface of tension [3,17]. In line with the basic assumptions underlying the model
of binary regular solutions [18,19] and for simplicity of the notations, the volume
per particle, w, is assumed to be the same for both components and independent of
composition (W, = wg = w = a3, the subscript o specifying the cluster, and f3,
the parameters of the ambient phase, a is an interatomic distance parameter). Cluster
radius, R, and particle number in a cluster, n,, are related then by the following
simple expression
%R?’ = Now = Naa’ . 4.1)

The change of the Gibbs free energy, AG, connected with the formation of
one cluster in the initially homogeneous ambient phase can be written in a commonly

good approximation as [20,21]

AG =0A+> 1 (e — i) - (4.2)

J

The first term in the right hand side of Eq. (4.2) reflects cluster surface effects (o is
the interfacial tension, and A is the surface area of the cluster) and the second term
cluster bulk contributions to the change of the Gibbs’ free energy, n; are the numbers
of particles of the different components in the cluster, n, = n; + no (the subscript «

1s omitted for n; and no for convenience of the notations).
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For binary regular solutions, the chemical potentials of the different components

in the cluster, 14,4, and ambient solution, 13, are given by [19]

1o = i, + kT In(1 — ) + Qa2 (4.3)
figa = [y + kT Inz, +Q (1 —24)°

pip = pig + kT In(1 — x) + Qa?

pop = pag + kT Inx 4+ Q (1 —xz)*,

where kp is the Boltzmann constant, 7' the absolute temperature, x and z, =
ns/ (n1 + ng) are the molar fractions of the second component in the ambient phase
and the cluster, respectively, 2 = 2kgT, is an interaction parameter describing
specific properties of the considered system, and 7. is the critical temperature of the
system. The interfacial tension between two macroscopic phases with compositions

x, and z, respectively, is given, according to Becker ( [18], see also [19]) by
o=0(rq—1x)* . (4.4)

From Egs. (4.2) — (4.4) we have

AG (ng,ra) 3
(10 Ta) _ —nl/?’ni/g

kT 27 (:Ba B $)2 T nO/QD(x’ ZEa) + A’@D(na Z, xa) ) 4.5)

where

+ 2— (xi — xQ)} (4.6)
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holds. In Eq. (4.5), a correction term

(S(no‘—_n";) for N > Ny

AY(n,z,2,) = { (Ta — ) (4.7)

0 for Na < Ny

i1s incorporated to remove the virtual clusters, that is the clusters with the same
composition, * = x,, as the initial solution, n,, is the number of atoms in one
structural unit of the solution (see also [6] for more details). Here the scaling

parameter, n,, for the particle number in the cluster is specified as

29542 [4m\ 3
TL}T/?) = /{jB—T <§> . (48)

In addition, we introduce via Eqgs. (4.1) and (4.8) also scaling parameters, R, for the

cluster radius as

1/3 ~ 9
i 2
R, =a (3" ) — o222 (4.9)
4

and for the work of cluster formation, Gz, as

167 [ 5a\®
Go' - T (l{jB—T> . (410)

The reduced critical parameters, R./R,, Rcnr/R,, and AG./kgTG,,
AGent/kpTG,, do not depend on the interfacial tension, o [21], and we will
use these reduced variables (R/R, and AG/kgTG,) for the presentation of our
results.

In the analysis, we always assume for an illustration of the results that the
temperature in the system is equal to 7' = 0.77.. The concentration of the solute
in the initially homogeneous system is varied in the range from z = z;, = 0.086

(left branch of the binodal curve) to x = x4, = 0.226 (left branch of the spinodal
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curve) covering meta-stable initial states and z,, < x < 0.5 covering unstable initial
states. Since the phase diagram of a regular solution is symmetric, we may restrict the
analysis to initial states in the considered range with initial concentrations, x < 0.5.
Having at our disposal the expression for the thermodynamic potential, we can
now formulate the set (for any possible values of n; and ns) of equations, which

defines the evolution of the distribution function of clusters, f (ny,ns):

df (n1,nz)

> 4.11)

=wy (n1+1L,m2) f(n1+1,m2) +wi (m—1,n9) f(n1 — 1,n2) +
+wy (ny,ne + 1) f(n1,na + 1) +wy (n1,ne — 1) f (ny,me — 1) —
— Wi (n1,m2) + Wi (n1,n2) + w3 (n1,n2) +wy (n1,n2)] f (n1,n2) -

+

Here the kinetic coefficients Wy (9)

have the meaning of the probability of incorporation
into the cluster of atom of sort 1(2), and Wi (9) is the probability of emission per unit

time. These kinetic coefficients are given by

wy (n1+ 1,n9) Agi (ng + 1,n9)
wf (. 12) = exp{ kT } , (4.12)
wy (ng,ns) exp {Ag1 (nq, ng)}
wi (n1,n2) kT ’
wy (n1,ns) ~ oxp {Agl (nq, ng)}
wi (n1,n2) kT ’
wy (n1,m2) — exp {Agg (nq, nQ)}
wy (n1,n9) kT ’
wi (n1,n9) = 4w D1(1 — x)a_2n1/3 , (4.13)

wy (n1,n9) = 4w Doza™2n?/?

where
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Agi (m +1,n2) = AG (n1 + 1,n2) — AG (n1,n2) (4.14)
Agl (nl, 712) = AG (nl, 712) — AG (n1 — 1, Tlg) s
Agg (nl,n2+1):AG(n no + ) AG(TLl, 2) ,
Ags (n1,m2) = AG (ny,n9) — AG (n1,ne — 1) .
Let us introduce, now, the a dimensionless time scale via
4w/ D1 D
¢ = V2 (4.15)
a
and dimensionless diffusivities as
D
Di, = —= (4.16)

We will omit further the primes for convenience of the notations, and then Eq. (4.12)

gets the form

af (7’L1, n2)

= (4._ 17)

Agl n1—|—1n2}

:CUT(TLl,nQ) f(n1+17n2)exp f n17n2

Ag (n,n |
glk(Bf} 2} fn1—1n2)_

Ago (n1,n2) ]
kB—T —f(”hnz - 1)_ )

—wy (ng —1,n)

+

N1, N2) €xXp
—wy (ng,n9 — 1) N1, M) €Xp

- A -
+ wy (n1,ns) f(nl,n2+1)exp{ 72 nl,n2+ } f(n1,n9)

f(
f(
where

Wi (n1,mg) = Di(1—a)n'® . Wi (ny,ng) = Dyan'/?® . (4.18)

The total flux of clusters in the space (n1,n2) can be written in the form

J(nla TLQ,t) - Jr(n17n27t) + Js(n17n27t) ) (419)
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where
0AG
Juilnr, mat) = —wit (n1,m) L (Z;j? 2 ggl 2) (4.20)
is the regular part of the flux (¢« = 1, 2), and
0
Jsi(ni,ng, t) = —w; (ny, na) M 4.21)
Ty

is the fluctuational part of the flux. By solving numerically this set of equations, we

can now compute a variety of characteristics of the nucleation-growth process.

4.3. Results and discussion

The set of kinetic equations describing nucleation and growth processes
Egs. (4.17) has been solved numerically assigning the following values to the
parameters a and T,: @ = 4.5 -107"%m, T, = 1400 K. The computations were
performed for different values of the interfacial tension being equal to o = 0.014,
0.021, 0.028, 0.04, and 0.055 J/m?, respectively. These values of interfacial tension
correspond to the respective values at states of equilibrium coexistence of both phases

at planar interfaces, when x, = xgight =1 — 2 and x = x; hold. Eq. (4.4) yields

~ o

With Eq. (4.22), we arrive at the following set of values of o: ¢ = 0.019, 0.03,
0.04, 0.06, 0.083 J/m?. The scaling parameters (Eqgs. (4.9) and (4.10)) get the values
R,/a = 0.176, 0.236, 0.354, 0.532, 0.708 and G, = 0.0114, 0.0275, 0.0929,
0.315, 0.743, respectively. The calculations were performed for particle numbers
in the cluster in the range n;o = 1,2,...,N (/N was chosen in a range 200
... 1600, depending on the interfacial tension, because the characteristic dimension,

ng, grows according to Eq. (4.8) with o), the composition of the initial clusters was
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chosen as ny(0) = ny;, no(0) = 1, that is f (ny;, 1)],_, = 3.7 - 10%n,,! (which
corresponds to the interatomic distance @ = 3 - 107'%m) and f (n1,ns)|,_, = 0 for
(n1,m2) # (n1;,1). Here n,;, = 1 + ny;, ny; is equal to the integer part of (1 — x)/x.
For the calculations in the framework of classical nucleation theory (CNT) the same
set of kinetic equations, Eqs. (4.17), was used, but the interfacial tension was fixed,
thatis 0 = o (1 — 2:1:1))2, and in addition, A (n, z, x,) = 0 was set in Eq. (4.5).

In Fig. 4.2, results of computations of the nucleation rate, .J, are shown.

It is illustrated how the steady-state nucleation rate is established in the system

610 10-10°7
CNT ” Generalized Gibbs
810"+
~ ” ~
s 4107 g .
s g 610"k
=] =]
8 RS
b o g 4107t
s 2107 S
“ “ 107
0 1 1 1 0 1
10 102 10° 10*
Time, ¢

Fig. 4.2. Establishment of the steady-state nucleation rate as determined by the
solution of the set of kinetic equations employing classical (left) and generalized
(right) Gibbs’ approaches for the description of the thermodynamics of cluster
ensembles.

employing both the classical (top) and generalized (bottom) Gibbs’ approaches for
the description of the thermodynamic potential of an ensemble of clusters in the
ambient phase. Hereby it is assumed that the state of the ambient phase is not changed,
i.e., the volume fraction of the cluster phase is small. In agreement with general
conclusions [22] we find for all computations performed including the one shown in
Fig. 4.2 that CNT underestimates the nucleation rate. It is also evident from this figure,
that the time-lag in nucleation — the characteristic time required to establish steady-
state conditions — is smaller in CNT as compared to the estimates obtained utilizing

the generalized Gibbs’ approach. Employing the connection between time-lag in
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nucleation and critical cluster size, 7 oc ne’> " (with 1 = (2/3) for kinetic limited

growth [23,24]) as obtained employing basic assumptions of CNT, this result could
be eventually treated as a consequence that in the generalized Gibbs’ approach the
critical cluster size is larger as compared to the respective value obtained employing
the classical Gibbs’ approach (c.f. Fig. 4.1). However, the basic mechanism is here
somewhat different: The time-lag in nucleation is smaller in CNT as compared to
the estimates obtained via the generalized Gibbs’ approach due to the fact, that in
the evolution of the cluster ensemble, when described via the generalized Gibbs’
approach, first homophase fluctuation type clusters [25] evolve (i.e., clusters with a
composition near to x, = x, which have a small work of formation, c.f. Fig. 4.3).

This process takes some time and increases the time-lag. So, here a more detailed

AG A % saddle AG A =
?ddle

¢) GG, x=0.17 d) GG, x=0.21

Fig. 4.3. The flux via the ridge of the thermodynamic potential surface: (a)-(b) In the
classical Gibbs’ approach, the flux is bounded to a narrow range near to the saddle
point. In contrast, such picture is realized in the generalized Gibbs’ description only
for initial states near to the binodal curve (c.f. Fig. 3c, x = 0.17). For initial states
corresponding to a higher supersaturation (c.f. Fig. 3d, z = 0.21), the flux via the
ridge is found in a wide interval, and has a maximum not at the saddle point.
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analysis is eventually required to give a final explanation to mentioned peculiarity.

Employing the classical Gibbs’ method of description, the trajectory of
evolution to the newly evolving phase proceeds always widely via the saddle point
of the thermodynamic potential surface (the calculated difference of the position of
maximum flux via the ridge from the saddle point is less then 0.05 percent when
the cluster radii at the saddle point and of the ridge clusters are compared, see also
Figs. 43a and b, x = 0.17, 0.21, ¢ = 0.028 J/m?). In contrast, such picture —
that the evolution to the new phase proceeds along a path near to the saddle point
— is realized in the generalized Gibbs’ description only for initial states near to the
binodal curve (c.f. Fig. 4.3¢c, x = 0.17, 0 = 0.028 J/m?). For such parameters, when
the supersaturation is low, the flux via the ridge is found in a narrow interval and has
its maximum at the saddle point.

For initial states corresponding to a higher supersaturation (c.f. Fig. 4.3b, z =
0.21, o = 0.028 J/m2), the situation becomes a different one: A flux via the ridge is
found in a wide interval, and has its maximum not at the saddle point but beyond it.

These results are further illustrated in more detail in Fig. 4.4 showing the
dependence of the flux on cluster size along the ridge. Here R; specifies the size of the
ridge cluster with the maximum, J,,, of the flux, R; and R;r are the lower and upper
values of the ridge clusters in between which an intensive flow into the direction of
the new phase is observed (defined by J(R;) = J (R;L) = Jmax/2). For small values
of the supersaturation, the flux is found in a narrow interval, and the parameters R
and R;L are not so different from the parameter 1?; corresponding to the ridge cluster
of maximum flow (Fig. 4.4, x = 0.15). With increasing supersaturation, the flux
becomes significant in a broader range and is shifted to smaller cluster sizes (Fig. 4.4,
x = 0.17). The maximum of the width is reached near to the spinodal curve (Fig. 4.4,
xr = 0.225). With an even further increase of the supersaturation, with values of x
in the unstable region, the range of significant fluxes becomes more narrow, again

(Fig. 4.4, x = 0.27).
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Fig. 4.4. Dependence of the flux via the ridge on the cluster size along the ridge
for different supersaturations. Employing the classical method of description, widely
independent on the initial supersaturation the flux is located near to the saddle
with its maximum at the saddle point. Employing the generalized Gibbs’ approach,
latter scenario is realized for low supersaturation, only. For moderate and large
supersaturations, the evolution to the new phase proceeds along a ridge path with a
maximum value of the flux, I2;, not located at the saddle of the Gibbs’ thermodynamic
potential surface. Here I, and Rj are the lower and upper values of the size along
the ridge where intensive flow processes of clusters to the new phase are observed.

In Fig. 4.5, the region of intensive fluxes to the new phase is compared with
the critical cluster sizes as obtained via classical and generalized Gibbs’ approaches.
For weakly and moderately metastable states, the ridge cluster radius of maximal
flow, R;, is equal to the critical size for the saddle point and decreases with an
increase of the supersaturation. Near to the spinodal curve, where the critical size,
corresponding to the saddle point, grows, the ridge critical radius decreases, similarly
to the critical radius as computed via the classical Gibbs’ approach and employed in
classical nucleation theory.

Fig. 4.6 shows the dependence of the parameters of the critical clusters on
supersaturation, x, for for different values of the interfacial energies o = 0.014,
0.021, 0.028, 0.04, and 0.055 J/m?: Size (Fig. 4.6a), work of formation (Fig. 4.6b)

and composition (Fig. 4.6¢). The dependencies are shown always employing three
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Fig. 4.5. Dependence of the ridge flux parameters R; (location of the maximum of
the flux, full curve), R; and R;-F (lower and upper values of the size along the ridge
where intensive flow processes of clusters to the new phase are observed) on the
initial solute concentration, . Critical cluster sizes, R, for nucleation via the saddle
point obtained via the generalized Gibbs’ approach (dotted curve), and Rcnt for CNT
(dashed curve) are shown for comparison.
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Fig. 4.6. Dependence of the parameters of critical clusters on the initial solute
concentration, x, for different surface energies, ¢ = 0.014, 0.021, 0.028, 0.04,
and 0.055 J/m?, computed by three different approaches, classical nucleation theory
(dashed lines), thermodynamical generalized Gibbs approach (nucleation proceeds
via saddle point, dotted lines), and kinetic generalized Gibbs approach (nucleation
can proceed via ridge, solid lines): (a) sizes (Ronr/Rs, Re/Rs, and R;/R,), (b)
work of formation (AGont/kpT Gy, AG./kpTG,, and AG;/kTG,) and (c)
composition (4 cNT, Ta.c» and , ;). Recall that for the reduced variables, R./ R, and
AG,./kpTG,, and for composition, To,CNT> Ta,c the critical parameters for CNT and
thermodynamical generalized Gibbs do not depend on the interfacial tension, o [19].
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Fig. 4.7. Effective work of critical cluster formation and specification of the different

ranges of validity of the approaches discussed

different approaches, classical nucleation theory (dashed lines), thermodynamical
generalized Gibbs approach (nucleation proceeds via saddle point, dotted lines), and
kinetic generalized Gibbs approach (nucleation can proceed via the ridge, solid lines)
(recall that for the reduced variables, R/ R, and AG/kpTG,, and for the cluster
composition, x,, the critical parameters for CNT and thermodynamical generalized
Gibbs’ approach do not depend on the interfacial energy, o [21]). We can see that the
nucleation path according to the kinetic approach is located always between CNT and
thermodynamical generalized Gibbs predictions. For large values of the interfacial
tension, the evolution path is moved to the path as predicted by the thermodynamical
generalized Gibbs’ method (nucleation proceeds via saddle point), for low values of
the interfacial tension the nucleation path is moved to the curves as expected from
CNT.

In Fig. 4.7, the effective work of critical cluster formation — for the different
trajectories of evolution of the cluster ensemble — is shown in dependence on
supersaturation and it is specified which of the theoretical approaches is most suitable
for the different ranges of the initial supersaturation. For weakly metastable states,

CNT and generalized Gibbs lead to the same results and both methods are valid.
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For moderately metastable states, CNT results in too high values of the work of
critical cluster formation, and the thermodynamic analysis in the framework of the
generalized Gibbs approach has to be applied. Here the evolution to the new phase
proceeds via the saddle of the thermodynamic potential surface. In the metastable
region near to the spinodal curve, nucleation proceeds via the ridge, but not via the
saddle point, and only the kinetically based analysis of nucleation in the framework
of generalized Gibbs approach is valid. This conclusion holds similarly in the region
of thermodynamically unstable initial states in the vicinity of the spinodal curve.
Finally, we would like to analyze why the transition from a path of evolution
via the saddle is switched with increasing supersaturation to evolution processes
proceeding via the ridge of the thermodynamic potential surface. The origin of
such kind of behavior is the following: As shown in detail in previous analysis
(c.f. [4]), the mechanism of nucleation in solutions does not consist — as assumed
in the classical picture — in the growth of the cluster in size with more or less given
composition. In contrast, nucleation is characterized by an initial amplification of
density fluctuations in a region of the ambient phase with a radius of the critical
cluster size. The nucleation rate of clusters evolving via the saddle can be represented

then consequently as being proportional to

J(Re) & B(Ry) = N(Ry) exp (— ILVT) - <%>36Xp (—%) (423

Here N(R.) is proportional to the number of nucleation sites in the system when
nucleation proceeds via the saddle of the thermodynamic potential surface.

With an increase of the supersaturation, the work of critical cluster formation
via the saddle, AG(R,), decreases and the exponential term increases. However, the
pre-factor, 1/ R2, in the expression of the steady-state nucleation rate overcompensates
this effect as soon as R, as determined via the generalized Gibbs’ approach starts to

increase with increasing supersaturation. By this reason, assuming that the process
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Fig. 4.8. Illustration of the origin of deviation of the most probable path of cluster
evolution from the saddle point trajectory.

proceeds similarly via a ridge, the maximum ridge nucleation rate

IR o (1) = N exo () = (%)xp (S0 @

is larger and consequently this way of evolution represents the preferred trajectory of
cluster formation and growth (Fig. 4.8).

The switch from the saddle point evolution path to ridge crossing allows the
system to realize higher nucleation rates, and by this reason, higher rates of change
of the characteristic thermodynamic potential. This switch in the preferred path of
evolution can be considered in this way as a special realization of the principle of
maximum entropy production (or here the Gibbs’ free energy decrease) as formulated
in [26] as a criterion of selection of the most probable among several possible reaction
pathes. The switch position, xg,, can be estimated as the inflection point of J(R,) as
given by Eq. (4.23), i.e., as a root of the equation

52

@cp(}zc) =0. (4.25)



A.S. Abyzov, J.W.P. Schmelzer / Journal of Non-Crystalline Solids 384 (2014) 8-14 185

Spinodal

0.22F

=]
\S]
T

Switching composition, xg,,
e
[
o0
T

016‘ I 1 1 1 1 1
0.05 0.1 0.15 02 025 03 0.35

Surface energy, o, J/m?

Fig. 4.9. Dependence of the composition of the switching point, x,, where ridge

cluster passage starts to become dominating, on interfacial tension, o.

The dependence of x, on interfacial tension, o, determined via Eq. (4.25) is shown
in Fig. 4.9. For low values of the interfacial tension switching occurs at moderate
supersaturations, and the switching point shifts to the spinodal with growing values

of 0.

4.4. Conclusions

Employing the generalized Gibbs’ approach, the work of critical nucleus
formation in solutions is found generally to have lower values as compared with the
result obtained by the classical Gibbs’ approach when the capillarity approximation
is employed. Therefore the nucleation rate computed via the generalized Gibbs’
approach 1s, as a rule, considerably larger. These results are a consequence of
the possible variations of bulk properties of the critical clusters accounted for and
determined in the generalized Gibbs’ approach. For small supersaturation, the results
of the classical and generalized Gibbs’ approaches lead to widely equivalent results.

This 1s the range, where the classical Gibbs’ method underlying classical nucleation
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theory is directly applicable. For moderately metastable states, the thermodynamic
analysis in the framework of the generalized Gibbs approach can be applied in order
to determine the flux via the saddle point dominating here the nucleation process.
However, for both metastable and unstable initial states near to the spinodal curve
the evolution to the new phase can and will, as a rule, proceed not via the saddle
point, but via the ridge of the appropriate thermodynamic potential relief. In this
range of supersaturation, only the analysis of the kinetics of nucleation and growth
based on the solution of the set of kinetic equations employing for the thermodynamic
description the generalized Gibbs approach is valid. For low interfacial tension values,
the process of nucleation proceeds visually similar to CNT - critical size and work of
critical cluster formation are near to the values predicted by CNT. Nevertheless, the
physical nature of the process is very different: in the framework of CNT, nucleation
proceeds via the saddle point, but in the generalized Gibbs’ approaches (1) the saddle
point is as a rule located at another place, and (i1) nucleation proceeds via the ridge

of the thermodynamic potential relief.
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4.5. BucHoBku 10 po3ainy 4

Pe3ynbratu gociigkeHb, MPEACTABICHUX Yy JAHOMY pO3/LIl, OIMyOJIKOBaHO

B crarti [4] (Jomatox A. Cnmcok myOmikamiii 3700yBada 3a TEMOIO JucepTallii).

[IpoBeneno nertanbHUI aHaji3 Mpolecy HyKJealli HOBOiI (a3u 3 3a JOMOMOTOI0

YHCEJBHOIO MOJICNIOBAHHS HAa OCHOBI KJIACTEPHOI JMHAMIKHM, MPOAaHaJi30BaHa €BO-

mrotist PyHKINT po3MoAlTy KiIacTepiB 3a po3MipoM Ta ckiiagoMm. [lokazano, 1o MoxkHa

BUJIUTUTU TPHU OOJACTI 3aJI€AKHO BiJl CTYNEHSI HECTAOITLHOCTI CUCTEMU:

e VY mepriif 065acTi, Ipu MaJIOMy 3HaY€HHI IEPECUYCHHSI, PE3yJbTaTH KJIaCH-
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YHOT Teopii HyKJeallli Ha OCHOBI KaIJIIPHOTO HAOIMKEHHS Ta y3araJlbHEHOTO METOY
['i60ca mailke 1IEHTUYHI, MaKCUMyM IIOTOKY KjacTepiB HOBOi (a3 B MpPOCTOpI

PO3MIpPIB MPOXOAUTH YEPE3 CIJIOBY TOUKY.

e B npyriit obnacti, npu OLIBIIOMY 3HAUYEHHI TIEPECUUYEHHS, poOoTa CTBOpE-
HHSI KJIacTepa HOBOI (a3 MOMITHO MEHINA, HDK B KJIACHYHINA Teopii HyKJealli, 1110
MPU3BOJUTH JI0 ICTOTHO OUIBII BUCOKOTO 3HAUEHHSI IIIBUJIKOCTI HyKIIealli. Makcumym
MIOTOKY B IPOCTOP1 PO3MIpIB, SIK 1 B mepiiiid o01acTi, MPOXOJUTh MEPEBAXKHO UYepes
cimro. Y mepmniid i Apyrid o0IacTIX MOXKHA BHUKOPHCTOBYBATH MJI PO3PAXYHKY

IIBUIKOCTI HYKJI€aIlli MpoCTi aHAJIITHYHI BUPA3u yepe3 aKTUBAIIHHUMN Oap’ep.

e VY Tperiii obmacti, moOnMM3y CHiHOMATI, HYyKJeallis BiJOyBaTMMEThCS HE
gepes3 CiUTOBY TOUKY, ajieé TPAEKTOPIETO, M0 MPOXOAUTh Yepe3 TpeliHb TineproBEpXHi
TEPMOJIMHAMIYHOTO TMOTEHIIIaTy. Po3paxyHOK MIBHIKOCTI HyKJI€allii y TpeTid o0acTi
MOKJITMBUH TITBKA HA OCHOBI YHCEIBHOTO MOJICITIOBAaHHS Ha OCHOBI KJIacTEpHOI

JUHAMIKU.
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PO3JLT 5

V3ATAJBHEHUM METO/I TTBBCA JIJISI TETEPOT'EHHOI HYKJIEAITT

Y m’aromy po3nuii TOCTIHPKEHO TeTepOTeHHE 3apOoJKEHHS KJIacTepiB HOBOI
da3u (KoHAeHcallisl Ta KUIIHHS) Ha TUJIOCKUX TBEPAMUX IMOBEPXHSIX 3 ypaXyBaHHIM
3MIHM MTapaMeTpPiB CTaHy KPUTUYHUX KJIAacTepiB (Kpanenbok abo Oynb0alok) 3a1ekHo
BiJl IEPECUYCHHS B OJHOKOMIIOHEHTHIN pinnHa BaH Jep Baanbca. B y3aranbHeHoMy
migxomi ['160ca 06’eMHI mapamMeTpH KiacTepa 3ajiekaTh Bifl CTYINEHS MepeCHYCHHS
pPO34MHY, TOMYy MO)XXHa MPHUIYCTUTH, IO MPH TETEPOTeHHOT HyKJeallli Ha IJIOCKIN
MOBEPXHI KOHTAaKTHHH KyT TaKoX Oyle 3MIHIOBAaTHCS 1 TapaMeTpH KPUTUIHOTO

Kjacrtepa OynyTh HE TaKUMH, SIK Yy TOMOT€HHOMY BuUMajiKy. [le ocHOBHa ifies maHOro

PO3LTY.
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Heterogeneous nucleation (condensation and boiling) on planar solid surfaces
is described taking into account changes of the state parameters of the critical
clusters in dependence on supersaturation. The account of the variation
of the state parameters of the cluster phase on nucleation is performed in
the framework of the generalized Gibbs’ approach. One-component van der

Waals fluids are chosen as a model for the analysis of the basic qualitative
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characteristics of the process. The analysis is performed for both hydrophobic
and hydrophilic surfaces and similarities and differences between condensati-
on and boiling processes are discussed for the two different cases. It is shown
that, in the generalized Gibbs’ approach, contact angle and catalytic factor for
heterogeneous nucleation become dependent on the degree of metastability
(undercooling or superheating) of the fluid. For the case of formation of
a droplet in supersaturated vapor on a hydrophobic surface and bubble
formation in a liquid on a hydrophilic surface the solid surface has only
a minor influence on nucleation. In the alternative cases of condensation
of a droplet on a hydrophilic surface and of bubble formation in a liquid
on a hydrophobic surface, nucleation is significantly enhanced by the solid.
Effectively, the existence of the solid surface results in a significant shift
of the spinodal to lower supersaturations as compared with homogeneous
nucleation. Qualitatively the same behavior is observed now near the new
(solid surface induced) limits of instability of the fluid as compared with the
behavior near to the spinodal curve in the case of homogeneous nucleation.

(©2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4802201]

5.1. Introduction

In the interpretation of phase formation processes, two well-established
thermodynamic approaches are presently widely employed going back to Gibbs [1]
and van der Waals [2, 3]. Employing Gibbs’ theory for the description of critical
cluster formation it is, in addition, widely assumed in classical nucleation theory
that the bulk properties of the clusters of the newly evolving phase are to a large
extent similar to the properties of the respective macroscopic phases. As a second
additional assumption it is frequently supposed that the specific interfacial energy or

the surface (interfacial) tension is equal to the respective values for an equilibrium
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coexistence of both phases at planar interfaces (capillarity approximation). While the
first of these assumptions (similarity of the bulk properties of the critical clusters
with the parameters of the respective macroscopic phases) is to a large degree a
consequence of Gibbs’ theory, the second assumption can be and is often released by
introducing a curvature or size dependence of the surface tension or of the specific
interfacial energy. Latter approach is used (and it is the only possibility in Gibbs’
classical approach) in order to arrive at a better agreement between experimental
data on nucleation rates and the theoretical predictions [4,5]. In such approach, the
surface tension serves to some extent (or fully) as a fit parameter in order to reconcile
experiment and theory with respect to the value of the nucleation rate. However, such
approach — employing the value of the specific interfacial energy as a fit parameter as
it is done generally by necessity in the description of crystallization processes — may
lead to other contradictions between theory and experiment and to internal problems
in the theoretical description itself [6].

However, there exists an alternative method to improve the agreement between
theory and experiment in the description of nucleation. Indeed, as it was shown for
the first time by Cahn and Hilliard [7] applying the van der Waals’ approach to the
description of the kinetics of phase formation, the properties of the critical clusters
may deviate significantly from the properties of the newly evolving macroscopic
phases. This deviation of the bulk properties of the critical clusters from the properties
of the macroscopic phases is not accounted for appropriately in Gibbs’ theory. As
shown by us in the last decade [8, 9], generalizing Gibbs’ approach such possible
changes of the bulk properties may be incorporated into the description allowing
one to reconcile Gibbs’ and van der Waals-type approaches in the description of
nucleation. The mentioned generalization of Gibbs’ approach consists basically in the
formulation of the thermodynamic theory by extending it from the very beginning
to the description of non-equilibrium states of clusters in the ambient phase. Only

after this task has been resolved the theory is applied then to the description of the
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properties of the clusters in nucleation and growth. The application of the generalized
Gibbs’ approach was shown to allow one a more correct description of nucleation
as compared with the classical theory: (i.) for model systems the results are in
agreement with density functional computations; (ii.) the approach allows one an
adequate theoretical description of a variety of experimental data which had not found
an adequate interpretation so far [10, 11].

The generalized Gibbs’ approach was applied by us so far in detail to the
description of condensation and boiling in one-component systems [12-14], boiling
in multi-component liquids [15], segregation processes in solutions [8, 17-20] and
crystallization of glass-forming melts [6,10,11]. Predictions of the generalized Gibbs’
approach have been compared, at part, in these papers with results of van der
Waals’ density functional computations [14-16] and experiment (e.g. [6,11,12,15]).
However, in all these investigations we considered so far exclusively homogeneous
nucleation processes. On the other hand, in a huge variety of processes of phase
formation in nature, experiment and technological applications, the formation of the
newly evolving phase does not proceed via homogeneous nucleation but by involving
different types of heterogeneous nucleation cores [21-27]. These effects can be
treated straightforwardly in terms of Gibbs’ classical theory [4]. By this reason, a
generalization of the approaches as developed employing the classical Gibbs’ theory
but accounting for — in terms of the generalized Gibbs’ approach — for possible
changes of the bulk state parameters of the critical clusters of the new phase can
be expected to be possible in a straightforward way. In order to develop the theory in
this direction, with the present paper we start a series of investigations to demonstrate
how, in a similar way as in the classical treatment, heterogeneous nucleation can
be treated in terms of the generalized Gibbs’ approach. For the outline of the basis
ideas and differences as compared to the treatment in terms of the classical Gibbs’
approach, we start here the analysis with some of the simplest cases, the description

of condensation and boiling at planar interfaces as performed — in the framework of
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the classical treatment — e.g. by Volmer [21].

In brief, in the present article heterogeneous nucleation (condensation and
boiling of one-component fluids) at planar solid interfaces is described in the
framework of the generalized Gibbs’ approach. The van der Waals’ fluid [2, 28]
is chosen as a model for the analysis of the basic qualitative characteristics of the
process similarly as it was done in our previous analysis of homogeneous nucleation
(condensation and boiling in one-component van der Waals’ fluids) [12-14]. As in the
latter case, in the analysis we account for the fact that the state parameters (which is
density for a one-component system) of the newly evolving clusters and, in particular,
the critical clusters (drops or bubbles) may deviate in their values considerably from
the respective values of the macroscopic phases. This additional as compared to the
classical picture variation of the bulk parameters affects also the surface parameters
like surface tension and wetting angles and gives thus an additional contribution
to the activity factor of the respective heterogeneous nucleation core with respect
to nucleation. So, in order to determine the work of critical cluster formation the
dependence of the surface parameters on the density of the critical nuclei (drops,
bubbles) has to be determined. This program will be implemented here for four
cases: bubble formation in superheated (stretched) liquids and droplet formation
from the supersaturated (supercooled) vapor both for the cases of hydrophilic and
hydrophobic planar interfaces. Similarities and differences between condensation and
boiling processes are discussed as well.

The article is structured as follows: In Section 5.2, the van der Waals’ equation
of state is briefly discussed as far as required for the subsequent derivations, the
location of binodal and spinodal curves are specified, and the general expressions
are developed allowing us to determine the work of critical cluster formation for
condensation and boiling at planar interfaces. In Section 5.3, the expressions for the
contact angle and catalytic activity factor for critical droplet and bubble formation

are computed. Combining the results obtained in Sections 5.2 and 5.3, in Section 5.4
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heterogeneous condensation and boiling of a van der Waals gas on hydrophilic and
hydrophobic planar surfaces is analyzed. A summary of the results, conclusions and

of possible generalizations (Section 5.5) completes the paper.

5.2. Basic equations

5.2.1. Bulk properties of ambient and newly evolving phases, binodal and

spinodal curves

To describe the bulk properties of the ambient and newly formed phases the
van der Waals equation of state will be used. In dimensionless variables, this equation

has the form [2,28]

80 3
M(w, ) = - 5.1
T
n= =2 4=_ (5.2)
pC UC TC

were v, p, and 1" are the molar volume, pressure, and temperature, by v., p. and
T, the values of the same parameters in the critical point are denoted. The chemical
potential of the van der Waals fluid can be written as [12]
86 86 6
lw,0) =~ In(30 — 1) + 22 (5.3)

3w—1 w

The position of the spinodal, the border between the thermodynamically metastable

and unstable states in the absence of heterogeneous nucleation centers (we will denote
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Fig. 5.1. Location of the binodal and spinodal curves for a van der Waals fluid. For
an illustration of the results, we will perform here the computations for a value of the

reduced temperature equal to 8 = 0.7 (see also text).

it more specifically later also as "bulk spinodal"), is given by the equation

d

—Il(w,d) =0. 5.4

—11(w.0) (54
For any value of temperature below the critical temperature (# < 6. = 1), Eq. (5.4)
yields two solutions which coincide at the critical point. The location of the binodal
curve is determined by the conditions of thermodynamic equilibrium of vapor (gas)

and liquid at a planar interface (equality of pressure and chemical potential) that is,

by the solution of the system of equations

I (wgas, 0) = (wiig, 0) , t(wgas, 0) = p(wiiq, 0) - (5.5)

Similarly to above discussed case, for any value of temperature in the range 6 < 0. =
1, Eq. (5.5) yields one solution for w, and one for w;. These two solutions coincide
at the critical point, again. The binodal and spinodal curves are given in terms of
reduced density, p = 1/w, in Fig. 5.1.

Numerical computations will be performed here assuming the reduced
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temperature to be equal to & = 0.7. In such case, the values of the reduced volume at

the binodal (w;) and spinodal (wy),) curves are equal to

Wl = 0467, WM = 7811, (5.6)
Wil = 0,579, Wit = 2.376 . (5.7)

Accordingly, the equilibrium densities of liquid (p; o) and vapor (p, ) are
~1 . -1
pLo = (w,ﬁlef ’f)) — 214, pyo= (wg”gh”) ~ 0128, (5.8

and the densities at the liquid (p; 5,) and vapor branches (p, ,) of the spinodal curve

arc

-1 : —1
Plsp = (Wg)eft)> = 1.727 ) Pg,sp = <W§;Zght)> = 0.421 . (59)
The non-equilibrium values of density of liquid and vapor will be denoted as p; and

pPg, respectively. An illustration of these notations and results is also given in Fig. 5.1.

5.2.2. Work of critical cluster formation: General expression

Suppose that the system is instantaneously transferred into a metastable state
located in between the binodal and spinodal curves and that afterwards pressure and
temperature are kept constant (later-on we will consider also initial states beyond
these limits, i.e., unstable initial states in between both spinodal curves). As a first
step in the description, we determine the parameters of the critical clusters (drop or

bubble) formed on the planar solid surface.
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Fig. 5.2. Heterogeneous nucleation of a droplet (a, b) and a bubble (c, d) of radius R
on hydrophilic (a, d) and hydrophobic (c, b) planar solid surfaces.

The expression for the change of the thermodynamic potential (the Gibbs’
free energy, () for a one-component system due to the formation of a drop of the
considered shape (segments of a sphere with a radius, R, cf. Fig. 5.2) in the vapor
phase can be written both in the classical and generalized Gibbs’ approaches then

as [4,9,15,21]

AG = UlgAlg + (Uls - Ugs)Als + (p - pa)Va + noz(,ufa - :u,@) ) (5.10)

and, for nucleation of a bubble in a liquid, as

AG = OlgAlg + (Ugs - Uls)Ags + (p - pa)va + noz(,uoz - :uﬂ) : (5.11)

Here 0y, 04 and oy, are the specific surface energies (surface tension) of the liquid-

solid, vapor-solid and vapor-liquid interfaces, respectively, A;s, A,s and A;, are the
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respective interfacial areas (see Fig. 5.2), n, is the number of particles (atoms,
molecules) in the cluster. In both equations and furtheron, the index « always denotes
the parameters of the cluster (liquid phase in case of droplet formation or vapor phase
in boiling), and the index [ refers to ambient phase parameters (vapor or liquid,
respectively). As independent variables, we use the radius, R, and the density of the
cluster, p, (bubble) and p; (drop), respectively.

The bulk contributions, AGy, to the Gibbs’ free energy change can be written
for the case of formation of a droplet with a radius, R, and a contact angle, y

(cf. Fig. 5.2a and b), generally as [21]

AGy = (p - pa)va + na(,uoz - :uﬁ) ) (5.12)

47
AGy = ?R3¢ [(p - pa) + pa(ﬂa - Mﬁ)] )
where ¢ is determined via the contact angle, v, as

¢ ==(2—3cosvy+ (cosv)’) = i(Q + cosy)(1 — cosv)? . (5.13)

NG

The surface contribution, AG'g, to the Gibbs’ free energy of cluster formation is given

according to Eq. (5.10) as

AGS = UlgAlg + (013 — Ugs)Als , (5.14)

AGgs =21 R*(1 — cos 7)oy, + TR*(1 — cos® v) (015 — 04s) -

The condition of mechanical equilibrium along the line of contact where three phases
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meet is given by Young’s equation [21]
Ogs = Ols + 074 COS7Y . (5.15)

Once this relation is fulfilled, we can write the surface contributions to the Gibbs’

free energy as (cf. Eq. (5.13))
1
AGy = 47 R%0y, {1(2 + cosy)(1 — cos 7)2] = 47 R%01,¢) . (5.16)

Similarly to [4,21], the work of droplet formation at heterogeneous nucleation on

planar solid surfaces can be written finally as

4
MG = o{ B (10 =)+ pulpa = o) + 4588, b 619

or
AGhe = ¢AGhom, - (5.18)

This relation holds generally for any values of the radius of the surface of the cluster
(bubble, drop) and any appropriate value of the contact angle, . Employing in
addition the thermodynamic equilibrium conditions at the liquid-vapor interface, the
parameter ¢ becomes equal to the catalytic activity of a given nucleation site (planar
surface in the case under consideration) with respect to nucleation. In the analysis
of heterogeneous nucleation in the framework of the generalized Gibbs approach the
factor ¢ becomes dependent on the density of both liquid and vapor phases (see
Sections 9.4 and 8.4 for the details). Similar considerations with identical results can
be performed straightforwardly also for the case of boiling.

A detailed derivation of the expression for the work of cluster formation in the

generalized Gibbs approach for homogeneous nucleation of a bubble in a liquid is
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given in [12] and for a droplet in vapor in [13]. Employing the results obtained there,
we can rewrite Egs. (5.10)-(5.11) as

A T7 I 70
g(kpi” ) :<¢Obapﬂ[3(Pl—‘Hﬂde%—ZfQ@,ph9ﬁ3}, (5.19)
B
where
AG 160 1
Ag = O = 50 5.20
g Q- ! 3 pngTCQG (0) (5.20)
R 2
=5 R, =—06(0) .
' RU’ Pe ()

The factor ©(f) and the parameter § are determined by the chosen relation for the
dependence of the surface tension on the state parameters of liquid and gas phases,

they are determined by (see [12,13] and Section 6.3.1 for details)
oy =00) (p—p,)° , =25, (5.21)

The expression for the work of critical cluster formation, Eq. (5.19), differs
from the one describing homogeneous nucleation [12, 13] by the nucleation-activity
factor, ¢(py, pi), which is equal to one in the case of homogeneous nucleation. It will
be determined below (see Section 8.4) for the different cases under consideration. The
expression in square brackets in Eq. (5.19) describes the work of cluster formation in
homogenecous nucleation, the function f in the second term of this expression can be

written for nucleation of a droplet in vapor [13] as

F(pysp1.6) = T(p1,6) — T(py. 0) + (“(pg’ 0) — wip, 9)) R

PcUc
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and for the bubble formation in a liquid [12] as

79 - 79
f(pgs p1,0) = T(py, 0) — I(py, 0) + p, (“(pl )p U“(pg )> . (5.23)
where (with p = w™! and Eq. (5.3))
89 (3 80
f)= —In(2—1)+-—"—6p. 5.24
p(p,0) SH(p >+3_p Gp (5.24)

Critical cluster parameters, size (r..), and density, (p.-), are determined by the

solution of the system of equations

6Ag(7”, pga pl; 9)
or

8Ag(7", p97 pl; 9)

—0. (5.25)
Ipu(y)

=0,

In the second of latter equations, the derivative with respect to cluster density has
to be taken with respect to the density of the drop, p;, for nucleation of the droplet
in vapor, respectively, with respect to the density of the bubble, p,, for boiling. The
system of equations, Egs. (5.15), (5.19) and Eq. (5.25), determines the work of critical

cluster formation at heterogeneous nucleation.

5.3. Contact angle and catalytic activity factor for nucleation at a

planar surface

5.3.1. Contact angle

In heterogeneous nucleation on a planar solid surface the work of cluster
formation is affected considerably by the value of the contact angle [4,21,27]. In
the terminology usually employed for water, if the contact angle has values less

than 90°, the surface is denoted as hydrophilic, contact angles larger than 90° imply
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that the surface is hydrophobic. This terminology we will employ here similarly for
condensation and boiling of the considered van der Waals fluid. Since the contact
angle can be computed via Young’s equation, Eq. (5.15), as

cosy = Tgs — 9l ) (5.26)

Olg

for a hydrophilic surface 0;, < o045 holds while for a hydrophobic surface the
inequality o;s > o, is fulfilled. These different cases of nucleation are illustrated
in Fig. 5.2 showing a droplet (Fig. 5.2a and b) and a bubble (Fig. 5.2¢ and d) on a
hydrophilic (Fig. 5.2a and d) and hydrophobic (Fig. 5.2b and c) surfaces, respectively.
These four different cases of heterogeneous nucleation we consider here in detail
separately.

In the classical approach to heterogeneous nucleation, the bulk properties of the
cluster phase and the ambient phase fluid are considered commonly as given and fixed
and, by this reason, also the surface energy terms entering Eq. (5.15) can be treated
as constants. By this reason, the contact angle is a constant as well. Accounting, in
terms of the generalized Gibbs’ approach, for changes of the bulk state parameters of
the newly evolving phase leads to the consequence that the contact angle has to be
determined as a function of these state parameters as well affecting then finally also
the catalytic activity with respect to nucleation. By this reason, we first consider the
problem of determining the contact angle in dependence on the state parameters of
both ambient and newly evolving in the system phases.

According to Eq. (5.26) in order to determine the contact angle it is necessary
to know the specific energy of the liquid-solid, vapor-solid and liquid-vapor interfaces
for the case, when density of the ambient phase (by changing externally the
supersaturation) varies in a range from the equilibrium value of the vapor density,
Pg.0, to the equilibrium value of the liquid density, p; o (determined by Eq. (5.8)), and
the density of the critical clusters varies accordingly in this range or takes over values

even beyond it. In order to have an expression for the fluid-solid specific interfacial
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energy, we proceed here as follows.
The specific energy of the solid-fluid interface, oy,, depends on the density
of the fluid (vapor or liquid), which is in contact with the solid surface, and in the

simplest (linear in the density of the fluid) approximation can be written as

) _ Ogs’o(plp — p) + Uls,O(p - Pg,O)
P10 — Pg,0

ors(p (5.27)
Here o059 and o, are the specific energy of the liquid-solid and vapor-solid
interfaces for the equilibrium states of the liquid and vapor, respectively. The
corresponding parameters without index O refer to the current values of these
quantities for an arbitrary value of the density of the fluid.

This equation can be obtained from the following considerations: First, we write
down Taylor expansions of the fluid-solid specific interface energy, ofs(p), both in
the vicinity of the equilibrium density (p; ) of the liquid, o;5(p), and the vapor (with
the equilibrium density, p,0), o4s(p),

30_15
o15(p) = 0150 9 (p— pro)
P=p1,0
(5.28)
00 46
0gs(p) = 0gs0 + - (P = pgo) -
8p P=Pg,0

In addition, we assume here linearity of the dependence of ofs(p) on density in the

whole interval leading to

o ys

dp

o 80[8 Ols,0 — Ogs,0

= 0" P90 (5.29)
p—po P10 Pg0

P=Pg.0 ap

A combination of Egs. (5.28) and (5.29) results immediately in Eq. (5.27).
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Eq. (5.27) yields then further

Pl — Py
P10 — Pg,0

Ogs — 015 = 015(pg) — 01s(p1) = (0gs0 — T1s0) (5.30)
We can see from Eq. (5.30) that the difference (o, — 075) 1s linear in (p; — p,), positive
for hydrophilic ((04s0 — 015,0) > 0) and negative for hydrophobic ((ogs0 — 0150) <
0) surfaces in accordance with above given definition. The difference in the signs of
the mentioned specific surface energy terms is the main difference for the two types
of surfaces which is reflected also in the different types of behavior in heterogeneous
nucleation.

As a second parameter, we have to know the surface tension for liquid-vapor
coexistence. As it is discussed in detail in [5, 14], the surface tension of the liquid-
vapor interface, 0;,, for the equilibrium coexistence of vapor and liquid is frequently
found experimentally to be proportional to some power law with respect to the
density differences of liquid and vapor. Extending this result to arbitrary values of
the densities of liquid and gas as performed also in the analysis of homogeneous

nucleation in [5, 14] with adequate results, we arrive at

)
01y = Ol (M> . 0=25. (5.31)
P10 — Pg,0

Here oy, 1s the surface tension of the liquid-vapor interface for the equilibrium
coexistence states of the liquid and vapor. In this notation, the coefficient © in

Eq. (5.21) takes the form

© = 0140 (P10 — Pg,o)_5 : (5.32)

Equation (5.26), accounting for Egs. (5.30) and (5.31), yields

6—1

1,0 — ,0

cos (g, p1) = cos g (p—‘)g) , (5.33)
Pl — Pg
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where

cos Yy = T30 — 9150 : (5.34)

O1g,0

The first factor in Eq. (5.33), cos~p, can be considered as some property of
the solid surface with respect to the liquid under consideration, while the second
factor in Eq. (5.34) depends on the density of the fluid (liquid or vapor). Thus,
for the analysis of heterogeneous nucleation it is necessary to know the contact
angle for the equilibrium values of the density of vapor and liquid, vy. For further
calculations we choose this value as equal to vy = 67° for a hydrophilic surface and
v = (180° — 67°) = 113° for a hydrophobic one (as will be shown below, this option
provides a certain symmetry between the processes of nucleation on hydrophilic
and hydrophobic surfaces). With respect to this term, the situation is similar to the
analysis as performed employing the classical Gibbs approach to the description of
heterogeneous nucleation. Generalizing this result to take into consideration changes
in the density of the fluid phase, we have here to account adequately also for the

second term in Eq. (5.33).

5.3.2. Catalytic factor for nucleation: Limiting cases

A straightforward analysis of heterogeneous nucleation in terms of the
generalized Gibbs’ approach shows that — similarly to the classical treatment [21] —
the work of critical cluster formation can be written in a form as given by Eq. (5.17),
ie. as AGpe = OAGhLom, Where for the case of droplet formation the nucleation

activity factor, ¢, has the form

d(pg, p1) = = (2 — 3cosy + (cos)?) . (5.35)

o |

For the case of nucleation of a bubble in a liquid (v — ™ — ), we obtain

1

O(pg, p1) = 1 (24 3cosy — (cosv)®) . (5.36)



A.S. Abyzov and J. W. P. Schmelzer J. Chem. Phys. 138, 164504 (2013) 207

The contact angles in Egs. (5.35) and (5.36) are determined in our approach
by Eq. (5.33) and not via Eq. (5.34) as it is the case in Volmer’s classical and
subsequently performed similar analysis. The first general problem we have to analyze
consists in one particular feature of Eq. (5.33). It has real solutions only when the

inequality

p1— pg = |cos 0] (pro — pyo) (5.37)

is fulfilled. First we have to find out therefore which kind of behavior can be expected
when Eq. (5.37) is not fulfilled.

As can be verified easily, in such cases the formation of a critically sized drop
or bubble in contact with the solid is excluded. Indeed, in the limiting case when
the contact angle approaches the boundaries of the interval, given by Eq. (5.37),
for nucleation of a droplet on a hydrophobic surface and for the nucleation of
a bubble on the hydrophilic surface, the contact angle approaches 180°. In other
words, we have in this limit and beyond the situation that the droplet or bubble are
separated from the surface. In such cases, ¢(p,, p;) = 1 holds and heterogeneous
nucleation is not more favorable as compared to homogeneous nucleation. For
nucleation of a droplet on a hydrophilic surface and a bubble on a hydrophobic
surface, the limiting value of the contact angle is equal to 0°, and the catalytic activity
factor tends to zero, ¢(py, p;) = 0. In other words, heterogeneous nucleation may
proceed here not requiring the overcoming of a thermodynamic potential barrier,
i.e., proceeds similar via a non-threshold mechanism of phase formation similar
to the spinodal decomposition in unstable homogeneous states. The corresponding
“crossover densities” of the liquid in the critical droplet, p;,,, and of the vapor in the

critical bubble, p,,,, are given by the equations

Pim = pg + |cos ’Yo|1/(571) (P10 — Pgo) 5 (5.38)

pom = p1— |cos 10" (pro — pyo) - (5.39)
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Thus, a contact angle in the range 0 < # < 7 can be observed only when p > p,,, at
droplet nucleation and for p < pg,;, at bubble nucleation.

We see that the factors affecting nucleation act in opposite directions, factors
which stimulate nucleation of the droplets inhibit the nucleation of bubbles, and vice
versa, in dependence on the type of solid surface. Thus, it follows that a change of the
contact angle (deviations from its equilibrium value ), as computed here in terms of
the generalized Gibbs’ approach, reduces the work of formation of droplets of critical
size on a hydrophilic surface and increases it on a hydrophobic one. For the nucleation
of bubbles the situation is opposite: the work of critical nucleus increases with a
change of the contact angle on a hydrophilic surface and decreases on a hydrophobic

one.

5.4. Heterogeneous condensation on planar solid surfaces: Results

5.4.1. Vapor condensation on a hydrophilic surface

For a hydrophilic surface (assuming, as it was mentioned earlier that the
classical (equilibrium) contact angle, 7y, is taken equal to vy = 67°), the analysis of
Egs. (5.19) and Eq. (5.35) leads to the conclusion that, for a moderate supersaturation
(initial states located near to the binodal curve with the density p,o = 0.128), the
work of critical cluster (droplet) formation has a typical saddle shape in the (r, p)-
space near to the state corresponding to the parameters of the critical cluster, (7,
per) (see Fig. 5.3a). In Fig. 5.3a, this kind of behavior is illustrated for a value of
the reduced temperature equal to # = 0.7 and an initial density of the vapor equal to
pg = 0.18.

Such kind of behavior is found with increasing density of the vapor up to an
upper limiting value equal to p, ., = 0.191 (which we denote as surface spinodal

to distinguish it from the bulk spinodal which is determined by Eq. (5.9)) for the



A.S. Abyzov and J. W. P. Schmelzer J. Chem. Phys. 138, 164504 (2013) 209

chosen parameters (6 = 0.7, 7 = 67°). For larger values of the density of the vapor,
Pg > Pg.sh» there 1s opened now a new path of evolution to the newly evolving liquid
phase where no activation barrier has to be overcome. The critical cluster with the
radius 7. and a density p.. corresponds in theses cases to a work of critical cluster
formation equal to zero. For droplet sizes larger than these critical cluster sizes, there
exists a path of evolution where its further growth leads to a decrease of the Gibbs free
energy. By this reason, we denote the respective cluster state also as critical cluster
with a critical cluster radius despite its different physical meaning as compared to
“normal"cases when the critical cluster corresponds to a maximum or a saddle point
of the thermodynamic potential surface. These results are illustrated in Fig. 5.3b (path

of evolution 1; 0 = 0.7, p, = 0.20).

Work of droplet formation, Ag/k, T

Work of droplet formation, Ag/kyT

214

1.689
1.332&&@,9\

Rag; 1.051
s, , 30770829 o0

Fig. 5.3. Landscape of Gibbs free energy of droplet formation in dependence on the
state parameters of the droplet for a metastable state with an initial density of the gas
equal to p, = 0.18. For such case, the thermodynamic landscape in the vicinity of
the critical droplet size has a saddle-type shape (a). For values of the density of the
gas higher than an upper limit, p, > p, o1, €.g., for a value p, = 0.20, an evolution

path to the new phase is possible without overcoming of a thermodynamic potential
barrier (b).
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The limiting value of the density, p, ., is determined by the solution of the

equation

plm(pg,sh) - pcr(pg,sh) ) (540)

where p;,, 1s given by Eq. (5.38) and p,, is the solution of the system of equations
Egs. (5.25), i.e., the droplet density of the critical cluster (drop in the considered
here case). The density of the critical cluster is equal to p,,(p,) for p, > py sn, and
equal to pe.(pg) for p, < pgsn. The parameters of the critical cluster in dependence
on vapor density are illustrated in Fig. 5.4 ((a) density of the critical cluster, (b)
critical droplet radius, (c) work of critical droplet formation). With an increase of the
density of the vapor starting at initial states near the binodal curve, the density of the

critical droplet decreases and reaches the density of the vapor at p, = p, ,,. With a

4
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Fig. 5.4. Dependence of the parameters of the critical droplet on the density of the
gas for vapor condensation on a hydrophilic planar solid surface: (a) density of critical
droplet, (b) critical radius, (c) work of critical cluster formation, (d) catalytic activity
factor.
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further increase of the density of the vapor, the density of the critical droplet linearly
grows with the density of the vapor (Fig. 5.4a and Eq. (5.38)). In agreement with
the classical picture, the size of the critical droplet tends to infinity for initial states
of the vapor in the vicinity of the binodal. With an increase of the density of the
gas, pg, the critical droplet size decrease first. However, in contrast to the classical
picture, in the approach to the limiting value, p, = p, s, the critical cluster size
starts to increase again and reaches infinity at p, = p, .. For even higher values of
pg» the critical cluster size decreases then again (Fig. 5.4b). Similarly, the work of
critical droplet formation decreases monotonically from infinity (for initial states at
the binodal curve) to a finite value Ag,,;,, at p; = py . It becomes identically equal to
zero at p, > pg s, (Fig. 5.4c¢). Note also that at p, = p, s, the work of a critical cluster
formation has a discontinuity, Ag.,/kzT ‘pgng,sh = Agmin/kpT = 4.108. However,
at any values p, > p, ., the work of critical cluster formation is identically equal

to zero, i.e., Ag, = 0| . Fig. 5.4d shows dependence of the catalytic activity

Pg>Pg,sh
factor, ¢(py) = P(pg. pic(py)), in the work of critical cluster formation, Eqgs. (5.17)
and (5.38), on vapor density. It decreases with increasing density of the gas and is
equal to zero at p, > pg sp.

A similar behavior as found here and illustrated in Figs. 5.3-5.4 was earlier also
observed by us in the analysis of homogeneous condensation and boiling ( [12-15],
e.g. Figs. 1, 2, 5 in [14]) and of segregation processes in solutions in the absence of
heterogeneous nucleation cores ( [17, 18], e.g., Figs. 4-6 in [18]). In both cases, for
homogeneous phase formation a similar behavior as obtained here in the approach
to ps, 1s found there in the approach of the classical spinodal curve (cf. Fig. 5.1).
Consequently, we may conclude that the existence of heterogeneous nucleation cores
may result effectively in a shift of the spinodal curve from the value computed
thermodynamically for the homogeneous systems (as illustrated in Fig. 5.1) to a

value affected in addition by the properties of the solid nucleation core (pg = pg.sn).

Therefore we can consider the range of gas densities, p; 9 < p, < py.sn, With respect
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to heterogeneous nucleation as the metastable region and the range p, > p, . as
thermodynamically unstable states, the value p, = p, 4, is to be treated consequently
as a part of the spinodal curve with respect to heterogeneous nucleation.
Summarizing briefly the results for the case under consideration, we can
conclude: Employing the generalized Gibbs approach to condensation of a droplet in
a supersaturated vapor on a hydrophilic surface leads effectively to a significant shift
of the spinodal to lower supersaturations as compared to the case of homogeneous
condensation. However, all basic features found for homogeneous nucleation like the
divergence of the critical radius or the approach of zero values of the work of critical

cluster formation near to the spinodal are retained in a qualitatively identical form.

5.4.2. Vapor condensation on a hydrophobic surface

The computations for the description of heterogeneous nucleation on a
hydrophobic surface can be performed similarly to the first case of condensation
on a hydrophilic surface. The resulting from the computations dependencies of the
parameters of the critical cluster on the vapor density for the case of nucleation on
hydrophobic surface are shown in Fig. 5.5 ((a) density of the droplet of critical size,
(b) critical radius of the drop, (c) work of critical droplet formation).

The analysis has been carried out for a value of the contact angle, vy, equal to
Yo = 113°. For p,o < pg < pg.sn (Where py o, 1s determined by Eq. (5.40), again),
nucleation occurs heterogeneously, size and work of critical cluster formation are
less than for the homogeneous case. However, for the considered case, the degree
of activation of nucleation by the planar solid surface is much less expressed than
for the hydrophilic case. This is seen from a comparison of full curves (representing
heterogeneous nucleation) with the dashed lines showing the respective parameters of
the critical droplet computed for the case of homogeneous nucleation (i.e. for ¢ = 1).

With an increase of the vapor density, at some upper limiting value of the density of
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the vapor, here p, , = 0.254, nucleation becomes fully independent of the existence

of the solid surface.
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Fig. 5.5. Dependence of the parameters of the critical droplet on the density of
the gas for vapor condensation on a hydrophobic planar solid surface: (a) density of
critical droplet, (b) critical radius, (c) work of critical cluster formation, (d) catalytic
activity factor. Dashed lines show the same dependencies for the case of homogeneous

nucleation, i.e., ¢(p,, p1) = 1.

Fig. 5.5d shows the dependence of the catalytic activity factor, ¢(p,) =
&(pgs pic(pg)), on the vapor density. It is less than one for p;, < pgsn. At pg > pgsh
the relation ¢ = 1 is generally fulfilled, i.e., all parameters of the critical cluster are

the same as for homogeneous nucleation.
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5.4.3. Boiling on a hydrophobic surface

For the case of boiling catalyzed by a planar solid interface, we can proceed
similarly as in the case of condensation, however, now the density of the liquid, p;,
is varied (decreased). For a hydrophobic surface (assuming, again, 7y = 113°), an
analysis of Egs. (5.19) and (5.36) yields that in the interval between the binodal,
pro = 2.14, and some lower limiting density, p; o, (here p; o, = 2.01), the Gibbs
free energy in the space (7, p) near the critical point, (7., p.-), has a characteristic
saddle-type shape (see Fig. 5.6a, p; = 2.035). For p < p; 4, there exists again a path
of evolution with a zero value of the work of formation of the critical bubble (see

Fig. 5.6b, p; = 1.95; curve 7). The limiting density of the liquid, p; s, 1s determined

Work of bubble formation, Ag/k, T

Work of bubble formation, Ag/k, T

Fig. 5.6. Landscape of Gibbs free energy for boiling in dependence on the state
parameters of the bubble starting from (a) a metastable, p; = 2.035, and (b) an
unstable initial state, p; = 1.95. Path 7 in figure (b) shows the energetically favored
path of evolution, curve 2 the real path.

by the solution of the equation

Pgm(prsn) = per(Prsn) - (5.41)
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Fig. 5.7. Dependence of the parameters of the critical bubble on the density of the
liquid gas for boiling on a hydrophobic planar solid surface: (a) density of the bubble
of critical size, (b) critical bubble radius, (c) work of critical bubble formation, (d)

catalytic activity factor.

where pg,, 1s determined by Eq. (5.39), p., 1s the the critical density of the bubble
given by the solution of the system of equations, Eq. (5.25). The density of the critical
bubble is equal to py,(p1) at p; < prsn, and pe,(p1) at p; > pysh.

The dependence of the parameters of the critical bubble on the density of the
liquid are shown in Fig. 5.7 ((a) bubble density, (b) radius, (c) work of critical bubble
formation).

Fig. 5.7d shows the dependence of the catalytic activity factor, ¢(p;) =
&(pge(pr), p1), on the density of the liquid. It is evident that Figs. 5.7 in essence are
mirrored versions of Figs. 5.4. Consequently, the conclusions drawn in Section 6.4.1
with respect to vapor condensation on a hydrophilic surface are fully applicable for

the considered in this subsection case of boiling on a hydrophobic surface.
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5.4.4. Boiling on hydrophilic surface

For a hydrophilic surface (assuming, again, 79 = 67°), the dependencies of the
parameters of the critical bubble on the density of the liquid are shown in Fig. 5.8 ((a)
density, critical bubble radius, work of critical bubble formation). Fig. 5.8d shows the
dependence of the catalytic activity factor, ¢(p;) = ¢(pge(pi), pi), on the density of
the liquid. By dashed lines, the respective parameters are given calculated for the case
¢ = 1, i.e., for the case of homogeneous nucleation. We can see that the Figs. 5.8 are
mirrored versions of Figs. 5.5, so that the conclusions derived in Section 6.4.2 with
respect to vapor condensation on a hydrophobic surface are fully applicable to the

case of boiling on hydrophilic surface considered in the present subsection.
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Fig. 5.8. Dependence of the parameters of the critical bubble on the density of the
liquid gas for boiling on a hydrophilic planar solid surface: (a) density of the bubble
of critical size, (b) critical bubble radius, (c) work of critical bubble formation, (d)
catalytic activity factor. Dashed lines show the same dependencies for the case of

homogeneous nucleation, i.e., ¢(pg4, pi1) = 1.
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5.4.5. Saddle-point versus ridge crossing

Let us finally briefly address also another point connected with the question to
what extent the parameters of the critical clusters determine the evolution to the newly
evolving phase. As discussed by us in detail for the case of (homogeneous) segregati-
on in solutions [17-20] — employing the generalized Gibbs’ approach — the evolution
to the new phase does not proceed necessarily via the the thermodynamically
preferable trajectory (passage of the saddle point) shown here in Figs. 5.3a and 5.6a,
respectively, in Figs. 5.3b and 5.6b by curves /. For kinetic reasons, it may be more
appropriate for the system to select a trajectory of evolution where some potential
barrier has to be overcome even if a path without overcoming such barrier does exist.
A similar behavior is to be expected, of course, also for homogeneous condensation
and boiling near to the classical spinodal and for heterogeneous nucleation, discussed
here, near to the respective “heterogeneous"spinodal curves. For vapor condensation
on a hydrophilic surface, the evolution to the new phase will not proceed, as a rule,
via the saddle point (cf. Fig. 5.3b, curve /) but via the ridge of the thermodynamic
potential surface (ridge crossing; cf. Fig. 5.3b, curve 2). A similar behavior can be

expected also for boiling on a hydrophobic surface (cf. Fig. 5.6b, curve 2).

5.5. Discussion and conclusions

Employing the generalized Gibbs approach to the description of condensation
of a droplet in a supersaturated vapor on a hydrophilic surface and to boiling of a
liquid on a hydrophobic surface we arrive widely at the same result: as compared
with homogeneous nucleation, a significant shift of the spinodal curve to lower
supersaturation occurs caused by the existence of the planar solid interface. This
result implies that the region of instability of the fluid is enlarged and the range of

initially metastable states is reduced. Such features — observed already in application
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of the generalized Gibbs’ approach to homogeneous condensation and boiling and
changing essentially the results obtained via the classical Gibbs’ treatment — like the
divergence of the critical radius in the approach of the spinodal and the possibility of
nucleation passing not the saddle but the ridge of the thermodynamic potential surface
analyzed in detail for homogeneous phase formation [17-20] are found here as well
for the new boundary of metastability.

For the case of condensation of a droplet on a hydrophobic surface and boiling
of liquid on a hydrophilic surface the catalytic activity factor, ¢, increases with
increasing supersaturation, it reaches a value equal to one at a certain density of
the ambient fluid phase (p, 4, or p; s, for the cases of droplet or bubble nucleation,
respectively). In this limiting case, all parameters of the critical cluster are the same as
for homogeneous nucleation. At p, < p, ., and p; > p; 4, heterogeneous nucleation
occurs, the size and work of critical cluster formation are less than for the respective
homogeneous case. For all these cases (condensation of a droplet on a hydrophobic
surface and boiling of liquid on a hydrophilic surface), the account of changes of
the contact angle leads to an increase of the catalytic factor in nucleation and to a
lowering of the respective heterogeneous nucleation rate.

In order to develop the theory, in the present analysis Egs. (5.30) and (5.31)
have been employed in order to describe the effect of density changes of the fluid on
phase formation. These equations can be modified if required as well as the relations
for the bulk properties of the fluid, Eq. (5.3), in order to describe more correctly a
given system of interest. Note, in particular, as well that the specific (linear) form
of Eq. (5.30), employed here in the analysis, can be easily generalized not changing
the basic results. For example, the same results are obtained when this dependence
is monotonous — positive for the hydrophilic surface and negative — for hydrophobic,
and has a linear expansion in the vicinity of equilibrium densities of liquid and vapor,
respectively. Then instead of Eq. (5.30) we will have two separate equations, one

for the condensation of liquid droplets from vapor phase and the second one for the
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description of the boiling of the liquid.

In the present study, we have considered the simple case of nucleation on planar
interfaces. The account of changes of the state parameters of the cluster phase on the
nucleation activity — as discussed here in detail for planar surfaces — is believed to be
of significance also in a variety of other cases of phase formation, for example, in a
variety of solid-solid or liquid-solid phase transformations. They are expected to be of
importance also in the analysis of the size-dependence of nucleation cores as analyzed
first, employing the classical Gibbs’ approach, by Krastanov [29] and Fletcher [30].
Another generalization of the present analysis could consist in the incorporation of
line tension effects [31-33]. All these topics can be addressed employing the general

methods as outlined in the present paper.
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5.6. BucHoBkM 10 po3ainy S

Pesynbsratu mociimkeHb, MPEACTABICHUX Yy JaHOMY PO3MIii, OIyOJiKOBaHO
B crarti [5] (Homatox A. Cnmcok myOGmikaiiii 3700yBada 3a TEMOIO JucepTallii).
JloCiIKeHO TeTepOreHHE 3apOoKEHHST KJIacTepiB HOBOI ()a3u Ha TJIOCKUX TBEPAUX
HNOBEPXHAX 3 ypaxyBaHHSAM 3MIHU MapaMeTpiB CTaHy KPUTUYHHUX KJIACTEPIiB 3aJIEKHO
BiJl TIEpECUYCHHS B OJHOKOMITOHEHTHIM piauHI BaH nep Baambca. Cepen 0CHOBHHX
PE3yAbTATIB y SKOCTI BUCHOBKIB MOYKHA BUJIUTUTH HACTYIIHI:

e [loka3aHo, 1110 y BUIIQJKy YTBOPEHHsI KparejibKu B IEPeHACHUYEHIN mapi Ha
ripodoOHIi MOBEPXHI Ta YTBOPEHHS OyJIb0aIIOK Y piIMHI Ha TiApOdUIbHINA MOBEPXHI
e()eKT TeTeporeHHOCT1 HE3HAYHUIA.

e B anprepHaTMBHUX BHMaJKaX KOHJEHCAlll Kpameibkd Ha TiApoduIbHINA
MOBEPXHI Ta YTBOPEHHsI Oyap0allloK y piiuHi Ha rigpodoOHiil moBepxHI nepeadayeHo
ehekm 3MeHuleHHs: Kyma 3MO4)Y8aHHs, 1, TAKUM YHUHOM, 30UIbIIEHHS KaTaJITHYHOI

AKTUBHOCTI TIOBEPXHI 1 MBUAKOCTI HYKJICAITI].

e Po3BHHYTO TeopeTWYHUH ONMUC IHOTO €(PEeKTy y BHITAIKy YTBOPCHHS Kia-
cTepiB HOBOi (a3 Ha MOBEPXHI 3 HU3BKOW (KOHTAaKTHUM KyT Ouibiie 90°) Ta
BHCOKOIO 3MOYYBaHICTIO (KOHTakTHUH KyT MeHme 90°), mokazaHo, M0 y LbOMY
BUITQJIKY 1ICHYBaHHsI TBEP01 MMOBEPXHI MPU3BOAUTH O 3HAYHOTO 3MIIIIEHHS CIIHOAAII
JI0 MCHIUX 3HA4YeHb TEPECHUYCHHS IMOPIBHIHO 3 TOMOTCHHOIO HYKJICAIEr, TOOTO
reTeporeHHa CIIHOAAIb HAOMMXKaeThcs 10 OlHOMali, a 00JacThb METacTaOlIbHOCTI

3BY)KY€ETBCS 32 paXyHOK PO3LIUPEHHS 0071acTi HeCTaO1IbHOCTI.
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PO3ILI 6

TETEPOTEHHA HYKJIEALUSI B PO3UMHAX: Y3ATAJILHEHUI
MIJIXIJI TIBBCA

VY mocromy po3aii AOCHIIKEHO TeTEpOreHHE 3apOJIKEHHS KJIACTepiB HOBOI

dasu y perynspHoMy OiHApHOMY PO34YHHI Ha IJIOCKUX TBEPAUX MOBEPXHSX.
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Heterogeneous nucleation in solutions on planar solid surfaces is modeled
taking into account changes of the state parameters of the critical clusters
in dependence on supersaturation. The account of the variation of the
state parameters of the cluster phase on nucleation is performed in the
framework of the generalized Gibbs’ approach. A regular solution is chosen
as a model for the analysis of the basic qualitative characteristics of the
process. It is shown that, employing the generalized Gibbs approach, contact
angle and catalytic activity factor for heterogeneous nucleation become
dependent on the degree of metastability (supersaturation) of the solution.
For the case of formation of a cluster in supersaturated solutions on a
surface of low wettability (the macroscopic equilibrium contact angles
being larger than 90°) the solid surface has only a minor influence on

nucleation. In the alternative case of high wettability (for macroscopic
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equilibrium contact angles being less than 90°) nucleation is significantly
enhanced by the solid surface. Effectively, the existence of the solid surface
results in a significant shift of the spinodal to lower supersaturations as
compared with homogeneous nucleation. Qualitatively the same behavior
is observed now near the new (solid surface induced) limits of instability
of the solution as compared with the behavior near to the spinodal curve
in the case of homogeneous nucleation. (¢)2014 AIP Publishing LLC.
[http://dx.do1.org/10.1063/1.4884395]

6.1. Introduction

Nucleation of new-phase aggregates, the process of stochastic formation of
clusters of a newly evolving phase exceeding some critical size, and their subsequent
growth 1s one of the basic mechanisms of how first-order phase transitions may
proceed. These nucleation processes may be catalyzed by solid particles or planar
interfaces. Latter mentioned factors may result in a decrease of the so-called work of
critical cluster formation, the thermodynamic barrier which has to be overcome by
a new-phase aggregate to evolve to a viable nucleus capable of further deterministic
growth.

In the classical theory of nucleation and growth processes heterogeneous
nucleation is commonly treated — similarly to the theoretical analysis of homogeneous
nucleation — by assuming that the state parameters of the critical clusters (bulk
and surface properties) are widely identical to the respective parameters of the
newly evolving macroscopic phase [1-5]. This approach is supported by the classical
thermodynamic theory of cluster formation as developed by Gibbs [6]. However, in
reality this assumption is as a rule not fulfilled [2,7-9].

As shown in preceding papers [8-11], the classical Gibbs approach to the

thermodynamic description of thermodynamically heterogeneous systems can be
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generalized to account appropriately for possible deviations of the properties of
critical clusters as compared to the properties of the respective macroscopic phases.
This (as denoted by us) generalized Gibbs’ approach was so far mainly employed
to describe different cases of homogeneous nucleation, i.e., nucleation in the
absence of heterogeneous nucleation cores. Problems of the theoretical description
of heterogeneous nucleation in terms of the generalized Gibbs’ approach were treated
by us for the first time in detail in [12]. In this analysis, we considered condensation
and boiling in one-components fluids in the presence of planar solid interfaces. As a
model system, we analyzed these processes for one-component van der Waals fluids.

It was shown in this analysis that, accounting for changes of the bulk properties
of the critical clusters in terms of the generalized Gibbs approach, contact angle
and catalytic factor for heterogeneous nucleation become dependent on the degree
of metastability of the ambient fluid. For the case of formation of a droplet in a
supersaturated vapor on a hydrophobic surface (the macroscopic equilibrium contact
angle being larger than 90°) and bubble formation in a liquid on a surface of
high wettability (the macroscopic equilibrium contact angle being less than 90°) the
solid surface has only a minor influence on nucleation. In the alternative cases of
condensation of a droplet on a hydrophilic surface and of bubble formation in a liquid
on a hydrophobic surface, nucleation is significantly enhanced by the presence of
the solid. As it turns out [12], effectively, the existence of the solid planar interface
results at otherwise identical conditions in a significant shift of the spinodal to lower
supersaturations as compared with homogeneous nucleation.

In the present paper we further advance these theoretical studies and analyze
heterogeneous nucleation in supersaturated solutions in the presence of planar solid
interfaces. As the method of description, we employ again the generalized Gibbs
approach. As a model system for the description of the properties of the system, a
two-component regular solution [13, 14] is chosen similarly as it was done in our

previous analysis of homogeneous nucleation in solutions [8, 15, 16]. The general
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qualitative conclusions are widely independent on this particular choice of the model
system. In addition, performing the analysis for the same model as done earlier for
the study of homogeneous nucleation allows us to directly specify the effect of the
considered heterogeneous nucleation sites on phase formation in solutions. The main
difference in our approach as compared with previous studies consists, again, in the
proper account of the fact that the state parameters of the newly evolving clusters
and, in particular, of the critical clusters may deviate considerably from the respective
values of the newly evolving macroscopic phases. We assume incompressibility of the
solutions, by this reason the appropriate state parameter for the description of both
ambient and newly evolving phase is the composition of the solution.

The accounted for in our analysis additional as compared to the classical picture
variation of the bulk parameters of the clusters affects also their surface properties like
surface tension and wetting angles and gives thus, again, an additional contribution
to the catalytic activity factor of the considered heterogeneous nucleation core with
respect to nucleation. Consequently, in order to determine the work of critical cluster
formation the dependence of these interface parameters on the composition of the
critical nuclei has to be specified. This program will be implemented here for two
cases of cluster formation in supersaturated solutions, both for the cases of high
wettability (the macroscopic contact angles have values less than 90°) and low
wettability (the macroscopic contact angles are larger than 90°).

The present article is structured as follows: In Section 9.2, the equation of
state of a regular solution is briefly discussed as far as required for the subsequent
derivations. In addition, the location of binodal and spinodal curves are specified,
and general relations are developed allowing us to determine the work of critical
cluster formation at solid planar interfaces. In Section 9.4, the expressions for the
contact angle and catalytic activity factor for critical cluster formation are evaluated.
Combining the results obtained in Sections 9.2 and 9.4, in Section 8.4 heterogeneous

nucleation in a regular solution on planar surfaces is analyzed. A summary of the
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results, conclusions, and of possible extensions (Section 8.5) completes the paper.

6.2. Basic equations

6.2.1. Bulk properties of ambient and newly evolving phases, binodal and

spinodal curves

Similarly to our previous analysis of homogeneous nucleation in solutions
[8, 15, 16], we consider now phase formation in a binary solid or liquid regular
solution catalyzed by the presence of a planar solid interface. Regular solutions can
be described by the following expressions for the chemical potentials 1; of the two

components in the solution [13, 14],

p1 = i+ kpTIn(l — z) + Qa? (6.1)

o = s+ kpThne+ Q1 —z)* (6.2)

where kp is the Boltzmann constant, 7' is the absolute temperature, and x is the molar
fraction of the second component (we denote it further — to some extent arbitrarily —
as the solute), {2 = 2kgT, is an interaction parameter describing specific properties
of the system under consideration, and 7. is the critical temperature of the system.
We assume that the external pressure is kept constant. In the (7, z)-phase

diagram, the binodal and spinodal curves are given then by the relations

X

1n<1_$>:2%(1—2x) , (6.3)
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Fig. 6.1. Location of the binodal and spinodal curves for a regular solution. For
an illustration of the results, we will perform here the computations for different
values of the solute concentration, x, and a value of the reduced temperature equal
to T'/T. = 0.7. The left-hand (marked by (/)) and right-hand (marked by (r)) side
branches of the binodal (x,(f) =1- xl()l) ) and the spinodal (xg,) =1-— ng) curves are
specified in the figure as well (see also text).
r(l—z)=4 (6.4)

Sl

The respective curves are shown in Fig. 6.1. They are symmetric with respect to
x = 1/2. Thus, if for a given value of temperature the composition x refers to one of
these curves, the composition (1 — ) gives the location of the respective alternative
branch.

Numerical computations will be performed here assuming the reduced
temperature to be equal to 7'/T, = 0.7. The left-hand side branches of the binodal,
mg), and the spinodal, ngg, curves are located for this temperature at

2V =00857,  zl) =0.2261, (6.5)

p:

respectively. The respective right-hand side values of the molar fractions for the
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binodal and spinodal curves are given by

2V =1-2"=00143, 20 =1-20=0.7739. (6.6)

Sp sp

An illustration of these notations and results is given in Fig. 6.1.

6.2.2. Work of critical cluster formation: General expression

Suppose that the system is instantaneously transferred into a metastable state
located in between the left-hand side binodal and spinodal curves (:Cél) <z < xgg)
and that afterwards composition and temperature are kept constant (later-on we will
extend the analysis to initial concentrations on the right-hand side of the phase
diagram as shown in Fig. 6.1, that is to the range a:g;) Sz < a;‘l(f)). As a first
step in the description, we determine the parameters of the critical clusters formed on
a planar solid interface in dependence on supersaturation (molar fraction of the solute,
x).

Cluster formation in a binary solution results from a redistribution of molecules
in space. Following Gibbs’ model approach [6], we consider a cluster as a spatially
homogeneous part of the system with a composition different from the ambient phase.
In the thermodynamic description we always employ the surface of tension [6,10,11]
as the dividing surface, separating the cluster from the ambient phase. The expression
for the change of the thermodynamic potential (the Gibbs free energy, &) for a two-
component system due to the formation of a cluster of the considered shape (segments
of a sphere with a radius, R, and a contact angle, v (c.f. Fig. 6.2)) in the ambient

phase can be written both in the classical and generalized Gibbs’ approaches then

as [1-3,12]
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Fig. 6.2. Model employed in the analysis of heterogeneous nucleation of a cluster on
a planar solid interface. Here R is the radius of curvature of the cap-shaped aggregate
with composition z,, 3 is the molar fraction of one of the components in the ambient
solid or liquid solution, 7 is the contact angle, 0.3, 0gs, and o, are the respective
specific surface energies.

AG = O_a,BAaﬁ + (O_as - O—ﬁs)Aas + Z U (,ujoz - :ujﬂ) . (67)
j=1,2

Here o,,, 035, and 0,5 are the specific surface energies (surface tension) of the
cluster-solid, ambient phase-solid and cluster-ambient phase interfaces, respectively,
A,s and A,p are the respective interfacial areas (see Fig. 6.2), n, = ni, + N2q
is the number of particles (atoms, molecules) in the cluster, j;, and p;s are the
chemical potentials of the different components in the cluster and ambient phase,
respectively (see Egs. (6.1) and (6.2)). Here and further on, the index « always denotes
the parameters of the cluster, and the index [ refers to ambient phase parameters. As
independent variables for the specification of the state of the clusters, we use 1,
and no (the subscript o is omitted for ny and ns for convenience of the notations)
or the radius, R, and the molar fraction of the second component in the cluster,
To = N2/ (N1 + N2).

In line with the basic assumptions underlying the model of binary regular
solutions [13, 14] and for simplicity of the notations, the volume per particle, w,
is assumed to be the same for both components and independent of composition

3

(wq = wg = w = a’, a is an interatomic distance parameter). Cluster radius, 12 (more
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precisely it is the radius of a segment of a sphere, but we will use the notation “cluster
radius"for simplicity, again), and particle number in a cluster, n,, are related then by
the following simple expression

A 3

o5 B’ = now = nea’ (6.8)

where ¢ can be expressed via the contact angle, -, as

1
¢ =-(2—3cosvy+ cos’ v) = 1(2 + cosy)(1 — cos7y)? . (6.9)

] =

The bulk contributions, AGYy, to the Gibbs free energy change can be written
for the case of formation of a cluster with a radius, R, and a contact angle, v (c.f.

Fig. 6.2), generally as [3,15,16]

AGy = Y ny(1jo — yp) (6.10)

j=12

or, equivalently, as

4 4

AGy = -0 ZVRAu= o [ “Z) RkpTf, Au=—kgTf. (6.11)
3w 3w

In this relation, terms reflecting the effect of depletion of the ambient phase due

to cluster formation are neglected. These terms are not relevant for the further

derivations. The function f (x,,x) is given by the following relation

frg,z)=(1—2,) {111 ! __Z‘)‘ - 2% (22 — 3:2)} (6.12)
+ x4 {IHZ—O‘ + 2% [(1 — 2, —(1— :C)ﬂ }

As evident from its definition (Eq. (6.11)), the function Ay o (—f (x4, x)) has the
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meaning of the thermodynamic driving force for cluster formation.

The dependence of the function f (z,, ) on the independent state variables
x and z, 1s analyzed in detail in [8, 15, 16]. In particular, in Fig. 6.3(a) and (b)
this function 1s shown in dependence on the composition of the cluster phase, z,,
for different values of the supersaturation or the molar fraction of the segregating
component, z, in the ambient phase. Note that, for any value of the composition, =,
of the ambient solution, except for z = xgi;r), the function f(z,) has one maximum
and two minima. In the metastable range of composition of the ambient phase (c.f.
Fig. 6.3(a)) in between left-hand side binodal and spinodal curves, xl(f) << :J:EQ,
the first of these minima corresponds to the state of the ambient phase, x, = x, the
second one, xr, = g, to the minimum of the bulk contributions to the Gibbs free
energy. This is the final macroscopic state of the segregating phase the cluster would
evolve to for the given fixed value of the composition of the ambient phase, x. In

the considered range of z-values, xp is defined by the equation (c.f. Egs. (6.11) and

(6.12))

Of (x4, )

—0. 1
o 0 (6.13)

r=Irp

At the spinodal, z = xgp), the function f(z,) has an inflection point at =, = x.

In the thermodynamically unstable range, :):22 <z < a:g;), the maximum of the
function f(z,) corresponds to the state of the initial phase, z, = z (c.f. Fig. 6.3(b)).
There exist now two values of the molar fraction of the cluster phase, x, = x4 and
T, = xp, for which the bulk contributions to the Gibbs free energy have a local

minimum. These states are determined similarly to Eq. (6.13) by the relation

Of (T, )

= . .14
Dz, 0 (6.14)

T=T A Or T=Xp

The dependencies of x 4 and x p on the initial composition, x, are shown in Fig. 6.3(c)
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Fig. 6.3. Dependence of the function f (x,,x) on the composition of the cluster
phase, z,, for different values of supersaturation or the molar fraction, x, of the
segregating component in the ambient phase: a) in the thermodynamically metastable

range, :I;l()l) <z < acgi)), b) in the unstable range, a:gQ <z < xg,). c) Composition

of the critical clusters, z = a:(ahgqfn ) (full red curves), its minimal value, x,; (dashed
curve), and x 4, xp (full blue curves) in dependence on initial supersaturation for the

case of homogeneous nucleation in solutions.
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in the whole range of possible initial compositions of the ambient solution. Let us note
that all data are symmetric with respect to x = 1/2 and x, = 1/2. By this reason,
we analyze them in detail only for the range = < 1/2.

At given pressure and temperature macroscopic evolution processes in
thermodynamic systems are accompanied by a decrease of the Gibbs free energy [19].
By this reason, the necessary condition for formation of aggregates of a new phase can
be written as f (x4, ) < 0 (the thermodynamic driving force for cluster formation
has to be positive, in such case cluster evolution leads to a decrease of the bulk
contributions to the Gibbs free energy). Consequently, for the metastable range of
x-values the composition of the critical clusters has to exceed a lower limiting value,

Z o1, determined by the relation

f(@au,x) =0 . (6.15)

The dependence of x, on the initial composition, x, is shown in Fig. 6.3(c) by
dashed curves.

For comparison, the composition of the critical cluster, a;gh;’? )

, in homogeneous
nucleation (c.f. [8, 15, 16] and the subsequent discussion) is shown in Fig. 6.3(c)
by full curves. Latter parameter is determined by the interplay between bulk and
surface contributions to critical cluster properties. A possible path of evolution (O —
C — B: arrows originating at the initial state and proceeding via the critical cluster
composition to x ), starting from metastable initial states, is shown in Fig. 6.3(c). For
the given value of the concentration of the ambient phase, z, the new phase attains
first the composition of the critical cluster and then evolves to a state characterized
by xp. For metastable initial states, one path of evolution exists while for unstable
initial states two such pathes are accessible proceeding into the direction of either x 4
or rp.

Generally, the relation z,; < x&hgffb ) holds. The inequality is reduced to the

identity x,y = x&”?ﬁ” ) only for x = I‘l()l) and = ng In the latter of these special
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cases, this particular value of the cluster composition, z, ; = xégf L), determines the

composition of a cluster which can be formed without the necessity of overcoming a
potential barrier but, despite that, is capable of a further deterministic growth. As will
be shown shortly, a similar situation may occur also in heterogeneous nucleation but
for different values of the initial composition (less than xé?) as compared with the
case of homogeneous nucleation (c.f. Eq. (6.46) and the discussion of it).

The surface contributions, AGg, to the Gibbs free energy of cluster formation

are given according to Eq. (6.7) by
AGs = 043408 + (0as — 08s) Ans (6.16)
or, equivalently, by
AGs =21 R*(1 — cosy)oas + TRA(1 — cos® 7)(0us — 0ps) - (6.17)

The condition of mechanical equilibrium along the line of contact where three phases

meet is expressed by Young’s equation (e.g. [1-5])
OBs = Oqs + 0a3COS7Y . (6.18)

Once this relation is fulfilled, we can write the surface contributions to the Gibbs free

energy as (c.f. Eq. (6.9))
1
AGs = 47 R%0,4 1(2 +cosy) (1 — cosy)?| = 4nR%0u5¢ - (6.19)

Similarly to [2,3], the work of cluster formation at heterogeneous nucleation on planar
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solid surfaces can be written finally as
4 o 9
AGhe = @ 3—R Ap+4rR0,3 (6.20)
w
or
AGhet == (p(’y)AGhom . (6.21)

This relation holds generally for any values of the radius, R, of the surface of the
cluster and any appropriate value of the contact angle, v. Employing in addition
the thermodynamic equilibrium conditions at the cluster-ambient phase interface, the
parameter ¢ becomes equal to the catalytic activity of a given nucleation site (planar
solid interface in the case under consideration) with respect to nucleation.

A detailed derivation and discussion in terms of the generalized Gibbs approach
of the expression for the work of cluster formation and, in particular, the work of
critical cluster formation for homogeneous nucleation in a regular solution is given
in [9, 15, 16]. Employing the notations introduced and the results obtained there, we

can rewrite Egs. (6.20)-(6.21) as

AG R7 :I’.Om X 47T 3
(kBT ) P(7) 5 [§R0R2 (2o —2)* + R f(:z:a,:z:)] , (6.22)
where
20,300° [ (1 —2
o = % (xz() = l’él)) : (6.23)

Here the interfacial tension between two macroscopic phases with compositions z,,
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and x, respectively, is expressed following Becker [13] (see also [14]) via

2
Lo — T
Taf = TaB0 (m) : (6.24)

b Ly

In Eq. (6.24), 0,3 1s the specific surface energy of the cluster-ambient phase interface
for the case, when ambient and newly evolving phases are in equilibrium state (that
is for r = a:l()l) and z, = :UI()T)).

We further introduce reduced variables via the relations

R AG
= — Ag = 2
lr RO. ) g GO. ) (6 5)
3
167 (005.00”)" () @)\
G, = : r, —x . 6.26
3 (kgT)* ( b b ) (6.26)

In these variables, Eq. (6.22) can be written in the form

Ag(r,ze,x) = () [37"2 (20 — )% + 2% f (4, x)} : (6.27)

The dependence of Ag on the value of the interfacial tension is reflected here by the
term (2, — )%
Critical cluster parameters, i.e. its size, 7., and composition, x.., are determi-

ned by the solution of the system of equations

OAg (1, 74, 7)
or

0Ag (1, Ty, x)
0x,

=0, =0, (6.28)
where Ag is given by Eq. (6.27). Substituting the respective values into Eq. (6.27),
we may determine the work of critical cluster formation at heterogeneous nucleation.

Note, however, that for a cluster of the considered shape (segments of a sphere) its
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radius, R (or r), is the radius of curvature of the cluster surface. Its value does not
define unambiguously the number of atoms in the cluster (see Eq. (6.8)). By this
reason, the numbers of atoms in the cluster, (11, n2), are more convenient variables
as compared to the set (r, x,).

Introducing similarly to the radius reduced particle numbers as

3
/ ny / Nno 47 (R,
n, = el Ny = > Ny Y (7> , (6.29)

and omitting primes for simplicity of the notations, we can rewrite Eq. (6.27) as
Ag (n1,ng,x) = 3 ()] 0 (% — sc)2 +2nf (z,n2/n) | (6.30)
where
n=ny+ny = por’ (6.31)

is the reduced total number of atoms in the cluster. Similarly to Eq. (6.28), critical
cluster parameters, (nlvcr,ng,c,,.), are determined by the solution of the system of

equations

0Ag (nq,ng, x)
8711

0Ag (n1,ns, )
8712

=0,

=0, (6.32)

where Ag is now given by Eq. (6.30). With account of Eq. (6.25), the work of critical
cluster formation, AG,,, is determined by Eq. (6.30) reducing it to a relation of the
form (AG.,/G,) = Ager (2) = Ag (N1 0r, N2y T).

In heterogeneous nucleation on a planar solid surface the work of cluster
formation is affected considerably by the value of the contact angle [2-4]. The
expression for the work of critical cluster formation, Eq. (6.27), differs from the

one describing homogeneous nucleation [15, 16] by the nucleation-activity factor,
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©(y). This factor is equal to one in the case of homogeneous nucleation, its value in
heterogeneous nucleation on planar interfaces determines, consequently, its nucleation
activity. As evident from Eqgs. (6.9) and (6.21), the nucleation activity is determined
basically by the value of the contact angle, v. In the analysis of heterogeneous
nucleation in the framework of the generalized Gibbs approach, primarily the contact
angle becomes dependent on the composition of both ambient and cluster phases and
determines then the catalytic activity and, finally, the work of critical cluster formation

in heterogeneous nucleation as will be shown now in Sections 9.4 and 8.4.

6.3. Contact angle in heterogeneous nucleation at a planar solid surface

6.3.1. Contact angle

In the classical approach to heterogeneous nucleation, the bulk properties of
the cluster phase are considered commonly as given and fixed and, by this reason,
also the surface energy terms entering Young’s equation, Eq. (6.18), can be treated
as constants. By this reason, the contact angle is a constant as well. Accounting, in
terms of the generalized Gibbs approach, for changes of the bulk state parameters
of the cluster of the newly evolving phase leads to the consequence that the contact
angle, 7y, has to be determined as a function of these state parameters as well affecting
then finally also the catalytic activity factor with respect to nucleation, (7). By
this reason, we first consider here the problem of determining the contact angle in
dependence on the state parameters of both ambient and newly evolving in the system
phases.

For the case of high wettability the contact angle has values less than 90°,

contact angles are larger than 90° for the case of low wettability. Since the contact
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angle can be computed via Young’s equation, Eq. (6.18), as

Ops — Oas

cosy = —— (6.33)

o
for a high wettability o,; < o0ps holds while for a low wettability the inverse
inequality o,s < o0, 1s fulfilled. These two different cases of heterogeneous
nucleation we consider here in detail separately. However, in order to proceed with
this task, we have to specify first the specific surface energy of the solid-liquid

interface.

6.3.2. Specific energy of the solid-liquid interface

According to Eq. (6.33) in order to determine the contact angle it is necessary to
know the specific energy of the cluster-solid, ambient phase-solid and cluster-ambient
phase interfaces. This knowledge is required for all compositions of the ambient and
cluster phases varying in a range from the equilibrium value at the left binodal, :1:,()1),
to the equilibrium value at the right binodal, a:l(f) (determined by Eq. (6.6)). Both of
these phases we will denote as “fluids"for simplicity, but the results hold similarly
also for segregation of a solid solution at a planar interface.

In order to have at our disposal an expression for the fluid-solid specific
interfacial energy, we proceed here as follows. The specific energy of the fluid-
solid interface, oy, depends on the composition of the fluid (cluster or ambient

phase), which is in contact with the solid surface, and in the simplest (linear in the

composition of the fluid) approximation can be written as

0350 (xl(f) — :I:') + Gas.0 <x — :z:l(f))
ops(x) = . (6.34)

xér) - x(()l)
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Here 050 and o0, are the specific energy of the ambient phase-solid and cluster-
solid interfaces for the case, when ambient and newly evolving phases are in an
equilibrium state (that is for x = a:l(,l) and x, = :Ul(f)). The corresponding parameters
without the subscript 0 refer to the current values of these quantities for an arbitrary
value of the composition of the fluid (ambient phase or cluster).

This equation can be obtained from the following considerations: First, we
write down Taylor expansions of the fluid-solid specific interface energy, os(x),

both in the vicinity of the equilibrium composition (xér)) of the cluster, 0,(z), and

the ambient phase (with the equilibrium composition, xl()l)), ops(),

00 ¢ .
Oas(T) = Ouso + 85 . (:19 — xl() )) :
J?:Jfb
(6.35)
do s l
0ps(T) = 0450 + 8$ . (x — xé)> .
x:xb
where
Oas,0 = Ofs <:Cl(f)> , 08350 = Ofs <:1:l(f)) ) (6.36)

In addition, we assume here linearity of the dependence of o ¢4(x) on composition x

in the whole interval leading to

aO'fS _ ao-fs _ Oas,0 — 0p3s,0 (637)
Or |,_,0  Ov |,_,o f’fz()r) _ a:él)

A combination of Egs. (6.35) and (6.37) results immediately in Eq. (6.34). Eq. (6.37)
yields then further

Ty — T
035 — Oas = Ofs(x) — 0fs(20) = (0850 — Tasp) (ﬂ) : (6.38)
Ly " — Ty
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We can see from Eq. (6.38) that the difference (0gs — 04s) is linear in (z, — ),
positive for high wettability (ogs0 > 04s,0) and negative for low wettability (0,0 <
Oas,0) In accordance with above given definition. The difference in the signs of the
mentioned specific surface energy terms is the main difference distinguishing the two
types of solid surfaces. This difference is the basic origin of the different types of

catalytic activity in heterogeneous nucleation.

6.3.3. Some first consequences

The surface tension for cluster-ambient phase coexistence is determined by

Eq. (6.24). Equation (6.24), accounting for Egs. (6.18), (6.38) and (6.33), yields

(r) _ .
cosy(x,xy) = cos <M> : (6.39)

xa - ZE
where

cosyy = 2P0 " Tas0 (6.40)

Olg,0

The first factor on the right-hand side of Eq. (6.39), cos 7y, can be considered as some
given property of the solution (liquid or solid) under consideration in a macroscopic
equilibrium state with the planar solid surface. Thus, for the analysis of heterogeneous
nucleation it is necessary to know the contact angle, -y, for the case, when ambient
and newly evolving phases are in a macroscopic equilibrium state. In the present
study, we assign here to 7y, different values analyzing, on one hand, quantitative
changes of the behavior in dependence on the value of ~, and reflecting, on the other
hand, the two considered qualitatively different cases of high and low wettability.

Employing the classical Gibbs approach, the contact angle is determined
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exclusively by this first term cos~y and determines in this classical approach the

catalytic activity. The second factor in Eq. (6.39) depends on the composition of the

both fluids (ambient and cluster phases). Generalizing the classical Gibbs approach

to heterogeneous nucleation, this term accounts for changes in the composition of the

cluster and the ambient phases, we have here to incorporate into the determination of

the catalytic activity via Egs. (6.9) and (6.39). Eq. (6.39) implies that, at

Too = (xér) — :rl()l)) cosYp + T, (6.41)
the contact angle is equal to v = 0. At
Tor = — (xm - x(l)> cos Yo + 6.42
o = b b Yo+, (6.42)
the contact angle is equal to v = .
In the ranges of values of the cluster compositions
-
To < Tax, To > Tao at 7 < 5 (6.43)
7
Ta < Ta,0 s To > Tor at ’yo>§,

nucleation at a planar solid interface proceeds heterogeneously with cluster shapes as

shown in Fig. 6.2. In the range

s
T < Ty < Ty at 70<§,

T
Tap < Ty < at 70>§,

(6.44)
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the contact angle is equal to v = 0. In this limit, we have perfect wetting, o = 0,
and the work of cluster formation Eq. (6.10) is determined here only by the bulk
contribution defined by the thermodynamic driving force, Eq. (6.21). In the range

T

Tor STo <x at 7y < 5 (6.45)

s
T < Ty < Ton at ’yo>§,
the contact angle equals v = m. For these clusters nucleation proceeds

homogeneously, i.e. it becomes fully independent of the existence of the solid surface.
For a macroscopic equilibrium contact angle equal to vo = 90° we get ¢ = 1/2. In
this case, the cluster is a hemisphere, so it has a twice smaller size (volume) and free

energy of cluster formation as compared to the case of homogeneous nucleation.

6.4. Nucleation activity and heterogeneous nucleation on planar solid

interfaces: Results

6.4.1. Case of high wettability

For the case of high wettability, the analysis of Egs. (6.9) and (6.27) leads to
the conclusion that, for a moderate supersaturation (for initial states located in the
central part of the interval xgl) <z < x&?), the hypersurface modeling the work of
cluster formation has a typical saddle shape in the (n1,ny)-space near to the state
corresponding to the parameters of the critical cluster, (11 ¢, 2.y )-

As an example, such kind of behavior is shown on Fig. 6.4(a) for a macroscopic
equilibrium contact angle equal to vy = 90° (T7'/T. = 0.7, x = 0.17). The behavior

i1s here quite similar to the case of homogeneous nucleation. In this case, i.e. for

Yo = 90° (Fig. 6.4(a)), the Gibbs potential profile corresponds to the one obtained
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Fig. 6.4. Gibbs’ free energy landscape of cluster formation for different values of the
macroscopic equilibrium contact angle, vo: a) 79 = 90°, b) 7o = 80°, ¢) v = 77°,
d) 7o = 76.228°, e) vy = 74.4°, f) y = 72° at otherwise identical conditions. The
reduced temperature is taken equal to 7'/7T. = 0.7 in all these cases, the initial
composition of the ambient phase is chosen equal to x = 0.17. The range with a
value of the catalytic activity factor, ¢, equal to zero is especially distinguished.
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for the case of homogeneous nucleation multiplied by a factor of 0.5 (as the cluster
is a hemisphere in the case under consideration, it has, as already mentioned, a twice
smaller size and free energy of formation), with the valley at v, = x = 0.17 and the
saddle at the point corresponding to the critical cluster. Latter state is determined by
the system of equations, Egs. (6.32).

The situation changes significantly as compared to the case shown in Fig. 6.4(a)
when v decreases. This variation of the type of behavior is illustrated in Figs. 6.4(b-
f), which show the Gibbs free energy surface of cluster formation for different values
of the equilibrium contact angle ( b) vy = 80°, ¢) v = 77°, d) 7 = 76.228°, e)
Yo = 74.4°, ) 79 = 72°) at otherwise identical conditions. The reduced temperature
is taken equal to T'/T,. = 0.7 in all these cases, the initial composition of the ambient
phase is chosen equal to x = 0.17.

When the contact angle decreases, the work of critical cluster decreases as well,
and a region with a cluster composition in the range x < z, < x, appears, where
@ = 0 holds. Such type of behavior is shown in Fig. 6.4(b) for a value of vy equal to
Yo = 80°. As discussed in the previous section, the boundary of this region, i.e., the
value of ¢ 1s determined by Eqgs. (6.41). This region with a value of the nucleation
activity ¢ = 0 expands with decreasing values of the parameter v, (Fig. 6.4(c-f)). In
this range defined by ¢ = 0, the interfacial contributions to the Gibbs free energy are
equal to zero. The work of cluster formation given by Eq. (6.10) is determined here
exclusively by the bulk contribution defined by the thermodynamic driving force,
Eq. (6.30) (note that in this case r — oo according to Eq. (6.31), see Fig. 6.6b as
well).

In case the composition of the ambient phase approaches the value =z =
xglzw)(%) (superscript hw means high wettability), the work of critical cluster
formation at x, = .0 becomes equal to zero (for the given value of z = 0.17
it takes place at vy = 76.228°, see Fig. 6.4(d)). Here xggw)(%) is a root of the

equation
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Ta0 (wg}slw)(%)ﬁo) = Zo1 (xé’;“’)(%)) , (6.46)

where z,, o 1s determined by Eq. (6.41) and z,j; by Eq. (6.15).

For even smaller values of the equilibrium contact angle, the evolution of
the clusters with compositions close to z,( can proceed without the necessity of
overcoming of a potential barrier i.e. by a scenario of phase formation similar to
spinodal decomposition (Figs. 6.4(e and f)). For these clusters with a composition
To R Ta0, the contact angle is very small or equal to zero (see Fig. 6.5 as well).

In this limiting case, line tension effects may gain importance [20-22]. The range

1

S
o0

0.6
0.4

0.2

Work of cluster formation, Ag
Catalytic activity factor, @

| |
0 0.2 0.4 0.6 0.8 1.0

Cluster phase composition, x,,

Fig. 6.5. Dependence ¢ (x,) (right axis), and cross-sections of the Gibbs free energy
surface, Ag(n, o) |n=const (left axis), for different fixed values of n specified by the

numbers at the respective curves (at x = 0.17 and vy = 72°).

Tan < To < Tap, Where the contact angles vanishes, represents perfect wetting
[23, 24] In this composition range, clusters are more appropriately treated as flat
islands and not as the spherical segments, which are formed in the range z, > ..
For the qualitative analysis of such clusters, the model used here is expected to remain
valid, however, for a quantitative description of the nucleation behavior in this limit

the model should be further advanced taking into account mentioned effects. However,
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such task is beyond the scope of the present analysis, these effects will be analyzed
in more detail in a future study.

Fig. 6.5 presents the dependence ¢(x,) and the cross-sections of the Gibbs
free energy surface, Ag(n, x,)|n=const> for z = 0.17, 79 = 72° (which was shown
in Fig. 6.4(f) as well), at different values of n given in the figure as numbers to the
respective curves. As evident from the figure, there exist two minima of Ag along
these cross sections. One of them is located at x = x,, it refers to the case of
flat island formation (¢ = 0). The minimum work of flat island phase formation,

Ag (n,xay), is determined by Eq. (6.30) at ¢ = 0, equal to

Ag(n,200) = 20f (2, 200) - (647)

It is linear in n and decreases for the parameters under consideration. The dashed-
dotted curve in Fig. 6.5 shows the position of the second minimum for clusters of
spherical segments shape. With increasing cluster size the minimum deepens and the
composition of the clusters tends to the value x g, determined by Eq. (6.14).

The parameters of the critical cluster in dependence on initial supersaturation
are illustrated in Fig. 6.6 [a) composition of the critical cluster z, ., b) critical cluster
size, n.-, ¢) work of critical cluster formation, Ag,,] for different values of the contact
angle, o, equal to vy = 60°, 70°, 80°, 90°, and 180° (the latter one corresponds to
the case of homogeneous nucleation). With an increase of the supersaturation starting
at initial states near to the binodal curve, the concentration of the atoms of the second
component in the critical cluster, x,, ., decreases first and reaches its minimum,
(the dotted curve in Fig. 6.6(a)), at z = xg}sbw)(%). With a subsequent further increase
of the supersaturation, x,, ., grows linearly (see Eq. (6.41)).

In agreement with the classical picture, the size of the critical cluster tends to
infinity for initial states of the ambient phase in the vicinity of the binodal, and with
an increase of the supersaturation the critical size decreases first. However, in contrast

to the classical picture, in the approach to the limiting value, x = xﬁ@“"), the critical
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Fig. 6.6. The parameters of the critical cluster in dependence on initial supersaturati-
on: a) composition =z, .., b) critical cluster size n.., c¢)work of critical cluster
formation, Ag.,, for different values of the macroscopic equilibrium contact angle,
Yo = 60°, 70°, 80°, 90°, and 180°.
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cluster size starts to increase again and reaches infinity at = = xgsw).

At © > :cg’;““), a critical cluster in the classical sense does not exist.
Thermodynamically cluster evolution starts at n = 0 (or, in physical terms, from
one structural unit) and proceeds via a valley at x = x, (see Figs. 6.4f and 6.5).
This valley is separated from the final state (which is shown by the dashed-dotted
curve in Fig. 6.5) by some barrier. Based on this picture, we can expect that the
phase transition will proceed at such states in two-stages: first, by the formation of a
flat island phase followed by the second stage, the formation of the final state phase
with clusters of spherical segments shape. Details of such path of evolution can be
derived based on the solution of an appropriate set of kinetic equations employing
the generalized Gibbs approach for the thermodynamic description. In application to
homogeneous nucleation, such approach was developed in [17,18].

For the considered variations of the composition of the ambient phase, the work

of critical cluster formation decreases monotonically from infinity (for initial states at
(hw)

the binodal curve) till, at x = x4 , it exhibits a discontinuity. It has a finite value
Agcr(xggw) ) = Agmin (the dotted curve in Fig. 6.6(c)) at = = xgzw) , however, at any

values x > :Eg;w) the work of critical cluster formation is identically equal to zero, i.e.,

Ager ‘z>z(hw) = 0. The scenario of phase evolution for the thermodynamically unstable

initial states in the range a:gQ <x < xgg)

will be analyzed in detail in Section 6.4.3.
Note that the minimal values, z,, ¢ and Agy,i,, shown by the dotted curves in Fig. 6.6(a
and c), have no real physical meaning. They correspond to clusters of infinite size,
which cannot be realized in the system. Instead of forming a very large (critical)
cluster, for both metastable and unstable initial states near to the spinodal curve the
evolution to the new phase will, as a rule, proceed via the ridge of the appropriate
thermodynamic potential relief and not via the saddle point (see [17,18] for details).

Note as well that heterogeneous nucleation at vy = 90° proceeds similarly to

homogeneous nucleation characterized by vy = 180° [15, 16]. Indeed, in this case

the contact angle does not depend on the cluster parameters (composition), v =
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Yo = 90° (see Eq. (6.39)). In this case, clusters formed at the planar interface have
a hemispherical shape. This is also the reason for why the dependencies x, - ()
are identical for both heterogeneous and homogeneous cases, but the work of critical
cluster formation and its size, n.,, are by a factor of 1/2 smaller than for homogeneous
nucleation.

A similar behavior, as found here and illustrated, in particular, in Figs. 6.4
and 6.6, was observed earlier by us in the analysis of condensation and boiling at
planar interfaces (c.f. Figs. 3 and 4 in [12]) and in the analysis of homogeneous
nucleation in solutions [15, 16]. So, similarly to [12], we may conclude that the
existence of heterogeneous nucleation cores may result effectively in a shift of the

spinodal curve from the value for homogeneous systems (r = xg,) as illustrated

in Fig. 6.1) to a value z = xg;w) < xgij) affected in addition by the properties of
the solid nucleation core. Therefore we can consider the range of supersaturations,

(fslw)

xél) < x < xgs , with respect to heterogeneous nucleation as the metastable region

and the composition range x > xé@“") as thermodynamically unstable states. The value

(hw)

of the composition of the ambient phase x = x5 ~ is to be treated consequently as

a part of the spinodal curve with respect to heterogeneous nucleation. Full spinodal
curves x,(sgw)(T) are presented in the left part of Fig. 6.10 for different values of the
macroscopic equilibrium contact angle, vy = 60°, 70°,80°, and 90°.

Summarizing briefly the results for the case under consideration, we arrive at
the following consequences: Employing the generalized Gibbs approach to nucleation
of a new phase in a supersaturated regular solution on a surface of high wettability
it is concluded that the existence of the planar solid interface leads effectively to a
significant shift of the spinodal to lower supersaturations as compared to the case
of homogeneous nucleation. However, all basic features found for homogeneous
nucleation like the divergence of the critical cluster radius or the approach of zero

values of the work of critical cluster formation near to the spinodal curve are retained

in a qualitatively identical form.
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6.4.2. Case of low wettability

The computations for the description of heterogeneous nucleation for the case
of low wettability can be performed similarly to the first case of phase formation
on a highly wettable surface. The resulting from the computations dependencies of
the parameters of the critical cluster on the initial supersaturation for the case of low
wettability are shown in Fig. 6.7 [a) composition of the critical cluster, b) particle
number in the critical clusters, ¢) work of critical cluster formation]. The analysis has
been carried out, again, for different values of the macroscopic equilibrium contact
angle, vy, equal to 7o = 90°, 100°, 110°, 120°, and for homogeneous nucleation,

Yo = 180°. For xél) <x< xé@“’)

xg%gw), is determined similarly to Eq. (6.46) as a root of the equation

, where the boundary of heterogeneous nucleation,

Zar (289 (0),70) = 2l (287(30)) (648)

nucleation occurs heterogeneously, size and work of critical cluster formation are less
than for the homogeneous case (here x,  1s determined by Eq. (6.42), and x&hg,m ) is
the composition of the critical cluster in homogeneous nucleation [8, 15, 16], i.e. for
¢ = 1, superscript [w means low wettability). However, for the considered case, the
degree of activation of nucleation by the planar solid surface is much less expressed
than for the case of high wettability. This is seen from a comparison of full curves
(representing heterogeneous nucleation) with the dashed lines showing the respective
parameters of the critical cluster computed for the case of homogeneous nucleation
(i.e. for o = 180°). With an increase of the supersaturation, at some upper limiting

value of the composition of the ambient phase, xgl;“)(%), nucleation becomes fully

independent of the existence of the solid surface. Dependencies xé@w) (T') are presented
in the right part (x > 0.5) of Fig. 6.10 for different values of the contact angle,
Yo = 90°,100°,110°, and 120°, for the range x < 0.5 it is needed only to replace z

by (1 — x) (see Section 6.4.4 for more details).
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contact angle, v = 90°, 100°, 110°, 120°, and 180°.
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6.4.3. Segregation in thermodynamically unstable initial states

In the unstable region, xgg) <z < xgg), in the case of homogeneous nucleation

(70 = 180°) and for heterogeneous nucleation at vy = 90°, the surface modeling the
work of cluster formation in vicinity of the critical cluster state has a very particular
shape corresponding to a third-order saddle point. Clusters with a composition z, = x
are stable against variation of its composition (9?°Ag/0x2 < 0) for n < n,, and
unstable (0?Ag/dz% > 0) for n > n,... This particular critical size parameter, 7., is

determined here by the equation

O*°Ag (Ner, Ta,)
0z?,

=0. (6.49)
o
Note that the work of formation of such particular aggregates — unlike to the case of
critical cluster formation in metastable initial states — is equal to zero (its origin is
discussed in detail in [16, 17]).
The Gibbs potential profile for a macroscopic equilibrium contact angle equal
to 79 = 90° is shown on Fig. 6.8(a) for x = 0.5 and on Fig. 6.8(b) for x = 0.35.
Cluster evolution proceeds here first in the vicinity of the line O — C, and then via
the path C — A or C — B, approaching finally either the composition z, = zp
or T, = x4, respectively (v 4 p are determined by Eq. (6.14)). The thermodynamic
potential relief for x = 0.5 is symmetric with respect to the change n, <> ns, and the
path O — C — A is equivalent to the path O — C — B. For z = 0.35 symmetry
breaking takes place, and the path O — C — B becomes thermodynamically more
favorable as compared to O — C — A. Note that the states with vy = 90° are
degenerated. Really, at g = 90° the catalytic factor is always equal to p = 1/2
for any cluster (see Eq. (6.9)), but Eq. (6.40) has a discontinuity at x, = z, and ¢
changes from 0 to 1 at small variation of z, in the vicinity of x. This is the reason
why for 79 # 90° the Gibbs potential profile changes significantly, and the critical

cluster size vanishes (see Fig. 6.8(c,d)).
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For the case of high wettability (vy = 88°, Fig. 6.8(c)), at the thermodynami-
cally preferred path O — B the work of cluster formation decreases with cluster size.
Initially along this path the cluster composition equals x, = z,0 > x (where z,p
is determined by Eq. (6.41)), and with an increase of cluster size it approaches the
composition x, = xpg. The path of cluster evolution O — C — A becomes here
more difficult, since the critical size is doubled due to the growth of the catalytical

factor from o = 0.5 to ¢ = 1.

b) 3,=90°, x=0.35 d)5,=92°, x=0.35

Fig. 6.8. Gibbs’ free energy landscape of cluster formation for different values of the
macroscopic equilibrium contact angle, vy: a) 79 = 90°, b) 7o = 80°, ¢) o = 100°, at
otherwise identical conditions. The reduced temperature is taken equal to 7'/T, = 0.7
in all these cases, the initial composition of the ambient phase is chosen equal to
x = 0.35.

For the case of low wettability (vo = 92°, Fig. 6.8(d)), the path O — A is
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preferred at z, = x,0 < x approaching the final composition x, = x4. The path
of cluster evolution O — C — A becomes more difficult, since the critical size is
doubled (as compared to the case vy = 90°) due to the growth of the catalytical factor
from ¢ = 0.5 to ¢ = 1. Fig. 6.9(a) presents the dependence () and the cross-
sections of the Gibbs free energy surface, Ag(n, xy)|n—const, for the low wettability
case (z = 0.35, o = 100), at different values of n given in the figure as numbers to

the respective curves. At n < 4.71 the function Ag(x,) has only one minimum, at

1

0.2

0.8

0.6

-0.2
0.4

-0.4

Catalytic activity factor, ¢

0.2

Work of cluster formation, Ag

0

| |
0.4 0.6 0.8 1.0

Cluster phase composition, x,,

-0.6

Work of cluster formation, Ag
Catalytic activity factor, ¢

b) y,= 110°
0 0.2 0.4 0.6 0.8 1.0

Cluster phase composition, x,,

Fig. 6.9. Dependence ¢ (x,) (right axis), and cross-sections of the Gibbs free energy
surface, Ag(n, o) |n=const (left axis), for different fixed values of n specified by the
numbers at the respective curves (at x = 0.35 and a) vy = 100°, b) 7o = 110°).
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To = To0, for n > 4.71 a second minimum appears, at n > 6.855 it becomes deeper
than the first one. At large values of n, 1.e. at n > 83.2, near to the first minimum
appears a new one, which tends to the final state composition x, = xp at high n (see
the dashed curves in Fig. 6.9(a)). For vy > 74, where y4(z) is determined by the

intersection of the z4(x) and x, () lines, that is by the root of the equation

Tao(T,74) = zA(T) | (6.50)

the inequality z, (o < x4 1s valid, and in the range x, < x only one minimum exists,
To = x4 (see Fig. 6.9(b)).

Consequently, in thermodynamically unstable initial states the work of critical
cluster formation is always equal to zero, but there are two critical sizes, which
correspond to different modes of evolution. For the first mode, the critical size is
equal to zero, corresponding to a cluster composition z, . = .0, for the second one
the critical size is determined by Eq. (6.49), and z, ., = x holds. The critical cluster

parameters, composition and size, are shown in Fig. 6.10 for different contact angles.

For the case of high wettability (vy < 90°), the critical size n. = 0 for
the “favorable”mode with increasing concentration, z, — g, and n.. > 0 for the
“unfavorable”mode with decreasing concentration, , — x 4. For the low wettability
case (v > 90°) an opposite behavior is found: n. > 0 for the “favorite”mode
with increasing concentration, =, — xpg, and n.. = 0 for the “unfavorable”’mode
with decreasing concentration, x, — x 4: latter mode will have more possibilities to
advance. Nevertheless, at it was mentioned already, thermodynamics yields only a
qualitative description of such processes. A more detailed analysis has to be based on
the solution of the set of kinetic equations employing the generalized Gibbs approach
for the thermodynamic description, as it was performed in [17, 18] for homogeneous

nucleation.
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6.4.4. Alternative case: Segregation at solute concentrations = > 0.5

The choice of the independent variable in the description of the solutions under
consideration is arbitrary. By this reason, the process of formation of a new phase
cluster, wherein the concentration of the second component, x, increases from a value
in the range :cl()l) <x < :ch to xl(f), can be interpreted as the formation of the cluster
in which the concentration of the first component decreases from a value in the range
xgg) <z < xl(f) to the value l’(()l). Considering also that the equation of state for binary
regular solutions is symmetric with respect to z = 1/2 (see Fig. 6.1), one is attempted
to suppose that the segregation behavior in such solution with the composition, for
example, z = 0.8, will be similar to that at x = 0.2, and to describe such a process

it is needed only to replace x by 1 — x (and, correspondingly, xl()l) — 1 - acl()l) = xy)

and xéﬁ} — 1 — x§2 = a:gr)).

However, this symmetry is broken when a catalytic surface appears. Indeed, if
at z < 0.5 the equilibrium contact angle is determined by Eq. (6.40), where 0, and
03s,0 are determined by Eq. (6.37), i.e., at the left and right binodal, respectively, then
for x > 0.5 the binodal molar fractions have to be interchanged in their places in the
equation 1.e. a:él) = xl(f). By this reason, Eq. (6.40) takes form

cos Yy = Oasd — 9550 : (6.51)

Olg,0

Thus, the cosine of the contact angle changes its sign to the opposite one and ~y —
180 — 7, so if for x < 0.5 the surface was of high wettability, then for z > 0.5 it

becomes a poorly wettable one and vice versa. This asymmetry is demonstrated in
Figs. 6.11 and 6.12.

Fig. 6.11 presents the location of the binodal and spinodal curves, dependencies

of the heterogeneous interface induced spinodal, xgzw), and of the heterogeneous

) I
nucleation border, xéﬁ

(2) 79 = 80°(100°), (3) vo = 70°(110°), (4) 79 = 60°(120°), the contact angle values

, for different values of the contact angle, (1) vg = 90°,
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wettability, at x > 0.5 correspond to the case of the low wettability with the contact
angle values v, = 140°,130°,120°,110°, 100°, respectively.
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are given for x < 0.5 (x > 0.5), respectively. Fig. 6.12 shows the dependence of the
composition of the critical clusters in the whole range of possible initial compositions
of the ambient solution, for different values of the specific interfacial energy, the
curves for the contact angle values vy = 40°, 50°,60°,70°,80°, which for x < 0.5
correspond to the case of the high wettability, at x > 0.5 correspond to the case of
the low wettability with the contact angle values ~, = 140°,130°,120°,110°, 100°,
respectively, and 7'/T. = 0.7 holds as before. As we can see, Fig. 6.12 is actually
a compilation of Figs. 6.6(a) and 6.7(a). Work of formation and size of the critical

clusters can be obtained similarly.

6.4.5. Effect on the steady-state nucleation rate

Employing the notations introduced in the present paper, the steady-state

nucleation rate (see, e.g., [1,2]) can be written as

(6.52)

A cha
J = Jypexp (— J > :

kT

The pre-exponential term, Jy, is proportional to the number of heterogeneous
nucleation cores per unit surface times the characteristic vibration frequency. The
scaling factor, GG, in the exponent is determined by Eq. (6.26).

Fig. 6.13 presents a comparison of the reduced nucleation rates, .J/Jy, as
determined via the generalized Gibbs approach (solid curves) and the classical Gibbs
approach utilizing, in addition, the capillarity approximation (dashed curves) for
different values of the contact angle, vy = 60°,70°,80°, and 90°. The calculations
were performed for 7, = 1143 K, T = 0.77, and a = 3.65 - 1071Y m,
a0 = 0.08 J/mQ, for such parameters GG, = 61.6 kgT and R, = 3.087a. As
we can see, nucleation rates determined according to the generalized Gibbs’ approach

increase with supersaturation and reach its maximal value, J,, at x > xé@w)(v()).
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0.10
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Fig. 6.13. Comparison of the the reduced nucleation rates, J/J;, as determined
via the generalized Gibbs’ approach (solid curves) and the classical Gibbs’ approach
utilizing, in addition, the capillarity approximation (dashed curves) for different values
of the contact angle, vy = 60°,70°, 80°, and 90°.

The classical nucleation rates are significantly less for all values of the macroscopic

equilibrium contact angle.

6.5. Discussion and conclusions

Employing the generalized Gibbs approach to the description of segregation
in a binary regular solution in the presence of a planar interface we arrive widely
at the same result as obtained for heterogeneous nucleation for a one-component
van der Waals fluid [12]: as compared with homogeneous nucleation, a significant
shift of the spinodal curve to lower supersaturations occurs caused by the existence
of the high wettable planar solid interface. This result implies that the region of
instability of the fluid is enlarged and the range of initially metastable states is
reduced. Such features — observed already in application of the generalized Gibbs

approach to homogeneous condensation and boiling and changing essentially the
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results obtained via the classical Gibbs treatment — like the divergence of the critical
radius in the approach of the spinodal and the possibility of nucleation passing not
the saddle but the ridge of the thermodynamic potential surface analyzed in detail for
homogeneous phase formation [8,13,17,18,25] are found here as well for the new
boundary of metastability. Similarly to condensation and boiling the present results
can be extended straightforwardly to account for finite size effects in the catalytic
activity of heterogeneous nucleation cores [26,27]. The respective generalization of
the present results to account for such finite size effects will be presented in future

contributions.
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6.6. BucHoBkH 10 po3ainy 6

Pesynbratu gociigkeHb, MPEACTABICHUX Yy JAHOMY PO3/LIi, OIyOJ1KOBaHO
B crarti [6] (omarok A. Crimcok myOmikalii 3m00yBada 3a TeMoro aucepTaitii). Jlo-
CITIPKEHO TeTepOreHHE 3apOKEHHS KJIacTepiB HOBO1 (ha3u y peryinspHoMy O1HapHOMY
PO3YMHI Ha IIOCKHUX TBEepAHMX MOBepXHsIX. Cepeln OCHOBHHMX PE3YJbTaTiB y SKOCTI
BHUCHOBKIB MO>XHa BUJIUINTH HACTYIIHI:

e [loka3zaHo, 1110 KOHTAKTHUI KyT Ta KaTaJITUYHUI (HaKTOp AJIs reTepOreHHOl

HYKJI€allll CTalOTh 3aJIEKHUMH BiJl CTYHEHSI METAcTaOUIbHOCTI (IePECUUCHHSI) PO3UH-

HY.
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e V BHUIAJIKy YTBOPEHHs KJacTepiB HOBOI (a3u Ha TOBEPXHI 3 HU3BKOIO
3MOYYBaHICTIO (KOHTakTHMH KyT Ouibme 90°) karajdiTUUHAa aKTHUBHICTb TBEPAOI

NOBEPXHI MaJa.

e B asbrepHaTMBHOMY BHUNAJKy BHCOKOI 3MOUYYBAaHOCTI (KOHTAKTHHUHA KyT

MeHIie 90°) IHTEeHCUBHICTD 3apOJIPKEHHS 3HAYHO TMOCUITIOETHCSI TBEPIOIO TTOBEPXHEIO.

e TakuM YMHOM, y IILOMY BUNIAJKY, SIK 1 y pifiuHi BaH naep Baanbca (axy Oyso
MPOAHATI30BaHO B MOMEPEIHHOMY PO3/iJIi), TeTepPOTreHHa CIIHOAIb HAOIMKAETHCS /10
O1HOaI, a 00JIACTh METACTaOUIbHOCTI 3BY)KYEThCS 32 PAXyHOK PO3LIMPEHHS 00JacTi

HECTAaOUIBHOCTI.
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PO3LI 7

I'ETEPOT'EHHA HYRJVIEAIIA HA JE®EKTHUX ITIOBEPXHAX:
V3ATAJBHEHUM MIAXIJI I'BBCA

Y choMOMYy pO3IiIl JOCHIDKEHO TeTEPOreHHE 3apoJKEHHS (KOHJEHCAIs)
Kpanesib piaAuHU 3 napu (rasy) Ha AeeKkTHIH TBepHAlid MOBEpXHI B Mojemi (uoimy

BaH Jiep Baainbca, ik nmoBepxHeBHil 1eekT oOpaHa KOHIYHA MOopa.
THE JOURNAL OF CHEMICAL PHYSICS 138, 164504 (2013)
Heterogeneous nucleation on rough surfaces: Generalized Gibbs’ approach
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Heterogeneous nucleation (condensation) of liquid droplets from vapor (gas)
on a defective solid surface is considered. The vapor is described by the
van der Waals equation of state. The dependence of nucleating droplet
parameters on droplet size is accounted for within the generalized Gibbs
approach. As a surface defect, a conic void is taken. This choice allows us
to simplify the analysis and at the same time to follow the main aspects of
the influence of the surface roughness on the nucleation process. Similarly
to condensation on ideal planar surfaces, contact angle and catalytic factor
for heterogeneous nucleation on a rough surface depend on the degree of
vapor overcooling. In case of droplet formation on a hydrophilic surface of
a conic void the nucleation rate considerably increases in comparison with
the condensation on a planar interface. In fact, the presence of a defect on

the hydrophilic surface leads to a considerable shift of the spinodal towards
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lower supersaturation in comparison with heterogeneous nucleation on a
planar interface. With the decrease in the void cone angle the heterogeneous
spinodal approaches the binodal, and the region of metastability is diminished
at the expense of the instability region. Published by AIP Publishing.
https://doi.org/10.1063/1.500663 1

7.1. Introduction

Processes of formation of a new phase are of great scientific and technological
importance. The starting stage of this process is the nucleation of microvolumes of a
new phase. It may proceed both homogeneously and heterogeneously.

Homogeneous nucleation takes place under special conditions when any
catalysing foreign surfaces are absent in the sample where the phase formation
proceeds. In practice these conditions are rarely met and homogeneous nucleation
is supplemented by heterogeneous nucleation. In particular, at low supersaturation,
nucleation takes place predominately at the external surfaces or on surfaces of the
existing in media solid phase inclusions (e.g. nanoparticles) and should be considered
as heterogeneous.

The effect of foreign, respectively, internal surfaces and its wettability on
nucleation are the topic of many papers dealing with heterogeneous nucleation (see,
e.g. [1]). The first analyses in this direction dealt with planar surfaces [2-4]. They
were supplemented by extensions accounting for the value and sign (positive or
negative) of the surface curvature [5—7] with application to nucleation, in particular,
on aerosol particles [7,8]. Simultaneously it was realized that a uniform flat substrate
1s not a good approximation to practical conditions. Solid surfaces are always more or
less rough. Such surface structures may be modelled by assuming surface cavities of
particular shape and size. The possibility that embryos may nucleate in such surface

cavities was first pointed out by Volmer in 1939 [9] and studied by many others,
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e.g. [10-13].

Generally, for the interpretation of processes of formation of a new phase two
conventional thermodynamic approaches are widely applied developed by Gibbs [14]
and van der Waals [15, 16], respectively. Applying Gibbs theory to the description
of critical cluster formation in the classical theory of nucleation, one assumes in line
with Gibbs theory that the bulk properties of new phase clusters are widely similar
to the properties of the corresponding macroscopic phases. Another condition which
1s frequently supposed to be fulfilled is that the specific surface energy (or surface
tension) is the same as for the flat boundary under equilibrium between both phases
(capillary approximation). If the first supposition (the similarity of bulk properties of
critical clusters to the corresponding macroscopic phases) is intrinsically a corollary
of Gibbs theory, the latter one can be replaced by the introduction of the dependence
of the surface tension on the interphase surface curvature or on the cluster size
as also suggested already by Gibbs. This approach is used commonly in classical
nucleation theory to achieve a better agreement between the theoretical predictions
and the experimentally measured rate of cluster formation [17, 18]. In such approach
the surface tension value is used as the only possible fitting parameter for improving
conformity of the theory with the experiment. However, the application of the surface
tension as the only fitting parameter in the description of the new phase nucleation (as
it usually done) can result in other inconsistencies between the theory and experiment,
and may also lead to intrinsic problems in the theoretical description itself [19].

Going beyond the application of the size dependence of the surface tension,
there exists an alternative method to improve the correlation of theory and experiment
in the description of the newly evolving phase. Indeed, as was shown for the first
time by Cahn and Hilliard [20,21], when applying the van der Waals approach to the
description of the phase formation kinetics, one may find that properties of critical
clusters differ considerably from the properties of the evolving macroscopic phase.

Such deviations of bulk properties of critical clusters from the macroscopic phase
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properties cannot be properly accounted for in Gibbs’ classical theory. However, as
we have shown in the last decade [22,23], such deviation of bulk properties can be
accounted for performing a generalization of Gibbs’ description. This generalization
allows one "to reconcile"the approaches of Gibbs and van der Waals in the description
of nucleation.

The mentioned generalization of the Gibbs approach demanded the
development of the thermodynamic description of non-equilibrium states of clusters
in a surrounding medium. Such approach was applied by us then to the description
of properties of clusters in processes of nucleation and growth in various applications
[24,25]. As shown in these analyses, the generalized Gibbs approach allowed us to
describe nucleation more correctly as compared to the classical theory, namely: (1) for
model systems the results are in agreement with the calculations by density functional
methods and computer simulation (e.g. molecular dynamics); (2) the generalized
approach gives an adequate theoretical interpretation of various experimental data,
which was difficult, if not impossible, to achieve in the classical theory of nucleation
[24,25].

The generalized Gibbs approach is applicable both for the description of
homogeneous and heterogeneous nucleation. With respect to the latter problems, the
generalized Gibbs approach was applied so far to the description of condensation
and boiling in van der Waals liquids [26] and new phase nucleation in a regular
solution [27], restricting the considerations of heterogeneous nucleation so far to phase
formation on a flat rigid smooth interface.

However, in a huge variety of nucleation processes in nature, in experiment,
and in technological applications the formation of the evolving phase takes place at
various heterogeneous nucleation centers and at surface defects [28-33]. Aiming at a
further development of the theory of heterogeneous nucleation, the present paper starts
the research on the application of the generalized Gibbs approach to heterogeneous

nucleation at surface imperfections.
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In particular, we concentrate below on the heterogeneous nucleation of a liquid
drop in a supersaturated vapor (gas) in a conic cavity employing the generalized Gibbs
approach. The van der Waals equation [15,34] is chosen as a model for the analysis
of principal quantitative characteristics of the heterogeneous process considered,
similarly as it was performed for homogeneous nucleation [26]. In the analysis we
account appropriately for the fact that the state parameters of new phase clusters (for
a one-component system it is the density) can differ considerably from those for the
corresponding macroscopic phase. In such approach, beyond the parameters involved
in the classical treatment, an additional parameter must appear accounting for its
effects on the surface tension and wetting angles and, thus, on the catalytic activity of
the surface. Therefore, for the correct determination of the work of formation of the
critical cluster the dependence of surface tension and wetting angle on the density of
a critical size droplet has to be established.

The article is structured as follows: In Section 7.2, briefly, as far as it is
necessary for the following analysis, the van der Waals equation of state is discussed,
the binodal and spinodal curves are determined, the general expression for the
work of formation of the critical cluster in a conic void on a hydrophilic rigid
surface is obtained, as well as the expressions for the contact angle and factor of
catalytic activity for critical size droplets are found. In Section 7.3 the heterogeneous
condensation of the van der Waals gas on a hydrophilic rigid surface is analyzed. The
paper is completed with Section 7.4 containing a brief summary of results, conclusions

and possible generalizations.

7.2. Work of the formation of a critical cluster in the generalized Gibbs

approach

For the description of the bulk properties of the ambient and evolving phases

we use the van der Waals equation of state. In dimensionless variables this equation
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reads [15,34]

86 3
IT(w,f)= —— 7.1
T
HEE, wzﬁ, 0=—, (7.2)
pC vc TC

where v, p and T" are molar volume, pressure, and temperature, v., p. and 7, are the
same parameters in the critical point. The chemical potential of van der Waals gas
(normalized to p.v.) can be written as [35,36]

86 8w 6

w(w,0) = —Eln (Bw—1) +3w—1_; : (7.3)

The spinodal curve in phase space defines the boundary between
thermodynamically metastable and unstable states. In the absence of the centers of
heterogeneous nucleation it is defined by the equation (we will name it further as a

“bulk spinodal”),

d
—II (w,#)=0". 7.4
@) (74)
At any temperature below the critical one (/<6f.= 1), Eq. (7.4) has two solutions
which merge in the critical point.

The position of the binodal curve is defined by the condition of thermodynamic
equilibrium between vapor (gas) and liquid on a planar interface (equality of pressure

and chemical potential); thus, the binodal is defined by the solution of the following

set of equations

I1 (Wga579) =II (Wliqa‘g) ) 2 (Wgasﬁ) =K (‘Wiqﬁ) . (7.5)
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Fig. 7.1. Spinodal and binodal curves for the van der Waals gas. As an example the
curves are shown for a reduced temperature equal § = 0.7 (for the notations, see
text).

In the temperature range 6<6.= 1 Egs. (7.5) have two solutions describing the
state of the gas and the liquid. Like for the spinodal, these two solutions merge in
the critical point. Spinodal and binodal curves are shown in dimensionless variables
0 and p= 1/w in Fig. 7.1.

To provide an illustration the calculations were carried out for a temperature
0= 0.7. The corresponding dimensionless volumes on binodal, wy, and spinodal, wyy,

curves are

wro = 0467, Wg,0 = 7811, (76)

wisp = 0.579, Wg,sp = 2.376. (7.7)

Respectively, the equilibrium densities of liquid, p; o, and vapor, p, o, on the binodal

possess the values

pro=(wo) " =214,  po=(wyo)  =0.128, (7.8)
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B>m/2—y vapour (g)

Fig. 7.2. Heterogeneous nucleation of a droplet in a conic void on a hydrophilic rigid
surface.

and the densities of liquid, p; 5, and vapor, p, ,, on the spinodal are
pl’SP - (wl,sp)_l — 17277 pg,Sp - (wg’5p>_1 — 0421 (7.9)

Current values of liquid and vapor densities we will denote, respectively, as p; and
Pg-

Let us assume that the gas is instantly transferred to a metastable state in a
region between the binodal and spinodal and after that the pressure and temperature
are kept constant (below we consider also unstable initial states, i.e. the states between
the left and right branches of the spinodal curve, Fig. 7.1). After such transition
the vapor (gas) is supersaturated and nucleation of liquid droplets may proceed.
Considering heterogeneous nucleation on a rough surface we analyze here as an
example nucleation of a critical droplet in a conic void on a hydrophilic rigid surface
(Fig. 7.2). Note, that in the terminology used for the description of processes in
water, the surface is called as hydrophilic if the contact angle is less than 90°, and
hydrophobic if the contact corner is larger than 90°. We will use this terminology for
condensation processes in a van der Waals gas also.

As a first step in this analysis, we define the parameters of a critical size droplet

created in a conic void on a hydrophilic rigid surface (Fig. 7.2).
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The change of the thermodynamic potential (Gibbs’ free energy, (=) for a one-
component system due to the formation of a droplet of the considered shape (Fig. 7.2)
in the vapor phase both in classical, and in generalized Gibbs’s approaches can be

written as [17,23,27]

AG:OlgAlg+ (O-ls_o-gs) Als+ (pg - pl) Vi+my (:ul - ,ug) : (710)

Here o0y, 045, and oy, are the specific surface energies (surface tension) between
liquid and solid, vapor and solid, and vapor and liquid, respectively (Fig. 7.3); Ay,
Ags, and Ajg,are the areas of the corresponding interfaces, and n; is the number of
particles (atoms, molecules) in the new phase cluster. In the above equations and
below the index [ always specifies the parameters of a cluster (liquid droplet), and
the index g the surrounding vapor (gas). As independent variables the density of the

liquid droplet p; and the radius R of its surface are commonly used.

Gy < Ogy a Gy > Oy b
P/ Pg P/ Pg
liquid (/) vapour (g) liquid (/) vapour (g)
Ojo Olq
A 7
Ojs Ggs Ojs GgS
hydrophilic solid surface (s) hydrophobic solid surface (s)

Fig. 7.3. Definition of contact angle for (a) hydrophilic and (b) hydrophobic surfaces.

The bulk contribution AG), to the change of the Gibbs free energy for the case
of formation of a droplet with a radius R and a contact angle v (see the Fig. 7.2) can

be presented in the form [26]

AGy = (pg — p) Vi + 1 (t — p1g) = = R0 [(pg — 1) + o1 (tu — p1g)] - (7.11)
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Here the factor of catalytic activity, ¢, is determined by contact angle v and cone

angle (3 as

Y = (2 — 3cos a + cosPar + ctg ﬁsinga) :

a=y+0-73.

=

(7.12)

The surface contribution AGg to the change of the Gibbs free energy in cluster

formation is defined, according to Eq. (7.10), as

AGg = (7.13)

1 — cos? o

= 015415 + (015 — 045) Als = 27TR2(1 — cos av)oyy + 7 R? G

(01 — 030
For small enough cone angles, 3 < § — v (for hydrophilic surfaces 7 < 3),
the droplet surface becomes concave and the surface term in free energy becomes
negative. In this case a droplet may arise in undersaturated vapor as well. We consider
below only the case 3 > § — v, presented in Fig. 7.2.
The requirement of mechanical balance on the contact line of all three phases

is defined by the Young equation [26] (Fig. 7.3)
Ogs=0]s+074CO8Y . (7.14)

Assuming this requirement satisfied and accounting for Eq. (7.12), it is possible

to write down a surface term in Gibbs free energy in the following form

1 —cosa  cosy (1—cos’a)
2 4 sin (3

AGg= 47TR2019 = 47TR2algg0 : (7.15)

Therefore, similarly to [17,26], the work of a droplet formation at the heterogeneous
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nucleation in a cone void can be written as

4
AGhe = ¢ {333 ((p =) + pu (1 — p1g)) +47TRQ%} ) (7.16)

or
AC;het = @AGhom . (717)

This relation is satisfied for any value of the radius of the cluster (droplet) surface
and for any admissible values of the contact angle ~. Deviations from nucleation on
planar interfaces are connected exclusively with the term sin (3, equal to unity for
planar surfaces. In the analysis of heterogeneous nucleation within the generalized
Gibbs approach, the factor v becomes dependent on liquid and vapor density already
for condensation on planar interfaces. The respective effect in conic voids is amplified
by smaller values of sin 3 affecting also the value of the angle « for the critical
clusters.

In order to determine the parameters of the critical cluster, we can rewrite

Eq. (7.16) in the following form [26]

Ag (1, pg, pi)
kT

= ¢ (pg, p1) [3(pz—pg)5r2+2f (g, 1) 7°| . (7.18)

where

_ AG _ 16w 1
Ag=57 M= 5rm0°(0)
(7.19)

r= R% , R,=20(0) .

The factor ©(6) and the parameter § are determined from the dependence of the
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surface tension on the state parameters of liquid and vapor phases (see [26]):
01,=0 (0) (p1—p,)’ , 6=2.5. (7.20)

The function f in the second term in Eq. (7.18) can be written in the form [26]

F (pys ) =TT (p1.8) =TT (py0) 51 (“ (py) — W)) S 2

Pclc
where (with the account of Eq. (7.3) and p=w™1)

w(p)= _%an (%—1) —I—%—Gp : (7.22)

In agreement with Egs. (7.16) and (7.17), the expression for the work of cluster

formation (7.18) differs from that for homogeneous nucleation due to the presence

of the catalytic activity factor ¢. This factor equals unity in case of homogeneous

nucleation (the factor ¢(py, p;) as a function of p, and p; will be specified below).

Expression in square brackets in Eq. (7.18) describes the work of formation of a
droplet in the process of homogeneous nucleation.

Note that in the studied case of the droplet nucleated at a surface defect (a conic

void) using of the curvature radius as an independent parameter presents difficulties

because for hydrophilic surface at 5 — 7 — the outside surface of the droplet become
flat and the curvature radius tends to infinity while the droplet volume remains finite.
Therefore, instead of curvature radius we will use the normalized number of particles

(atoms, molecules) in the droplet,

A7 (R, \°
n= M o3, Ng = il <—> : (7.23)

where r and R, are defined in Eq. (7.19) and a is a mean interatomic distance. In
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this case Eq. (7.18) takes the form

Ag (n, pg, pr)
kT

=3[0 (pgs p)]"* 0?3 (p1 — pg)” + 20f (g, 1) (7.24)

Parameters of the critical cluster (its size n.,., and density p.,.) are determined

by the solution of the set of equations

OAg (7, pg, p1,0)
or

OAg (7, pg, p1,0)
opi

=0,

—=0. (7.25)

This set of equations, Egs.(7.25), together with Egs. (7.14) and (7.18) defines also the
work of formation of the critical cluster in heterogeneous nucleation.

At heterogeneous nucleation the work of formation of the critical size cluster
essentially depends on the value of the contact angle [17,28,33], which, according to

Young’s equation (7.14), is defined as

Ogs—O0ls

cosy= (7.26)

Olg
Therefore for a hydrophilic surface the inequality 0;,<o,, is fulfilled, and for a
hydrophobic one o0;,>0,, (see Fig. 7.3). In the present analysis we consider only
nucleation on hydrophilic surfaces, where the catalyzing effect of the surface on
droplet nucleation is much more significant.

In the classical approach to heterogeneous nucleation the bulk parameters of a
cluster and surrounding media are generally considered as certain fixed characteristics
(see, e.g. [37]). In this case the cluster surface energy (7.15) depends only on the size
of the cluster surface, the same as for the homogeneous nucleation. For this reason
the contact angle in the classical approach is also fixed. In contrast, in the generalized
Gibbs approach the assumption of changes in bulk parameters of the new phase cluster
results in the dependence of the contact angle on these parameters and considerably

affects the catalytic activity of the surface. Therefore, as the next step we determine
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the dependence of the contact angle on gas temperature and state parameters of the
new phase [26].

According to Eq. (7.26) for the determination of the contact angle it is necessary
to know the specific energies of liquid-solid, vapor-solid, and liquid-vapor interfaces
for the cases, when the medium density changes (owing to the change in overcooling
of vapor) in a range from equilibrium vapor density, p, o, to equilibrium liquid density,
pro (Eq. (7.8)). Accordingly, the density of the critical cluster changes in the same
range.

The specific energy of the fluid-solid interphase o, depends on fluid density
(we will use the term "fluid"for the medium described by the van der Waals equation
as a general name of gas and liquid) which is in contact to a solid surface, and in the

simplest approach (linear on density) it can be written down in a form

) :Ugs,O (pl,O_p) +0l570 (p_pg70)
P1,0—FLg,0

ors (p (7.27)
Here 0y, and o, are the specific energies of liquid-solid and vapor-solid surfaces
for equilibrium conditions of liquid and vapor, respectively. The corresponding
parameters without index O refer to current values of these quantities at any density
of the fluids.

This equation can be obtained in the following way: interface energy of a fluid
in contact with a solid, o4(p), can be expanded in a Taylor series in the vicinity of

the equilibrium densities of liquid p; o, and gas p, o:

75 () =ont | (o=po)
=p1,0
(7.28)
00,44
Ofs (,0) :0-93,0+5Lp —p (p_p970) :
o

Besides, we will assume a linear dependence o(p) on density in the whole studied
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range, so

o ys

dp

_80'15
= ap

o O15,0—0gs,0

P=PL0 pl,O_pg,O

(7.29)

P=Pg.,0

Substituting Eq. (7.28) into Eq. (7.29) we obtain Eq.(7.27), from which it follows

Pl—Pyg

_ . (7.30)
PL,0—Pg,0

Ogs—015=0f5 (pg) — 05 (P1) = (0gs,0—0us0)
From Eq. (7.30) we see that the difference o45—07ys 1s linear with respect to
p1—pg and is positive for hydrophilic (o4, 0—050> 0) and negative for hydrophobic
(04s,0—0150< 0) surfaces according to the definition given above. This main
distinction determines different behavior of the heterogeneous nucleation for these
two types of surfaces.
As it was studied in detail in [18], the surface energy of vapor-liquid, oy, at
equilibrium coexistence of vapor and liquid is proportional to certain power of the
difference between liquid and vapor densities. Extending this result to any values of

liquid and gas densities, we obtain

6
01=014.0 <M> L 6=25. (7.31)
P10 — Pg,0

Here o, 1s the surface tension of the liquid-vapor interface at equilibrium

coexistence of liquid and vapor. In these notations the factor © in Eq. (7.20) becomes

O=0150(p10—pg0) - (7.32)

Equation (7.26) with the account of Egs. (7.30) and (7.31) gives

0—1

l? B )

Ccos7Yy (pg’ pl) = COSYp (M) , (733)
Pl—Pg
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where

COSVOZM : (7.34)

Ol1g,0

The first factor in Eq. (7.33), cosyy, can be considered as a characteristic of
the liquid surface while the second one depends on fluid density (liquid or vapor).
Thus, for the analysis of heterogeneous nucleation in the considered linear approach
(Eq. (7.29)) it is sufficient to know only the contact angle for the equilibrium condition
of liquid and its vapor, 7. For illustration the calculations below will be carried out
for a hydrophilic surface with vy= 67°. Note that the first factor in Eq. (7.33) is the
same as in the classical description of the heterogeneous nucleation, while the second
factor appears as the result of the generalization of Gibbs’ approach.

In the case of droplet nucleation on a hydrophilic surface under consideration
the angle «, defining the factor of catalytic activity (7.12), will be greater than zero

only at p;>py,, where

COS Y 5_%
m= — —_ 7.35
Plm=Pg~+ (Pl,() Pg,O) sin 3 ( )

At smaller liquid droplet density the contact angle « turns out to be equal to zero and
the factor of catalytic activity also becomes equal to zero ¢(p,, p;) = 0. That is, at
p1 < pim the formation of a new phase can occur spontaneously, without any barrier,
like spinodal decomposition of an unstable homogeneous system.

We see that in terms of the generalized Gibbs’ approach the account of
variations of the contact angle (deviations from the equilibrium value ~,) due to the
changes in the droplet density, leads to the decrease (under certain conditions tending

to zero) of the work of formation of the critical size droplet on the hydrophilic surface.
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7.3. Vapor condensation on a hydrophilic surface

An analysis of Eq. (7.18) for a planar interface (5= 90°) and a conic void
(8= 60°), reveals that at a certain moderate (initial supersaturation close to the binodal
curve, pg o= 0.128) a profile of the Gibbs free energy in the (r,p)-space near to the
critical cluster has a characteristic saddle-shaped form (Fig. 7.4a, ¢; 0 = 0.7; p, =
0.17).

Such behavior of the system is characteristic for vapor densities up to the
value p, 4, situated on a curve which we will call “surface spinodal” in contrast to
bulk spinodal, defined by Eq. (7.9), for the chosen calculation parameters (6= 0.7,
Yo= 67°) pgsn=0.191 at = 90° and p, o= 0.178 at B= 60°.

For large densities, p,>p, s1, there is a path of evolution to the new phase
without activation barrier (Fig. 7.4b, d, 6= 0.7, p,= 0.205).

The critical density p, o, is determined from the solution of the following

equation

Pim (pg,sh) —Per (pg,sh) ) (7.36)

where py,, 1s defined by Eq. (7.35), p., 1s the liquid density in a droplet of the critical
size determined as the solution of Egs. (7.25). The density of the critical droplet is
equal to pun(py) at pg > pgsn and pe(pg) at py<pysn. Parameters of the critical
droplet as functions of the vapor density are presented in Fig. 7.5 (a — droplet density;
b — critical size, ¢ — work of formation and d — catalytic factor for = 90° and
= 60°). With the increase of vapor density starting on the binodal curve, the critical
droplet density decreases down to p; = pe, (pg.sn) (Fig. 7.5a).

Similar to the classical picture, the size of the critical droplet tends to infinity
close to the binodal; the increase in vapor density, p,, decreases the critical size, and
at p, > pg.sn the critical size equals zero (Fig. 7.5b). Note, however, that the curvature

radius of the droplet goes to infinity with the increase in vapor density to the value
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Fig. 7.4. (a, b) Profiles of Gibbs free energy of droplet formation on a planar interface
(8= 90°) and (c, d) in a conic void (= 60°) in dependence on state parameters. (a, ¢)
metastable conditions with initial density of vapor p,= 0.17; (b, d) unstable conditions
with p,= 0.205.
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Pg=Ppg,sh and the gas-liquid interface becomes flat as it has to be the case according
to density functional computations [20,21] and the generalized Gibbs approach [17,
22,23,26,27]. The work of formation of the critical cluster decreases from infinity
on binodal to zero at p,=p, q, (Fig. 7.5¢). Fig. 7.5d shows the dependence of the
catalytic factor on vapor density, ¢ (p,) =¢(pg, per(pg)), (see Egs. (7.16) and (7.25)).
We see that it decreases steadily, reaching zero at p,=p, .,. Note that at p,>p, 4, the
concept of critical parameters of a droplet has no physical sense any more because

the critical size is equal to zero.
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Fig. 7.5. Dependence of critical droplet parameters on vapor density for condensation
on a hydrophilic surface: (a) density, (b) critical size, (c) work of formation,
(d) catalytic factor for 5 = 90°, 75°, 60°, 45°, and 30°.
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A behavior similar to the one obtained above at the approach to pg;, (Fig. 7.5),
was observed also in the analysis of heterogeneous nucleation at a planar interface
at processes of the condensation and boiling [26] and segregation in solutions [27].
Therefore, one can conclude that the presence of the heterogeneous nucleation centers
leads to the shift of the spinodal from its values calculated thermodynamically
for a homogeneous system (Fig. 7.1) to the value p,=p, s, which depends on the
properties of the nucleation centers. In the case under consideration of a cone-shaped
void the value p, ., decreases with the decrease of the cone angle 3 to p,( at
B = m/2 — 7 (Fig. 7.6). Consequently, a system state can be considered in the range
Pg.0<pg<pgsh as metastable with respect to heterogeneous nucleation, and at p,>p, s,
as thermodynamically unstable (see Fig. 7.7). The gas density value p,=p, s can be
viewed as belonging to the spinodal curve for heterogeneous nucleation.

0.2

¥,=67°

Surface spinodal, p, g,
o o
[ —
(o)} oo}
I I

o

—

=~
I

Binodal

20 30 40 50 60 70 80 90
Cone angle, 3

Fig. 7.6. Dependence of the heterogeneous surface spinodal p, ., on the cone angle

3.

Thus, the account of the dependence of the contact angle on the liquid
density in an evolving droplet in the generalized Gibbs model actually leads to an
appreciable shift of the spinodal in the direction of smaller supersaturations. The

shifting magnitude depends on the cone angle 3 of the droplet. At the displaced
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e}
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/

Work of droplet formation, Ag/k, T

Fig. 7.7. Dependence of work of critical droplet formation on vapor density and cone

angle for condensation on the hydrophilic surface.

spinodal curve the work of critical cluster formation turns, as it should be, to zero.

7.4. Conclusion

The generalized Gibbs approach makes it possible to account for the
dependence of a contact angle of the nucleating cluster on its density. In the case
of liquid nucleation from vapor on a hydrophilic surface of a cone-shaped void such
account leads to the shift of the spinodal towards smaller values of metastability
(in comparison with homogeneous nucleation). As the cone angle decreases the
heterogeneous spinodal comes nearer to the binodal, the area of metastability is
narrowed, and the area of instability is extended.

Only a simple case of liquid droplet nucleation from supersaturated vapor

in a conic void was studied above. However, the influence of the change of state
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parameters of a new phase cluster on intensity of the nucleation as observed here

can be expected to occur on surface defects of various form, i.e., on cracks, spherical

voids, and also for a case of boiling of liquids. These problems, as well as applications

of more realistic equations of state applied for specific liquid or gas media [38,39],

can be considered on the basis of the general approach formulated above.

10.
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7.5. BucHoBKkM 10 po3ainy 7

Pesynbsratu mociimkeHb, MPEACTABICHUX Yy JaHOMY PO3MIii, OIyOJiKOBaHO
B crarti [7] (Homatox A. Cnmcox myOmikaimiii 3700yBada 3a TEMOIO JucepTallii).
JlociaKeHo TeTeporeHHEe 3apOKEHHSI Kpamneib piANHYU 3 napu (Ta3y) Ha nedexTHii
TBEP/ii TOBEpXHI B Mojeni ra3y BaH Aep Baanwsca. Cepes; OCHOBHUX pe3YNBTaTIB y
SIKOCT1 BUCHOBKIB MOKHA BUIJTUTH HACTYIIHI:

e [lokazaHo, IO KOHTAKTHUN KyT Ta KaTaJIITHYHUA (PaKTOP IS 3apOIKCHHS
Ha 7e()eKTHI MOBEPXHI 3aJIeXkaTh BIJ] CTYNEHs NIEPEOXONOKEHHs apu. Y pasl yTBO-
pEeHHsl Kpanenb Ha TiIpo@uIbHIM MOBEpXHI KOHIYHOI MOPU HIBUIKICTH 3apOKEHHS

3HAYHO 30UIBIIYETHCS MMOPIBHAHO 3 KOHJICHCAIlIEI0 HA TJIAHAPHIN MOBEPXHI.

e HasHicTh aedexty Ha rigpoduIbHIA MOBEPXHI MPU3BOAUTH 0 3HAYHOIO
3CYBY CITIHO/IaJIl TOPIBHSIHO 3 TETEPOT€HHUM 3apOJKEHHSIM Ha IJIaHApHIM MOBEpPXHi: 31
3MEHIICHHSIM KyTa KOHYyCa MOPHU FeTepOreHHa CIiHOAaIb HAOIMKA€ThCs 10 O1HOAAMI,
1 00macTh METacTabUTLHOCTI 3BY)KYETBCS 32 PaXyHOK PO3IMIUPEHHS 001acTi HeCTaOTb-

HOCTI.

e [CHye rpaHUYHUI KYT KOHyCa MOpHU, MEHIIIE SIKOTO (hopMyBaHHS HOBOI (ha3u

IPOXOIUTH 0e30ap’epHO.
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PO3/ILI 8

I'ETEPOI'EHHA HYKJUIEALIA Y PO3UNHAX HA JIE®EKTHUX
TBEPAUX MOBEPXHSIX: Y3ATAJIbHEHUM MIAXIJ I'NBECA

Y BOCbBMOMY pO3IUII JIOCTIKEHA TeTepOreHHa HYyKJIeallis KJIacTepiB HOBOI
bazu B peeyrnapromy OinapHomy poszuuni Ha JNedEeKTHIH TBepJid MOBEPXHIi, SK 1 B
MOTIEPETHOMY PO3LI, K JedeKT MoBepxHI oOpaHa koHIYHaA mopa. Po3paxoBaHa
MIBUAKICTh HyKJIeallll kiactepa HOBOI (a3u y 3ajieKHOCTI Bl KyTa KOHyca HOpH 1

CTyHCHS ICPESCUUCHHS PO3UYUHY.
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Abstract: Heterogeneous nucleation of new phase clusters on a rough
solid surface is studied. The ambient phase is considered to be a regular
supersaturated solution. In contrast to existing studies of the same problem,
the possible difference between the state parameters of the critical cluster
and the corresponding parameters of a newly formed macroscopic phase
is accounted for. This account is performed within the framework of
the generalized Gibbs approach. Surface imperfections are chosen in the
form of cones. The model allows us to simplify the analysis but also to

obtain the basic results concerning the defect influence on the nucleation
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process. It is shown that the catalytic activity factor for nucleation of
the cone depends both on the cone angle and the supersaturation in the
solution determining the state parameters of the critical clusters. Both factors
considerably affect the work of critical cluster formation. In addition, they
may even lead to a shift of the spinodal curve. In particular, in the case of
good wettability (macroscopic contact angle is less than 90°) the presence
of surface imperfections results in a significant shifting of the spinodal
towards lower values of the supersaturation as compared with heterogeneous
nucleation on a planar solid surface. With the decrease of the cone pore
angle, the heterogeneous spinodal is located nearer to the binodal, and the
metastability range is narrowed, increasing the range of states where the

solution is thermodynamically unstable.

Keywords: heterogeneous nucleation; kinetic theory; rough surface; gibbs

theory; surface tension

PACS: 64.60.Bd General theory of phase transitions; 64.60.Q Nucleation
in phase transitions; 82.60.Nh Thermodynamics of nucleation; 68.35.Md
Surface energy of surfaces and interfaces; 64.60.an Phase transitions in
finite-size systems; 68.35.Md Thermodynamic properties of surfaces and

interfaces.

8.1. Introduction

The nucleation of new phase clusters can be catalyzed by solid or liquid
particles dissolved in the ambient phase, by planar Surfaces, and, in particular,
by defects of such surfaces. In all these cases of heterogeneous nucleation the
thermodynamic barrier — the work of formation of the critical cluster which must

be overcome for a nucleus for consequent deterministic growth — is reduced as
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compared to homogeneous nucleation when the surface or particles dissolved in the
ambient phase are absent. Such effects are intensively studied in the framework of
classical nucleation theory [1-6]. However, the classical theory of nucleation (both
homogeneous, and heterogeneous) commonly relies on the assumption that the state
parameters of the critical cluster are widely identical to the corresponding parameters
of the macroscopic phase to be formed. However, in practice this assumption, as
a rule, is not met [7-10]. The significance of such changes of the state parameters
of the critical clusters in heterogeneous nucleation was demonstrated by us for the
first time in Refs. [11-13]. In [11, 12], we studied such processes for condensation
and boiling on planar interfaces, in [13], we considered condensation and boiling on
rough interfaces. This analysis is extended here considering heterogeneous nucleation
in solutions catalyzed by rough solid interfaces.

In detail, in the present paper a theoretical analysis of heterogeneous nucleation
in a binary regular solution on a rough solid surface is conducted employing the
generalized Gibbs approach. The main difference of the proposed approach from
theoretical treatments performed so far consists, as already noted above, is in the
consistent account of the difference between the state parameters of the critical
cluster and the corresponding parameters of the macroscopic phase to be formed.
Surface imperfections are chosen in form of cones that allows us to simplify the
analysis and at the same time to obtain the main results of the defect influence on the
nucleation process. The general qualitative conclusions do not depend widely on the
specific model employed for the description.

The thermodynamic analysis of nucleation in terms of the generalized Gibbs
approach supplies us with the work of formation of the aggregates of the newly
evolving phase in dependence on size and shape. This dependence we analyze here.
The knowledge of such dependence is a precondition for modeling the kinetics of
both nucleation and growth processes. In nucleation and growth, the clusters may

change both their shape and size and both parameters may even fluctuate. However,
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this analysis refers to a different topic and will be addressed in a future study.

8.2. Basic Equations

We consider theformation of a new phase cluster on a rough rigid surface. For
the description of the bulk properties of the ambient and the newly formed phases we
use the model of a binary solid or liquid regular solution. The chemical potentials 1
of each of the two components (7 = 1, 2) of a regular solution can be written in the

form [14]

p =+ kgTln(l — 2) + Qa? | (8.1)

iy = i+ kpTlnew + Q(1 — ), (8.2)

where kp is the Boltzmann constant, 7" is the absolute temperature, x and (1 — z)
are the molar fractions of the second and first components, correspondingly (for
unambiguity we consider the solvent as the first component and the dissolved
substance as the second component), 2 = 2kpT, is the interaction parameter
describing specific properties of the considered system, and 7. is the critical
temperature of the system.

In thermodynamics, the binodal curve is the locus of phase states (in (7, z)-
diagram) where two distinct phases may coexist in equilibrium. This coexistence
curve is defined by the condition at which the chemical potentials of solution
components are equal in each phase. The extremum of the binodal curve in
temperature i1s known as a critical point. At this point, the binodal curve coincides
with the extremum of the spinodal curve. The spinodal curve in its turn is the locus of

the phase states where the system’s local stability with respect to small fluctuations is
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Fig. 8.1. Binodal (dark blue) and spinodal (green) curves as functions of the

composition of a regular solution. The left and right binodal (xél), mér)) and spinodal
(xgg, a:g;)) values are shown for temperature 7' = 0.77...

broken and is defined by the condition that the second derivative of Gibbs free energy
(with respect to concentration x) is zero. Therefore, in our case at constant external

pressure the positions of the binodal and spinodal on the phase diagram (7', x) are

determined by the following equations,

ln(1;$> :2%(1—2:[;), (8.3)
z(l—z) = 41ch : (8.4)

They are shown in Figure 8.1.
The values of the left binodal (xl()l) ) and spinodal (ach) branches, calculated at

temperature 7" = (.77, are, correspondingly

+W = 0.1857 0 = 0.2261 . 85
b ) ( )

Sp:

Both curves are symmetric with respect to z = 1/2; therefore, the correspondi-
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ng values for the right-hand side branches are

o) =1-a) =09143, 20 =1-2) =0.7739. (8.6)

These values are especially distinguished in Figure 8.1.

Let us assume that due to the change in temperature or composition, the
system 1is transferred into a metastable state somewhere between left binodal and
spinodal (xél) <z < xéﬁ}, see Figure 8.1). After this sudden transfer, temperature
and composition are maintained unchanged. For this system first we define the
parameters of the critical cluster nucleated in a conic pore depending on the created
supersaturation (i.e., the molar concentration of the dissolved substance, z). We
remind that as an example of surface imperfections we choose a conic pore. This
approach allows us to simplify the analysis and at the same time to receive main
results of the defect influence on the nucleation process.

In a binary solution a new phase will be nucleated as a result of the
redistribution of molecules (atoms) in space. Following Gibbs model [6], we
consider a new phase cluster as a spatially homogeneous part of the system with
a composition, however, different from the ambient phase. The boundary is modeled
by a mathematical surface of zero thickness with a corresponding value of the tension
surface [1,6, 12]. The change of the thermodynamic potential (Gibbs free energy ()
of the binary system owing to the creation of a cluster in form of a spherical cone

with the radius R in a conic pore (Figure 8.2) can be given by [1-3,11]

AG = UaﬁAaﬁ + (O-as - Uﬁs)Aas + Z nj(:ujoz - :ujﬂ) : (8.7)
j=1,2

Here specific interphase energies (surface tensions) of the corresponding
boundaries are denoted as: o, (cluster (a)-pore (s)), oss (outer solution (3)-

pore (s)), and 0,5 (cluster («)-outer solution (3)). Next, A, and A,z are the
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n/2—B<y<n/2 solute (B)

Fig. 8.2. Model used in the analysis of heterogeneous nucleation of a new phase
cluster in a conic pore. Here R is the curvature radius of the cluster outer surface, y
is the contact angle, and 2 is the cone angle.

boundary surface area between the cluster and pore, and the outer solution,
correspondingly (Figure 8.2), pj, and p;3 are the chemical potentials of both
components (j = 1, 2) in the cluster and outside it (see Equations (8.1) and (8.2)).
The indices o and 3 denote the parameters of the cluster and the ambient phase,
accordingly. For the description of the cluster state the numbers of atoms of a kind 1
and 2 are used as independent variables, 1 and ns (the index « in n; and n9 is omitted
to simplify the notations). The total number of atoms in a cluster is n, = ny + no.
For simplification, similarly to [10, 12], the particle volume w is supposed not
to depend on composition (w, = ws = w = a?, where a is the interatomic distance).
The radius of curvature, R, of the spherical cone (for simplicity we will name
it “cluster radius”) is determined by the number of particles in the cluster, n,, via
47 3

¢§R3 = NoW = Nya" , (8.8)

where ¢ is expressed through the contact angle, ~y, and the cone angle, 23, as

1
gpz§(2—3008a+cosgcv+ctgﬁsin3a), oz:erﬁ—g. (8.9)
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The change in Gibbs free energy due to cluster creation is determined in

correspondence with Equation (8.7) as [2,3,11]

AG = AGy + AGg , (8.10)
4 3 4 3
AGy = —p o R°Ap=¢ n RkgTf | Ap=—kgTf, (8.11)
1 — cos®

AGs =21 R*(1 — cos a)o,s + TR (Oas — 0ps) - (8.12)

Csing

For a wettable surface (v < 7/2) at low cone angle of 3 < 7/2 —  the
cluster outer surface becomes concave, the contribution of the surface component
in the work of its formation becomes negative, and the cluster can start to grow in
the range = > 1z, at any initial size. However, this conclusion is correct only for
a conic pore which has a sufficiently large depth. Indeed, when the cluster grows
up to a flat surface surrounding the pore its surface becomes convex, and, actually,
one must consider nucleation on a flat surface [12]. If a pore is not deep, the cluster
does not succeed to grow up to a critical size, and the effect of the pore decreases.
This particular case is beyond the scope of the present work, therefore we shall limit
ourselves here to the range of angles § > 7/2 — v (see Figure 8.2).

In the derivation of Equation (8.11) we have neglected possible modifications of
the solution composition caused by the nucleation process. This effect is not essential
at an early stage of nucleation for sufficiently large systems. An analysis of the effect
of such changes in systems of small sizes is given in [10, 15]. At such conditions, the

function f(z,,x) in Equation (8.11) has the meaning of the thermodynamic driving
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force of cluster formation. It is determined by the relation [2,3,11],

1—x 1.
S+ 2=5(a2 — 2? 1

+, {m@ + 2% (1= 20)? = (1—2)2] } .

F(raz) = (1 — ) {m

X

The dependence of function f(z,,x) on cluster composition, z,, for different

values of the supersaturations, x, is shown in Figure 8.3.

"y Y
0.1

g 0 o~ N\l 0.1 ]
e |
=~ | 0.13
| L .
| x=xy
—02F Xx,=x Xp
03 : 1 1 1 :

1
0 0.2 0.4 0.6 0.8 1.0
Cluster phase composition, x,,

Fig. 8.3. Dependence of the function f(x,,x) on cluster composition, x,, at different

supersaturations xr = l’(()l), 0.1, 0.13, a:géo) in the region of metastability a:él) <z <

()

xsp of the ambient solution.

The regions of metastability are in composition ranges xl()l) <x< :zsgg) (between

the left branches of the binodal and spinodal) and xg;;) <x< xl(f) (between the right
branches of the spinodal and binodal). The function f(z,) has one maximum and two
minima (for x # xgi;r)). The first minimum, x, = x, corresponds to the state of the
ambient phase. The second minimum, z, = x g, corresponds to the final macroscopic

state of the precipitating phase, to which a cluster evolves at fixed composition of the

surrounding solution, x. It is determined by the minimum of the bulk contribution to
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the Gibbs free energy (Figure 8.3),

0
Ofwa )l _ (8.14)
0o |y,
At the spinodal, z = :z:g?, the function f(z,) has an inflection point
corresponding to z, = =, 32fa(§;,x) = 0. The range xg,) <z < a:g,,) is
o To=T

thermodynamically unstable. The maximum of the function f(x,) in this region
corresponds to the initial state, x, = z, there are also two local minima of the
function f(z,) at x, = x4 < x and z, = xp > x. Similar to Equation (8.14) they

are determined by the equation

Of (xq, )

—= . .1
P 0 (8.15)

o= 4 Or T=1p
Figure 8.4 illustrates the dependence of the concentrations x4 and xp on
the initial composition x of the surrounding solution in the whole possible range
of compositions. Taking into account the symmetry with respect to the substitution
x < 1 — x, we consider only initial states with a composition = < 1/2.
At any given pressure and temperature, the thermodynamic driving force for
cluster formation should be positive, i.e., f(x,,x) < 0 (the bulk contribution to Gibbs

free energy is decreased in this case [11]). This condition holds for
To < Tl (8.16)
where x,,j; 1s the solution of the equation
[ (@au,z) = 0. (8.17)

The function z,(x) is represented in Figure 8.4 by a dashed line, and the
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Fig. 8.4. Composition xghgfl ) of the critical cluster (red lines), its minimum value x,,

(dotted line), and concentrations x 4, xp (continuous dark blue lines) in dependence
on the initial composition, x, of the solution. These results refer to the case of

homogeneous nucleation.

composition of the critical cluster for homogeneous nucleation x&hﬁ,in ) is shown by a

solid line. The evolution of an initially metastable state proceeds along the following
path: O — C — B. It starts at the initial state x, = x and propagates through a
critical cluster (C) to . For an initially unstable state two variants of evolution are
possible, first O — A, with a decrease of the cluster concentration to x 4, and second
O — B, with an increase in the concentration up to xp. Generally, the inequality

Tan < x(ahgfl ) holds, it goes over to an equality only at x = xél) and x = a:EQ

In the latter case, when z,; = xﬁ&?ﬁ“), the cluster can evolve without overcoming
a potential barrier. This process corresponds to spinodal decomposition. As will be
shown below, at heterogeneous nucleation in a conic pore a similar situation can arise
even at appreciably smaller supersaturations z < x§§3

The Young equation determines the mechanical equilibrium at the contact line

of three phases [1-5]

OBs = Oqs + 0a3COS7Y . (8.18)
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Assuming that this condition is fulfilled and taking into account Equation (8.9)
we obtain from Equation (8.12) the interfacial contribution of a new phase cluster to

the Gibbs free energy as

2

1 —cosa cosy(l—cos® )

2 4sin (3

AGs = 4T R%0,4 =47 R%0,50 . (8.19)

Thus, the work of cluster formation at heterogeneous nucleation in a conic pore

can be written as

AGhet = ©AGhom , (8.20)

where
= 2R, R (24 — R f(za,z)| . 8.21
ot SRR o — )+ B f (. 2) 8.21)

20, ,Oa3 r DN—
R, — B ( (r) ()) 2

and the catalytic factor ¢ is determined by Equation (8.9). Equations (8.19)—(8.21) are
fulfilled at all possible values of the cone pore angle (3, contact angle -, and radius R
(note, however, that here we do not consider the case of a concave outer surface of the
cluster, when R < 0). Equation (8.19) is similar to that obtained for heterogeneous
nucleation on a smooth planar surface [11] and differs only by the factor sin 8 (which
equals unity for a flat surface, when G = 90°). The catalytic factor ¢ within the
framework of the generalized Gibbs approach becomes dependent not only on the
angles v and (3, but also on the compositions of the initial phase and the critical

cluster. The specific interfacial energy between two phases with compositions x,, and
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x, can be expressed according to Becker [14] (see also [16]) as

2
Lo — T
Taf = 0aB0 (m) : (8.23)

b Ly,

Here 0,3, 1s the respective value, when a new phase cluster and the solution
surrounding it are in equilibrium, i.e., x = xél) and x = xér).

For further analysis it is convenient to introduce the dimensionless variables

R AG
= — Ag = 8.24
r RJ? g GO- Y ( )

167 (0ap0a®) () )\ —6

G, = ’ — : 8.25
3 (]{BT)Q (xb 'I"b ) ( )

In these variables Equation (8.20) takes the form
Ag(r,za) = (7, B)[3r*(za — 2)* + 2" f (0, 2)]. (8.26)

As already was noted above, R is the radius of the cluster surface contacting
with the ambient solution, and it can have positive, infinite, and negative values.
Therefore, it is more convenient to use as independent variables for the description of
the cluster state the numbers of atoms in the cluster (n1,n5) instead of (7, x). Also is

convenient to normalize these quantities to n,, as

A7 R 3
/ 1 / 2 o
= — = — o — | — . 8.27
nl Ny ’ n2 Ny ’ " 3 ( a > ( )

To simplify the notations we omit primes, then Equation (8.26) takes the form

Aglm,ma, ) = 3p(r, Bt (22— ) v onf (0,2) . ®28)
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where n = ny + ny = @r’. The parameters of the critical cluster, (11, ng.), are
determined by a solution of the set of equations
0Ag(n1,n2, ) 0Ag(n1,n2, )

— =0. 8.29
ony O Ong ! (8:29)

The work of formation of the critical cluster is determined by

<AGCT‘

a > = Ager () = Ag(n1er, N20r, T) - (8.30)

Above relations are the basic for the subsequent analysis of surface roughness
on the properties of critical clusters in heterogeneous nucleation on rough surfaces.

This analysis we will start with the discussion of the contact angle.

8.3. Determination of the Contact Angle

In classical nucleation theory the parameters of a cluster are taken to be widely
equal to the properties of the newly evolving macroscopic phase. By this reason,
the values of the specific surface energies in Young’s equation, Equation (8.18),
are constants for some given values of pressure and temperature. Consequently, the
contact angle is also constant. In the generalized Gibbs approach, parameters of a new
phase cluster are functions of the supersaturation, therefore the contact angle v and,
consequently, the catalytic factor ¢(~, ) also depend on supersaturation.

For the case when the surface tension of the cluster boundary with the pore
surfaces is less than that between solutions and the same surfaces (0,5 < 03;), and
the contact angle determined by Young Equation (8.18), as

Ops — Oas

cosy = ——2 (8.31)
Oap

is less than 90°, the surface is well wettable (Figure 8.5a). Otherwise, 0,5 < 0gs,
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the contact angle is larger than 90°, the surface is badly wettable (Figure 8.5b). In

the present work we consider only the first case, when wettability is good and the

influence of surface defects becomes most apparent.

G o< Ops a G s> O b
cluster (o) cluster (o) solute (B)
O, B O ap
) 7
Ous GBS Ous GBS
high wettability surface (s) low wettability surface (s)

Fig. 8.5.

corresponding specific interface energies are 0,3, 0gs, and oys.

Contact angle ~ for well (a) and badly (b) wettable surfaces. The

For the determination of the contact angle one must know the specific
interfacial energies of all boundaries as functions of the cluster and surrounding
solution compositions (for unification of the notations we shall use the term “fluid”

both for cluster and solution and denote it with a subindex “f”) in the whole range

(r)

from the left binodal, :L‘(()l), up to the right binodal, z; ’. It is easy to show that in

a simple linear approximation the specific interfacial energy of the fluid-surface

interphase can be expressed as (details see [13])
_ Uﬁs,O(xl(ar) — ) + 0as0(T — xl(;l))
75s(P) = 0 _ 0
Ly — Ly

(8.32)

Here, as above (see Eq. (8.23)), the index “0” relates to the case, when a new

phase cluster and surrounding solution are in equilibrium, i.e., z = xé)

xér), and the quantities without index “0” denote parameters for current composition

and z, =

(cluster or solution). From Equation (8.32) it follows that

T — T
O-ﬂé — Oqs = O'fs(aj) — O-fs(xa) = (0—5570 - O-OLS,O) (ﬂ) .

(8.33)

It is evident that the difference (035 — 045) is a linear function of (z, — ). It is
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positive when g, > 040 (good wetting) and is negative when 050 < 04,0 (bad
wetting) in correspondence with above-stated definition. This difference determines
the degree of catalytic activity of the solid surface at heterogeneous nucleation.

From Equation (8.23) with allowance for Equations (8.31) and (8.33) we obtain
an expression determining the contact angle v as a function of the compositions of

the cluster, x,, and of the surrounding solution, z,
(r) ..
cosy(x,xy) = cos Y <M> , (8.34)

xa_x

where

cos Yy = (9650 = Tas0) : (8.35)

0ap,0

Thus, for the further analysis there is no need in the knowledge of the specific
interfacial energies; it merely required to know the equilibrium contact angle ;.

In the considered case of cluster nucleation on a well-wettable surface the
angle «, defining the catalytic activity factor Equation (8.9), has values larger zero
only when z, < z, o where z, 1s determined by the equation

_ () _ (D) €os 70
Tao = (@ — 1y )cos (7/2 = 73)

+a. (8.36)

Intersection of the plots x,0(z) and x,;(x) (see Equations (8.16) and (8.17)
and Figure 8.6) determines the position of the spinodal x,, for heterogeneous

nucleation

xa,0($5h> - xa,ll(xsh) . (837)

At x > x4, the catalytic activity factor equals zero, ¢(v,3) = 0, i.e., in this
case the nucleation of a new phase cluster in a pore proceeds in a mode when the
energy barrier is absent, like spinodal decomposition of the unstable homogeneous

system. Figure 8.7 presents the dependence of the heterogeneous spinodal position
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Fig. 8.6. Dependence of function f(z,,z) on cluster composition z, at different

supersaturations x = .I,‘l()l), 0.1, 0.13, :cgg) in the region of metastability :cl(f) <z <

(1)

xsp.
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Fig. 8.7. Dependence of the spinodal position x4, for heterogeneous nucleation on

cone angle, (3, (left) and equilibrium contact angle, o (right).

Is evident that the spinodal for heterogeneous nucleation is located nearer to
the binodal as both the pore cone angle (3 (Figure 8.7a) and the macroscopic contact
angle vy (Figure 8.7b) yield its shift to decreasing values of z. If the equilibrium
contact angle is equal to vy = 90°, the heterogeneous spinodal coincides with the

: . D ey - :
macroscopic one, i.e., Ty, = ;Lép), like in the case of the homogeneous nucleation.
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8.4. Heterogeneous Nucleation in a Conic Pore: Results

For a metastable state of the initial solution, xél) <zr< xﬁQ, the work of critical

cluster formation in the space (n1,m2) has characteristic saddle points properties
near to the parameters of the critical cluster, (11, n2.). The surface is shown in
Figure 8.8 for the case of nucleation of a new phase cluster in a pore with an angle
(8 = 60° and for an equilibrium contact angle vy = 60° and at the composition of the
ambient phase equal to x = 0.15. The “valley” at x, = x = 0.15 corresponds to the
initial state, and the saddle point to the critical cluster. Its parameters are determined
by Equations (8.29). In the course of its growth, the new phase cluster passes through
a saddle point. Finally, its composition tends to an equilibrium value nearly equal to
the respective value on the right binodal z, — xl(f) ~ 0.91.

Ag x=0.15, B=60° y,=80°

~0.2.

Fig. 8.8. Shape of the Gibbs free energy of cluster formation in a metastable regular
solution with x = 0.15 (z < x4, ~ 0.178) in a conic pore with the angle 3 = 60°.
The equilibrium contact angle is chosen equal to vy = 80°.

The composition of a critical cluster, x, ., 1s shown in Figures 8.9 and 8.10 in
dependence on the initial supersaturation for the case of nucleation in a conic pore

with various angles § = 40°, 50°, 60°, 70°, 80°, 90° and two different values
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of the equilibrium contact angle vy = 60° (Figure 8.9) and vy = 80° (Figure 8.10).
With an increase of the supersaturation from an initial value close to the binodal the
concentration of the second component in the critical cluster, z,, .., decreases down to
the minimum value z, o at © = x4,(7o) (Figures 8.9 and 8.10). If the supersaturation

increases further, x,, ., grows linearly (see Equation (8.36) and Figure 8.6).
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Fig. 8.9. Composition of the critical cluster, z, ., in dependence on supersaturation

for nucleation in a conic pore with various angles 3 = 40°, 50°, 60°, 70°, 80°, and

90°. The equilibrium contact angle is chosen equal to vy = 60°.

—_
(=)

right binodal, x{"

e
>
T

o
~
T
=N
(e
(e

Critical cluster composition, X, ..
[}
[o)
T
left binodal, x{"

surface spinoéals, (IB
. 1 1
|- 1 1 1 | 11

0.08 0.1 0.12 0.14 0.16 0.18

Initial solute concentration, x

)

1
Xsh
1
1

Fig. 8.10. Composition of the critical cluster, z, .-, in dependence on supersaturation
for nucleation in conic pores with various angles 5 = 40°, 50°, 60°, 70°, 80°, and

90°. Here the equilibrium contact angle is chosen equal to vy = 80°.

According to the classical nucleation theory the size of a critical cluster tends
to infinity for initial phase composition approaching the binodal. With an increase of

the supersaturation grows the critical cluster size decreases. At ©x > x4y, the critical
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size in its classical interpretation does not exist anymore because cluster growth can
proceed without overcoming a thermodynamic potential barrier starting from n = 0
(or, in a more precise formulation, starting with one structural unit). However, in terms
of the generalized Gibbs approach, in contrast to the classical theory and in agreement
with density functional computations [7, 8], this decrease in size may be followed by
an increase with a further increase of the supersaturation (Figures 8.11 and 8.12).
Consequently, the transition from metastable to thermodynamically unstable states
proceeds here in a quite different way. As one consequence it follows that near to
the spinodal the formation of critical clusters will, in general, not proceed via the
saddle point of the thermodynamic potential surface but via a ridge point (for details

see [17,18]).
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Fig. 8.11. Critical cluster size, n.., as a function of the concentration for nucleation in
conic pores with different angles 5 = 40°, 50°, 60°, 70°, and 90°. The equilibrium
contact angle is taken as vy = 60°. For comparison, the dashed line shows the
dependence n.,.(z) for homogeneous nucleation.

For the equilibrium contact angle 7y = 60° and small values of the cone pore
angles § = 40°, 50°, 60°, along with the increase of the supersaturation the critical
cluster size decreases monotonically from infinity at the binodal up to values of z at
the spinodal for heterogenous nucleation x = z;, (Figure 8.11). Then it exhibits a

discontinuity and becomes equal to zero at further increase of the supersaturation. For
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planar solids surfaces 5 = 90°, the decrease of the critical cluster size with increasing
supersaturation is followed by its further increase. This increase is then also followed
by a similar discontinuity at x = x,.

When the equilibrium contact angle equals 7y = 80° and the cone pore angle
has values in the range § = 40°... 90° the dependence of the critical cluster size
on supersaturation is non-monotonic: first n.,. decreases from infinity at the binodal,
then the decrease is followed by its growth up to * = x4, and for x > x4, the critical

cluster size becomes equal to zero (Figure 8.12).
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Fig. 8.12. Critical cluster size, n.., as a function of the concentration for nucleation
in conic pores with different angles § = 40°, 50°, 60°, 70°, and 90°. Here the
equilibrium contact angle is taken equal to vy = 80°. For comparison, the dashed line
shows the dependence n..(z) for homogeneous nucleation.

Figures 8.13 and 8.14 illustrate the normalized work of formation of a critical
cluster, Ag., = (AG../G,), in dependence on supersaturation for nucleation in conic
pores with various angles = 40°, 50°, 60°, 70°, 80°, and 90°, the equilibrium
contact angle is 79 = 60° (Figure 8.13) and vy = 80° (Figure 8.14). The work of
formation of a cluster decreases from infinity at the binodal, and for =z > x4, it
becomes equal to zero. The less the cone pore angle ( and the contact angle v, are,
the faster the work of a critical cluster formation decreases.

The work of critical cluster formation determines widely the steady-state
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Fig. 8.13. Normalized work of formation of a critical cluster, Ag.., as function
of the concentration for nucleation in conic pores with various angles 3 =
40°, 50°, 60°, 70°, 80°, and 90°; the equilibrium contact angle is v, = 60°. For a
comparison, the dotted lines show the function Ag,,.(z) calculated via the classical
nucleation theory for conic pores.
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Fig. 8.14. Normalized work of formation of a critical cluster, Ag.., as function
of the concentration for nucleation in conic pores with various angles 3 =
40°, 50°, 60°, 70°, 80°, and 90°; the equilibrium contact angle is vy = 80°. For
comparison, the dotted lines show the function Ag,,(x) calculated via the classical
nucleation theory for conic pores.
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nucleation rate, J. It can be expressed generally as (see, for example [1,4])

ACT’ g
J:Joexp<— J G).

8.38
kT (8.38)

The pre-exponential factor, .Jy, is determined by the diffusion coefficients of the
solution and by the number of possible nucleation centers per unit area. The quantity
(G, is determined by Equation (8.25).

Figures 8.15 and 8.16 supply us with a comparison of the normalized nucleation
rates, J/.Jy, in conic pores with various angles 3 = 40°, 50°, 60°, 70°, and 90°
determined within the generalized (solid lines) and via the classical Gibbs (dotted
line) approaches in the case of good wettability (vy = 60° and 80°). The calculations
were performed for a temperature 7' = 0.77,. with T, = 1143 K and the parameters
G, = 61.6 kgT and R, = 3.087a with a = 3.65 x 107! m. The nucleation
rate calculated via the generalized Gibbs approach is much higher than the results
obtained via the classical theory. With the increase of the supersaturation it reaches

the maximum value, Jy, at x > x4, (70, ).

' surface spinodals, x,,(B)

Reduced nucleation rate, J/JO
S
T
__binodal ___________ . _

I |

i | | |
0.1 0.12 0.14 0.16 0.18
Initial solute concentration, x

Fig. 8.15. Comparison of the normalized steady-state nucleation rates, J/.Jy,
computed via the generalized Gibbs approach (solid lines) and using classi-
cal nucleation theory (dotted line) in conic pores with various angles [ =
40°, 50°, 60°, 70°, and 90°. The equilibrium contact angle is taken as vy = 60°.
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Fig. 8.16. Comparison of the normalized nucleation rates, J/.Jy, determined via the
generalized Gibbs approach (solid lines) and in terms of the classical nucleation theory
(dotted lines) in conic pores with various angles 5 = 40°, 50°, 60°, 70°, and 90°.
The equilibrium contact angle is taken here vy, = 80°.

8.5. Conclusions

The generalized Gibbs approach applied to the description of the precipitation
in a binary regular solution on a rough solid surface (conic pore) results as
a whole in similar conclusions as obtained by us earlier in the analysis of
heterogeneous nucleation in a one-component van der Waals liquid [13]: the presence
of heterogeneous nucleation centers can effectively result in a shift of the spinodal

from the value x = xﬁQ, as shown in Figure 8.7, to smaller values of the concentration,

r = x4 < xﬁ? Therefore, the concentration range J)l()l) < x < x4, of the initial
solution we can consider as metastable with respect to heterogeneous nucleation,
and the concentration range x > x4, as thermodynamically unstable. This result has
the consequence that the range of metastable states decreases at the expense of an
increase of the instability region, resulting in intensification of the nucleation rate.
This effect became stronger with a decrease of the cone angle of the pore and the
equilibrium contact angle. In line with the general result obtained in [19] for the case
of homogeneous nucleation, also in heterogencous nucleation the generalized Gibbs

approach yields lower values of the work of critical cluster formation and higher

values of the steady-state nucleation rates as compared to the results obtained via
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Gibbs classical treatment.

Actually, the surface roughness is not uniform. In frame of the studied approach
the roughness state of a surface may differ in depth of the cones and their cone
angles. Its account may be approximated as a spread in these parameters within
some model distribution. As can be seen from the comparison of plots in Figure 8.7
the differences in cone angle do influence the cluster critical size and with it the
nucleation probability. The lesser the cone angle is the more important is the role
of heterogeneous nucleation. In addition, the dependence of the nucleation rate on
cone parameters is exponential. It means that the nucleation preferentially proceeds in
pores with the lowest cone angle. The cone depth may also influence the nucleation
when it is too low to form a viable cluster in it. This situation can happen on rather
smooth surfaces. As it follows from Figure 8.7 more influential is the change of
the equilibrium contact angle but it is rather the case of different surface materials,

say composites or metamaterials.
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8.6. BucHoBKkH 10 po3ainy 8

Pesynbpratu gociigkeHb, MPEACTABICHUX Yy JAHOMY PO3/LIi, OIyOJIKOBaHO

B crarti [8] ([omatox A. Cnmcok myOmikamiii 3700yBada 3a TEMOIO JaUcCepTallii).
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JlocmikeHa reTeporeHHa HyKJieallis KjiacTepiB HOBO1 a3y B peryiasspHOMYy OiHApHO-
My po34MHI Ha AedeKTHIi TBepaii nmoBepxHi. Cepes] OCHOBHUX PE3YNIbTaTIB Y SKOCTI
BHUCHOBKIB MO>XHa BUIUIMTH HACTYIIHI:

e BrumB aedekTiB MOBEpXHI MPOSIBISETbCS TaKOX, K 1 JUIsl Ta3y BaH Aep

Baanbca, ToOTO

1) HasBHICTH AeEKTY MPU3BOAUTH JO 3HAUHOTO 3CYBY CIIHOJAJI MOPIBHSHO 3 TETe-
POTrE€HHUM 3apO/KEHHSIM Ha IUIaHapHIM MOBEPXHIi: 31 3MEHILIEHHSIM KyTa KOHyca opu
TeTEpOTeHHA CIIHOAANL HAOIMIKAEThCsA N0 OiHOMam, 1 00JacTh METacTaOlILHOCTI

3BY)KYETBHCS 32 PaXyHOK PO3IIMPEHHS 001acTi HECTAOUTHHOCTI,

2) icHye TpaHWYHUU KYyT KOHycCa MOpH, MEHIIE SIKOro (opMyBaHHS HOBOiI (azu

MPOXONUTHL 0e30ap’epHO.

e PoszpaxoBaHa MIBUIKICTh HYKJI€allll KiacTepa HOBOI (pa3u y 3aJieKHOCTI BiJl

KyTa KOHYCa TIOpH 1 CTYNEHs NEPECUYECHHS PO3UUHY.
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PO3JILT 9

MEXA TOMOT'EHHOI HYKJEAIII BYJIbBAIIIOK PTYTI 3A
HOPMAJIBHUX YMOB POBOTH 3ATIIJIAHOBAHOI'O
€BPONIEMCBKOTI'O JKEPEJIA HEUTPOHIB, IO IMPAITIOE HA
PEAKIII CKOJIIOBAHHS

VY neB’siToMy po3AuTl TEOPETHYHO MOCTIHKEHO MPOLEC 3aKUIaHHS PTYTI Y
IMITyTECHUX JDKEpENiax HEUTPOHIB, IO MPAIIOI0Th Ha peakilii ckomtoBanHs (Spallation
Neutron Source). IIpu agcopOyBaHHI MPOTOHHOTO IMyYKa PTYTh IMIIIA€THCS BEITUKUM
TEPMIYHUM yaapaMm Ta yaapaM THCKy. Lli JokajibHI 3MIHM CTaHy PTYTI MOXYTb
CIOPUYMHUTH YTBOPEHHS B PIMHI HECTAOUILHUX OyabOAIIOK, sIKI MOXYTh MOLIKOJUTH
IpH iX KaBiTallli KOHCTPYKIIIHI MaTepianu (CTIHKa TPyOH).
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Abstract. In spallation neutron sources, liquid mercury, upon adsorbing the
proton beam, is exhibited to large thermal and pressure shocks. These local

changes in the state of mercury can cause the formation of unstable bubbles
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in the liquid, which can damage at their collapse the enclosing the liquid solid
material. While there are methods to deal with the pressure shock, the local
temperature shock cannot be avoided. In our paper we calculated the work of
the critical cluster formation (for mercury micro-bubbles) together with the
rate of their formation (nucleation rate). It is shown that the homogeneous
nucleation rates are very low at the considered process conditions even after
adsorbing several proton pulses, therefore, the probability of temperature

induced homogeneous bubble nucleation is negligible.

9.1. Introduction

Irradiating liquid metals (usually mercury) with proton beams is one of the best known
methods to produce highintensity, multi-purpose neutron beams. This method has been
used in various existing facilities and it is planned to be employed in the European
spallation source (ESS), too. Unfortunately upon adsorbing the high-intensity proton
beam in the liquid the neutrons are not the only particles emitted; an unavoidable
heat and pressure wave will be emitted simultaneously from the adsorption region.
The increase of the temperature and (in the negative period of the pressure wave) the
decrease of the pressure can cause cavitation in the liquid. The metal vapor bubbles
then will flow with the liquid and upon reaching high pressure and low temperature
regions, they will collapse, causing eventually some severe damage in nearby solid
structures. This phenomenon is known as cavitation erosion and one of the main
factors which (due to pitting and weight loss) significantly may shorten the lifetime
of structural materials. To our present knowledge, four mercury targets are needed at
the Oak Ridge spallation neutron source (SNS) at 1 mW power per year. Therefore to
avoid cavitation is one of the main challenges of the design of the spallation source
target [1-7].

It should be mentioned here that, along the methods to minimize cavitation
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itself, there are two other ways to minimize the damage. One of them consist in
the various ways of surface treatments (plasma nitriding, plasma carbonizing, etc.),
which makes the surface more resistant to the damaging pressure wave emitted by the
collapsing bubble [8,9]. The other one is the addition of helium micro-bubbles, which
is a proven way to soften up and to reduce the damage by absorbing the expansion
of liquid mercury and mitigating the pressure waves [8—12]. Considering this method
as a successful one to deal with the pressure-drop induced cavitation, in our paper
we focused our attention mainly on the temperature increase induced cavitation and
allowed only small pressure changes to occur (down to —5 bar). Our main aim is
to find out whether the conditions discussed here are able to cause cavitation or not.
We approached the problem in three steps. In the first step (Sect. 2), we calculated
the phase equilibrium properties, the stability limit and various other properties of
mercury by using a slightly modified version of the equation of state proposed by
Redlich and Kwong [13], Morita et al. [14-16]. In the next step (Sect. 3), we made an
estimation for the magnitude of pressure and temperature changes by using single and
repeated proton pulses. In the final step (Sect. 4), we calculated the work of critical
bubble formation in mercury as well as the rate of homogeneous nucleation in the
pressure-temperature range defined according to the results of the previous section.

The paper is completed by a short summary and discussion (Sect. 5).

9.2. Model system
9.2.1. Location of binodal and spinodal curves

For the description of mercury (Hg) in both the liquid and gas phases, we will
apply a slightly modified thermal equation of state as compared to the expression

proposed by Morita et al. (see [13, 14], and, in particular, Eq. (15) in [15])

p= - : ©.1)
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a(T) = a. (Z)” at T<T., (9.2)

T
where R = 8.314 J - mol ™' is the universal gas constant, p is pressure, v is molar
volume, 7' is temperature, a., b, ¢ and n are the model parameters specific for the
substance considered, 7, is critical temperature. The correction coefficient K (7') is
dependent on temperature only, it was introduced in the repulsive term instead of the
parameter x4, which is a function of 7" and p (see [16], in such case Eq. (9.1) becomes
an equation for definition of p(v,T"), and has no analytical solution).

We employ further dimensionless variables
M=, w=—, 0=—, (9.3)

where v, i1s the molar volume, p. the pressure both at the critical point with the critical

temperature, 7.. These parameters can be determined from Eq. (9.1) in the common

way via
2
<@> - (a_;;) —0 at T=T,. (9.4)
ov ) ; ov? ),
The equation of state in reduced variables is given by
0 a(0)
10, w) = — : 9.5
=B e D) )
Here
PcUe
(0 K0 .
Xel0) = T K (0) 9:6)

is the reduced critical compressibility, and

K(#) =1.106697 — 0.10 . 9.7
(0) 6697 - exp (0 17026) (9.7)

" b
W _aor. =2, =%, (9.8)

pC/Uc UC UC
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According to [15] we have then
a = 2.5272 6 =10.3952 , & = —0.16567 , n = —0.0284127 . (9.9)
From Egs. (9.1) and (9.4) we get [15]

ve= 1.797-10"*m’/kg,  p.= 5566 kg/m" (9.10)

pe = 158-10° Pa | T. = 1762 K .

The location of the classical spinodal curve can be found via the determination
of the extrema of the thermal equation of state, I1(6,w) (Eq. (9.5)) considering the
temperature 0 as constant. By taking the derivative of I1(6,w) with respect to w, we

obtain from equation (9.5) the result

0 0)(2 0
9 () = 2OC0HE) ~0. (9.11)
Ow w?(w + £)? Xelw — 3)?

For # < 1, this equation has two positive solutions ws(}peft) and wé{jghﬂ for w

corresponding to the specific volumes of the both macrophases at the spinodal curves
(or at the limits of metastability).

Similarly, the binodal curves give for 6 < 1 the values of the specific volumes
of the liquid and the gas phases coexisting in thermal equilibrium at a planar interface.
From the left branch of the binodal curve, we get the specific volume of the liquid
phase (v, (eq)(Q) = w{}eﬁ)(e)), from the right branch of the binodal curve, we obtain
the specific volume of the gas (wy(6) = w"™#"(#)). For § = 1, both solutions
coincide in the critical point (wl(ecn = wéeq) = w,. = 1), again. Consequently, in order
to determine the specific volumes of the liquid and the gas at some given temperature

in the range 6 < 1, we have to specify the location of the binodal curve.
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The location of the binodal curve may be determined from the necessary
thermodynamic equilibrium conditions (for planar interfaces) — equality of pressure

and chemical potentials — via the solution of the set of equations

Hl(wlae) - Hg(wgne) ) Ml(wlng) - :ug(wgae) : (912)

Here by p the chemical potential of the atoms or molecules in the liquid (/) and
the gas (g) are denoted. Having at our disposal already the equation for the reduced
pressure (c.f. Eq. (9.5)), we have now to determine in addition the chemical potential
in dependence on pressure and temperature (see Sect. 2.2).

Isotherms for mercury Eq. (9.5) for different values of the reduced temperature
6 = 0.4, 0.65, 0.8, 0.891 and 0.92 are shown in Fig. 9.1, dashed and dashed-dotted
curves present binodal and spinodal, correspondingly. One can see, that there are two
classes of isotherms: for the first one (6 > 6,) p > 0, and for the second class (6 < 6y)

pressure may be both positive and negative. Only in this temperature range, cavitation
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Fig. 9.1. (Color online) Isotherms of mercury as described via equation (9.5) for
different values of the reduced temperature, from 6 = 0.4 (bottom curve) to 6 = 1
(upper curve).
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Fig. 9.2. (Color online) Comparison of experimental data (according to [17,18]) for
the vapor-liquid coexistence properties of mercury with the theoretical results (full
curve determined via Eq.(9.5)) obtained in this work.

processes may occur. The parameter 6, is determined via the equation

Hl(wsp(es)aes) =0, (9.13)

for mercury 6, ~ 0.891 and T, = 1.0, ~ 1570 K. A comparison of experimental data
[17,18] for the vapor-liquid coexistence properties of mercury with results obtained in

this work are shown in Fig. 9.2 and Fig. 9.3 for T, p and p, T~ ! variables, respectively.
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Fig. 9.3. (Color online) Comparison of experimental vapor pressure for mercury
(according to [17,18]) with theoretical results (full curve determined via Eq.(9.5)).
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9.2.2. Determination of the chemical potential and the interfacial tension

For isothermal processes, the change of the Helmholtz free energy, F', may be

expressed as
dF = —pdV + pdn . (9.14)

Here V' is the volume of the system and n the number of moles in it. For a given
fixed mole number, n, of the substance (n = constant), we have, in particular,

: (9.15)

dgpn = —pd?} ) ¥Pn = 3 U=

F
n

or, in reduced variables,

d ( P ) — _Tldw . (9.16)

PcUc

Employing in the integration of Eq. (9.16) the equation of the state, Eq. (9.5), we

obtain

(pf;l) T [@ n (1 + E) + Xie) In(w - B)| - 9.17)

Alternatively, the change of the Helmholtz free energy — provided the volume

V' is fixed — is given at constant temperature by

dF = pdn . (9.18)
From Eq. (9.18), we arrive at
i F
dp, = ——=dv v == . 9.19
© v Po =5 9.19)
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On the other side, the functions ¢, and ¢, are connected by

F=p,n=¢,V, Dy = Pn . (9.20)
v
With Eq. (9.17), we have then
pe [a(f) ( 3 ) 0
y=— |—FIn(1+=>)+ In(w— )] . (9.21)
o =2 )+t —9

With Egs. (9.19) and (9.21), the expression for the chemical potential of a HLM can

be obtained then via

0, 0,
_ 2% 2
= —0 50 (O R (9.22)
This relation yields
,u a(f) Ow a(0) ( 5) OIn(w — ﬁ)]
LA + + In{l1+=>)4+———+=|.09.23
X IEE () (e R o) e [

In addition to the bulk properties of the system under consideration, we have to know
the value o of the surface tension for a coexistence of both phases at planar interfaces
in dependence on the parameters describing the state of both phases. The following

form was chosen for our calculation [19-22])

1 17
0 (wg, w1, 0) = O(0) [— — —] : d=25, (9.24)

where

n—ao
1 1
. )] , (9.25)
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and A and n are constant parameters. Comparison of Egs. (9.24) and (9.25) with

experimental data [23]

o(T) = 0.5446544 — 0.000204917 - T (9.26)

(here the temperature is given in Kelvin and the surface tension in J/m?) at w; = wgeft)

and w, = wl()right) yields

A=0.033253T/m*>, n=3. (9.27)

In Fig. 9.4 dependence of the surface tension on temperature is shown, solid

curve presents Eq. (9.24) at w; = wge&) , Wy = wl()right), and dashed curve — Eq. (9.26).
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Fig. 9.4. Dependence of the surface tension on temperature, solid curve presents

Eq. (9.24) at w; = wgeft), wg = wéﬂght>, and dashed curve — Eq. (9.26)
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9.3. Determination of the pressure and temperature change after

proton adsorption

(13

For the determination of the pressure and temperature change, a ‘“one
dimensional six-equation two-fluid model” was employed, which is capable to
describe transient-like pressure waves and quick evaporation or condensation which
is proportional to cavitation caused by energetic proton interaction in mercury
target [24]. The method was developed to describe the sudden and drastic steam
condensation, called water hammer [25,26].

The model contains six first-order partial-differential equations which describe
one-dimensional surface-averaged mass, momentum and energy conservation laws for
both phases. A special numerical procedure ensures that shock-waves can be described
without any numerical dispersion. With two major modifications this model can be
applied to investigate the thermo-hydraulic properties of the planned mercury target
in the european spallation source (ESS). These modifications are the following: the
equation of state namely the density and the internal energy of both mercury phases
should be known in a broad range of pressure (1 Pa to 100 MPa) and temperature
(273 K to 1000 K). As a second point the interaction of the high energy proton
beam with mercury has to be included. This is a much simpler task because we
may consider that about 50energy is absorbed as a 2 ms long heat shock square
pulse, giving a new source term in the energy equation of the liquid phase. The ESS
mercury target station is modeled as a 18 m long closed loop which is bent in three
dimensions and the pipe diameter is 15 cm. We consider that 150 kJ heat is absorbed
in a 10 cm long pipe, this is approximately the width of the proton pulse. Calculation
shows that such a single pulse heats up the mercury with about 40—44 K, assuming
that the initial temperature was between 293-373 K (i.e. within the normal working
range of the spallation source). In the calculations, low velocities 0.5-4 m/s, low
initial pressure 1-4 bar and low initial temperature (below 374 K) were assumed. To

our knowledge the existing Japanese Spallation Neutron Source Hg loop is about 15
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m long, with a diameter of 15 cm, the flow velocity of Hg is 0.7 m/s and the pressure
is approximately equal to 1 bar.

Concerning the pressure change, the model is able to estimate the positive part,
but at the negative region (where most of the low temperature cavitation is expected
to happen [27]), a stability problem aroused. Therefore we focused our calculation to
the heat shock and, at present, neglected the pressure change. Preliminary calculation
yielded a few bar changes [24], in agreement with the results of Ida [28], therefore
the latter calculations were performed in the —5 to 10 bar range.We should mention
here, that other models predicted much larger pressure changes (even hundreds of
bars) [29,30] both in the positive and negative pressure region.

Also the effects of repeated pulses were checked. The calculations were
performed with a 2 ms square pulse train where the delay time was 20 ms which is
similar to a 16 Hz repetition rate. We started with a flow system with initial p = 4 bar,
Tinitiaw = 353 K and initial flow velocity v = 4 m/s.We found that the temperature
jumps are more or less additive which means that after the beginning of the third

pulse the temperature was about 430 K.

9.4. Determination of the work of critical cluster formation

Let us assume, now, that the system is brought suddenly into a metastable state
located between spinodal curve and binodal curve at the liquid branch of the equation
of state. Then, by nucleation and growth processes, bubbles may appear spontaneously
in the liquid and a phase separation takes place [31]. Based on the relations outlined
above, we will determine now the parameters of the critical clusters governing bubble
nucleation in dependence on the state parameters, pressure and temperature.

We start with the general expression for the change of the thermodynamic
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AG =0A+ (ps — pa)Va + Z Njotja = Hjs) (9.28)
J

Here the subscript « specifies the parameters of the cluster (bubble) phase while 3
refers to the ambient liquid phase. This relation holds as long as the state of the liquid
remains unchanged by the formation of one bubble. For a one-component system, this

expression is reduced to
AG=0A+ (pﬁ — Pa)Va + Napla — Mﬁ) : (9.29)

As independent variables, we selected the radius of the bubble, r, and the molar

volume of the gas phase in the bubble. Similarly to [19,32,33], we arrive then at

Ag(?“, We, W, 9) 1 1 ’ 2 3
=3|— - — 2 v 9.30
k’BT CU] Wg r + f (wg7 UJ], ) r ) ( )

where the following notations have been introduced:

1 w, 0) — p(we, 0
f (wga Wi, 9) - H(wg7 9) o H(wla 0) + w_ (M( 1 )p Ulu( s )) ) (9.31)
g cUc
G 160 1 5
= — 9.32
2
r= Rﬂ : R, = o (9) . (9.33)

The dependence of the scaling parameters €2, and R, on the reduced temperature is

shown in Figure 9.5.
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Fig. 9.5. Dependence of the scaling parameters (); and R, on the reduced
temperature, 6.

The Gibbs free energy surface for the metastable initial state has a typical
saddle shape near to the configuration corresponding to a bubble of critical size (see
Fig. 9.6, 6 = 0.92, w; = 0.65) in the space of critical radius-molar volume and work

of cluster formation. The critical point position is determined by the set of equations

OAg(r,wg,wi,0) 0 0Ag(r, wg, wr, 0)

=0. 9.34
or Owy ! ©-34)

The dependence of the critical cluster parameters on the initial molar volume of
liquid, wy, are shown in Figs. 9.7-9.10, for different values of temperature, § = 0.17,
0.5, 0.7, 0.8, 0.891 and 0.92. The positions of the binodal curves are given then by
W = 0.409, 0.45, 0.494, 0.531, 0.589, 0.62, and w™®") = 1.663 - 105, 90.5,
11.606, 5.634, 3.043, 2.475, the respective parts of the spinodal curves are located at
W™ = 0.452, 0.528, 0.59, 0.634, 0.696, 0.726, and w{h™™" = 13.609, 4.04, 2.584,
2.087, 1.679, 1.547, correspondingly.

The dependence of the work of formation and radius of the critical cluster on
temperature for the practically significant cases p = —5, 0, 1, 2, 5 and 10 Bar. is
presented in Fig. 9.10. In Fig 9.11 dependence of the nucleation rates on temperature

for the same values of pressure are shown (the value of pre-exponential factor Jy =
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Work of cluster formation, AG/ky T

Fig. 9.6. (Color online) Gibbs free energy surface for metastable initial state, § =
0.92, w = 0.65.
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Fig. 9.7. (Color online) Dependence of the critical cluster radius, r. = R./R,, on
the initial molar volume of liquid, wj, for different values of temperature, § = 0.17,
0.5,0.7, 0.8, 0.891 and 0.92.
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Fig. 9.8. (Color online) Dependence of the gas molar volume in critical bubble, wy .,
on the initial molar volume of liquid, w), for different values of temperature, = 0.17,
0.5, 0.7, 0.8, 0.891 and 0.92.
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0,1, 2,5 and 10 Bar.
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10*'s~'m =3 have been used for the calculation). One can see, that in such case
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Fig. 9.11. (Color online) Dependence of the nucleation rate on temperature for p =
—5,0,1,2,5and 10 Bar.

nucleation is possible only at very high temperatures, near 75 ~ 1570 K. One can
observe as well that concerning a 20 cm diameter sphere (region of proton adsorption)
and 2 ms time span, one can expect 1 or more nucleation events above 1530.5 K.
We arrive in this way at the conclusion that at the conditions analyzed intensive
formation of supercritical bubbles by homogeneous nucleation is included. However,
heterogeneous nucleation induced by different kinds of nucleation cores dissolved in

liquid mercury may occur, of course, also at lower temperatures.

9.5. Conclusions

In spallation neutron sources, liquid mercury is the subject of large thermal
and pressure shocks (including negative pressures) upon adsorbing the proton beam.
Increased temperature and negative pressure can result in the formation of unstable

bubbles which can cause cavitation erosion of the structural material, shortening the
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life-time of the equipment and contaminating the liquid mercury with tiny steel pieces.
Therefore it is crucial to avoid or minimize bubble nucleation. While pressure shock
can be softened by adding helium micro-bubbles to the mercury, there is no way to
deal with the thermal shock (i.e. local heating is not possible in the middle of the
liquid mercury). Therefore our calculation focused on the calculation of the degree
of temperature increase, the work of critical cluster formation (i.e. the nucleus of a
macroscopic bubble) and the nucleation rate. It has been shown that after repeated
proton pulses the temperature can be increased with a few hundred K, but the
nucleation rate is so low that the possibility of homogeneous nucleation (i.e. bubble
formation in the pure mercury) is highly improbable, even when the pressure gets
values below the vapor pressure.

The authors express their gratitude to the Hungarian Academy of Sciences for
financial support in the framework of the common Hungary-Russia/Dubna project
EAI-2009/004 and DFFD of Ukraine for partial financial support in the framework
of the common Ukraine-Byelorussia project F29.2/019, contract Number FP7 GA
n° 202247 “NeutronSourceESS”.

References

1. M. Futukawa, H. Kogawa, H. Rino, H. Date, H. Takeshi, Int. J. Impact Eng. 28,
123 (2003)

2. B.W. Riemer, J.R. Haines, J.D. Hunn, D.C. Lousteau, T.J. McManamy, C.C. Tsai,
J. Nucl. Mat. 92, 318 (2003)

3. H. Date, M. Futakawa, Int. J. Impact Eng. 32, 118 (2005).

4. N.J. Nicholas, P.V. Chitnis, R.G. Holt, R.A. Roy, R.O. Cleveland, B. Riemer, M.
Wendel, J. Acoust. Soc. Am. 127, 2231 (2010).

5. D.A. McClintock, P.D. Ferguson, L.K. Mansur, J. Nucl. Mat. 398, 73 (2010)



The European Physical Journal B 340

6.

10.

I1.

12.
13.

14.

15.
16.

17.

18.
19.

20.

21.

22.
23.

24.

J.R. Haines, B.W. Riemer, D.K. Felde, J.D. Hunn, S.J. Pawel, C.C. Tsai, J. Nucl.
Mat. 343, 58 (2005)

S.J. Pawel, L.K. Mansur, J. Nucl. Mat. 398, 180 (2010)

. T. Naoe, 1. Masato, M. Futukawa, Nucl. Inst. Meth. Phys. Res. A 586, 382 (2008)

. T. Naoe, M. Futukawa, T. Shoubu, T. Wakui, H. Kogawa, H. Takeuchi, M. Kawali,

J. Nucl. Sci. Technol. 45, 698 (2008)
R.P. Taleyarkhan, F. Moraga, Nucl. Eng. Des. 207, 181 (2001)

M. Futukawa, H.T. Kogawa, S. Hasegawa, T. Naoe, 1. Masato, K. Haga, T. Wakui,
N. Tanaka, Y. Mashumoto, Y. Ikeda, J. Nucl. Sci. Technol. 45, 1041 (2008)

K. Okita, S. Takagi, Y.T. Matsumoto, JFST 3, 116 (2008)
O. Redlich, J.N.S. Kwong, Chem. Rev. 44, 233 (1949)

K. Morita, W. Maschek, M. Flad, Y. Tobita, H. Yamano, J. Nucl. Sci. Techol. 43,
526 (2006)

K. Morita, V. Sobolev, M. Flad, J. Nucl. Mat. 362, 227 (2007)
K. Morita, E.A. Fischer, Nucl. Eng. Des. 183, 177 (1998)

N.B. Vargaftik, Y.K. Vinogradov, V.S. Yargin, Handbook of Physical Properties
of Liquid and Gases, 3rd edn. (Begell House, New York, 1996)

W. Goetzlaff, doctoral thesis, Philips-Universitit Marburg, Germany, 1988
J.W.P. Schmelzer, J. Schmelzer Jr., J. Chem. Phys. 114, 5180 (2001)

J.D. van der Waals, Ph. Kohnstamm, Lehrbuch der Thermodynamik (Johann-
Ambrosius-Barth Verlag, Leipzig und Amsterdam, 1908)

K. Binder, Spinodal Decomposition, in Materials Science and Technology, edited

by R.W. Cahn, P. Haasen, E.J. Kramer (VCH, Weinheim, 1991), Vol. 5, p. 405
D.B. Macleod, Trans. Faraday Soc. 19, 38 (1923)
J.J. Jasper, Phys. Chem. Ref. Data 1, 841 (1972)

I.LF. Barna, A.R. Imre, L. Rosta, F. Mezei, Eur. Phys. J. B 66, 419 (2008)



The European Physical Journal B 341

25. 1. Tiselj, S. Petelin, Trans. ASME J. Fluids Eng. 120, 363 (1998)
26. LF. Barna, A.R. Imre, G. Baranyai, Gy. Ezsol, Nucl. Eng. Des. 240, 146 (2010)

27. Liquids Under Negative Pressure, edited by A.R. Imre, H.J. Maris, P.R. Williams,
NATO Science Series (Kluwer, 2002)

28. M. Ida, T. Naoe, M. Futukawa, Phys. Rev. E 75, 046304 (2007)
29. B.W. Riemer, J. Nucl. Mat. 343, 81 (2005)

30. S. Ishikura, H. Kogawa, M. Futakawa, K. Kikuchi, R. Hino, C. Arakawa, J. Nucl.
Mat. 318, 113 (2003)

31. V.P. Skripov, Metastable Liquids (Nauka, Moscow, 1972; Wiley, New York, 1974)
32. J.LW.P. Schmelzer, J. Schmelzer Jr., Atm. Res. 65, 303 (2003)

33. A.S. Abyzov, J.W.P. Schmelzer, J. Chem. Phys. 127, 114504 (2007)

9.6. BucHoBku 10 posainy 9

Pesynsraru mochimkeHb, MPEACTABICHUX Yy JaHOMY PO3Miii, OITyOJiKOBaHO
B ctarTi [9] (Homarok A. Crnmcok myOmikaiiii 3700yBada 3a TeMoro auceprariii). Teo-
PETUYHO JOCIIKEHO MPOLIEC 3aKUMAHHS PTYTI Y IMIYJIbCHUX JIKEpesiax HEHUTPOHIB,
110 TPAIloI0Th Ha peakili ckomtoBaHHs (Spallation Neutron Source). Cepen 0CHOBHUX
pE3YJIbTaTIB y AKOCTI BUCHOBKIB MOXHA BUIUIUTH HACTYIIHI:

e OOuuncneHa po6ora (GopMyBaHHS KPUTHYHHX KiIacTepiB (MiKpoOymhOamox

napu pTyTi) Ta MBHAKICTH X 3apOIKCHHS B 3aJICKHOCTI Bl TUCKY 1 TEMIIEPATypH.
e [lokazaHo, IO MIBHJAKICTE TOMOTEHHOTO 3apOPKCHHS YK€ HH3bKa TpHU
PO3MIISTHYTUX YMOBAX IMPOIIECY HaBITh MICHs aIcopOIii AEKITHKOX IMITYJIbCIB MPOTOHIB,

TOMY WMOBIPHICTh KaBITAlIMHUX MPOIICCIB HE3HAYHA.
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PO3ILI 10

TEOPISI YTBOPEHHSI IOPU B PO3TSATHYTOMY CKJII:
Y3ATAJILHEHMIA MIJIXIJI TIBBECA

VY necaromy po3aiil IPOBEICHO TEOPETHUUYHHMM aHali3 MPOLECYy 3apOKeHHS
MIOPH Y MaJTMX 3pa3Kax MePeoX0I0HKEHOT IIOTICHIHOT PIAMHY Y TIPOIIeCci KprucTaizarii
MOBEPXHEBOTO IIapy 3pa3Ka Ha OCHOBI y3arajbHeHOTo MeTony ['160ca. Uepe3 HeBia-
NOBIAHICTh TYCTUHU KPHUCTAIIYHOI Ta pikoi (a3 3pOoCTaHHS KPUCTAIIYHOTO IIapy
Ha MOBEPXHI 3pa3Ka MPU3BOJUTH O PIBHOMIPHOIO PO3TATYBAaHHS 1HKAICYJIbOBAaHOI
pLOIMHU 1, MOAIOHO 0 KaBiTalli B MPOCTUX PIAMHAX, /10 3aPOIKEHHS OJHIEI MOpPHU.
AHaJl3 1BOr0 TPOIECY 3 TOYKH 30py KIACHYHOI Teopili Hykiearli aae SKiCHO
MPaBUJILHUM PE3YJIbTAT, OJHAK KIJIbKICHO TEOPETHUYHI OI[IHKU Ta EKCIepUMEHTAIbHI

JlaH1 B1IPI3HSIIOTHCS.
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ABSTRACT

A theoretical analysis is performed of the process of nucleation of a pore

in small samples of an under-cooled diopside liquid, enclosed by a solid
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crystalline surface layer growing from the melt. Due to the density misfit of
the crystal and liquid phases the growth of the crystalline layer leads to a
uniform stretching of the encapsulated liquid. After reaching some critical
values, the resulting tensile stress results in nucleation of a single pore.
Nucleation of the pore is followed by its rapid growth, which decreases
considerably the magnitude of elastic stresses and therefore eliminates the
pre-condition for nucleation. This process has been analyzed earlier in terms
of classical nucleation theory leading to a qualitatively correct interpretation.
However, quantitatively, theoretical estimates performed in the framework
of classical nucleation theory and experimental data differ. It is shown here
that the generalized Gibbs approach results in a more adequate quantitatively
correct description of the process of pore nucleation.

(©2011 Elsevier B.V. All rights reserved.
10.1. Introduction

According to Abyzov, Fokin et al. [1-3](c.f. also [4-6]), there is abundant
evidence of formation of pores in crystallization processes of small samples of under-
cooled glass-forming melts, when the samples crystallize from the outer boundaries.
The basic model of the mechanism of pore formation has already been developed
[1-3]. Due to the density misfit of the crystal phase and under-cooled melt the growth
of the crystalline layer leads to a uniform stretching of the encapsulated liquid and,
similar to cavitation in simple liquids, to nucleation of a single pore (see Figs. 1
and 2). In accordance with the principle of le Chatelier-Braun, the pore is formed to
compensate, at least partially, the elastic strains caused by the density difference
between glass and crystal phases. Pore formation is followed by rapid growth,
which diminishes considerably the magnitude of elastic tensile stresses and therefore
eliminates the pre-condition for nucleation of further pores. Such scenario is quite
general because the densities of most glasses differ from those of their isochemical

crystals. By this reason, the effects studied are of great technological significance for
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glass-ceramic development and sinter-crystallization processes [1-6]). In the present
analysis, diopside glass has been used as a model system for the detailed study of
these processes because its density is significantly less than that of the crystal, which
increases the effect of elastic tensile stresses (see details given in [2]).

In a preceding paper, we performed the first theoretical analysis of pore
nucleation in such samples in terms of classical nucleation theory (CNT) employing
the classical Gibbs approach to the thermodynamic description of heterogeneous
systems [2]. As it is shown in this earlier work the proposed basic mechanism —
1.e. homogeneous formation of pores due to tensile stresses — works qualitatively
well, however, quantitatively, classical theory overestimates the work of critical
pore formation by a factor of the order of two. In the present contribution, it
is demonstrated that the generalized Gibbs approach provides a more adequate
description of the process of pore nucleation as compared to classical nucleation
theory and allows us to interpret pore formation in the considered elastically stretched
liquids even in a quantitatively correct way, i.e. as cavitation-like processes caused by

elastic stresses.

10.2. Experimental data and their analysis

Samples of diopside glass in the form of small cubes, side a approximately
2, 3 or 4 mm, were heat-treated at 7' = 870°C for different times, ¢. After a given
period of time, the samples were quenched to roomtemperature. Then the top and
bottomsurfaces of the cubes were removed by grinding and polishing to study their
interior and to measure the crystalline layer thickness. Optical microscopy and X -ray
analysis were employed to identify the crystalline phases (see [2] for details). The
heat-treatment temperature is lower than the melting temperature, 7;,, = 1392°C, but
is much higher than the standard glass transition temperature, 7, = 720°C, so diopside
crystals may form and they do it at the surface of the cubic samples (see, e.g. [7]). This

process is illustrated in Fig. 10.1. Note that at the beginning of the nucleation-growth
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Fig. 10.1. Sketch of experimental results [2] showing the switch of the crystallizing
phase in dependence on the width of the crystalline layer and stress induced pore
formation: a) cubic sample of diopside glass; b) formation of diopside crystals at
the surface of the sample; c) formation of a continuous solid crystalline layer; d)
formation of a wollastonite-like crystalline layer; e€) growth of the wollastonite-like

phase and pore formation.

process diopside crystals do not develop a continuous solid crystalline mantle on the
sample surface. In the early stages (Fig. 10.1b) there are gaps between the diopside
crystallites, and only after some time has elapsed, due to the coalescence resulting
from the growth of the initially separated small diopside crystals, a continuous solid
crystalline layer is formed. This crystalline layer, like a nutshell, does not allowthe
stresses to relax fully and elastic stress energy — due to volume differences of the
initial liquid and evolving crystal phase — accumulates with the further increase of the
width of the layer in such stretched system. As a first response to the increase of the
magnitude of elastic stresses the system exhibits a “switching” of the crystallization
process from formation of diopside (1CaO-1MgO-2Si05) to a wollastonite-like phase
(see Fig. 10.1d). Latter phase has a composition of diopside but has a structure similar
to wollastonite (CaO-SiO», triclinic, for more details see [2]). The reason of such
switch can be interpreted as a consequence of the fact that crystallisation of the
wollastonite-like phase produces smaller values of elastic stress energy as compared
to the formation of diopside. The density of the wollastonite-like phase is considerably
lower than that of the diopside crystals (densities of diopside crystals and the melt
are 3.278 x 10° and 2.84 x 10°kg/ m* [8], and density ofwollastonite-like crystals
is 3.042 x 10%kg/ m’ [2]). Consequently, the density misfit of the wollastonite-like
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crystal phase and the diopside melt is lower and the resulting elastic stress effect
in the crystallization process is smaller as compared to diopside crystal formation.
Thus, we may suggest in agreement with experimental data [2] that — due to evolving
tensile stresses — the formation and growth of diopside crystals terminates almost
immediately after completion of formation of a continuous diopside crystalline layer.
The average thickness of the diopside crystalline layer depends mainly on the typical
distance between the diopside crystals formed independently in the initial stage of
crystallization or, equivalently, on the number of crystallites formed in the crystalline
layer. Taking into account that nucleation of diopside crystals is heterogeneous and
occurs on some active centres (surface defects) [7], its number density depends only
on the kind of surface [9].

In the course of subsequent development of the wollastonite-like crystalline
layer, the remaining internal parts of the samples become uniformly stretched (see
Fig. 10.1d and [1] for more details). As a result, like in cavitation processes in

liquids, pores may spontaneously evolve (see Figs. 10.1e and 10.2). The origin of

Fig. 10.2. Reflected (a) and transmitted (b) light optical micrographs of diopside
glass sample of size 2x2x2 mm? heat-treated at 870°C for 200 min [2] (the cracks
on the sample appeared due to the preparation of the cross section needed to test the
inner part of cubic sample).

pore nucleation is the elastic stress energy due to misfit of crystalline and ambient

phase, again. Note, that for all experiments with annealing times ¢ > t* (when pores
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have been formed), the size of the pores in the samples was almost the same, as it is
shown in Fig. 10.2, and pores of intermediate sizes are not registered, which proves
our assumption of very rapid, similar to cavitation processes, pore growth. Once a
first pore is formed, as a rule, a second pore does not appear, since rapid growth
of the first pore eliminates the elastic tensile stresses widely. As a consequence of
this peculiarity, the main characteristic of the nucleation process considered is the
waiting time for the appearance of the first pore, ¢*, similar to crystallization of metal
droplets [10, 11] or boiling of liquids [12]. Note that sometimes crystals are forming
at the internal surface of the pore (see Fig. 10.2a), but this process takes place at the
late stage of pore growth, and therefore cannot affect the considered here nucleation
process.

In the analysis of experimental data on pore formation, a dimensionless
parameter, the reduced thickness of the layer, X, was employed. This parameter
characterises the size of the non-crystallised fraction of the cubes under consideration
and is defined as

_a—QH
— - ,

X (10.1)
where H is thickness of the crystalline layer. For a sample of size 2x2x2mm?,
the measured dependence of X on annealing time is shown in Fig. 10.3, black
triangles represent the experiments which finished without a pore, white ones — the
experiments with pore formation. Pores were always formed at some well-defined
finite values t = t* and X = X (see [2] for more details).

The next step is to interpret these experimental results theoretically. As it was
shown in our preceding works [1-3] the value of the thickness of the crystalline layer
H basically determines the degree of development of elastic stresses in a finite system
of the considered geometry. In this way, X™ and t* are also the basic parameters to
be employed in the theoretical description of pore formation and the comparison of

experiment and theory.
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Fig. 10.3. Dependence of the measured values of X on annealing time, ¢, for diopside
glass samples of size 2x2x2 mm?® heat-treated at 870°C. White and black triangles
represent the experiments which finished with and without pore formation. Grey bands
divide regions without (¢ < t*, X > X™) and with (¢ > t*, X < X¥) pore formation.

10.3. Theory of pore formation

10.3.1. Equation of state for stretched diopside glass

In order to apply the generalized Gibbs approach to the description of
nucleation, the thermal equation of state of the system has to be known. Lacking
respective data, we employ here the van der Waals equation of state for the diopside
melt [13, 14], the thermal equation of state of the systemwhere the process of
nucleation takes place has to be known. Lacking suitable data,we employ the reduced
formof the van derWaals equation of state [15-17] for the specification of the thermal

equation of state of the diopside melt

86 3
(w) = 2 (10.2)
3(w—3) W
T
n=2 o= 9g=-=- (10.3)
pC UC TC
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Here p is the pressure, v the specific volume, I’ the temperature, while p., v., and 7.
refer to the critical point. These critical parameters can be determined via density, p,

Young’s modulus, £, and bulk thermal expansion coefficient, (3,

~ Pe o % o dw\ " B 1 d_w
pl6) = L5, B0) = s = —om. (d—n) 00 =5 04)

For diopside glass [8] (py = 2.84 kg/m?, Ey = 10! J/m? for T = 20°C and 3 =
11.73-107° K~ for T = 870°C), the solution of the system of equations yields

pe = 102 MPa, p. = 971 kg/m’, v.=1.03-10 m? T, =3590K . (10.5)

The chemical potential of the molecules in a van der Waals fluid can be written

generally as [13]

——+x(0). (10.6)

Here x(0) is some well-defined function only of temperature.

Here we consider pore formation processes proceeding via nucleation and
growth. Such processes occur for homogeneous initial states of the system (diopside
melt) located in the region between binodal (the boundary between stable and
metastable regions) and spinodal (the boundary between metastable and unstable
regions) curves. To be definite, all further calculations will be performed here for

a temperature 7' = 870°C that corresponds to a reduced temperature, ¢ = 0.318. In

this particular case, the position of the binodal curves is given by wgeft) = 0.373,

and wéﬁght) = 1663, the respective parts of the spinodal curves are located at

ws(%)e ) 0.445, and ws(;ight) = 6.343, correspondingly. Thus, we consider initial
states located between the left hand side branches of the spinodal and binodal curves,

(left) (left)

respectively, i.e., initial states in the range w; ~ < w < ws, ~, that correspond to

the interval of tensile stresses py, < p < py, (psp = —769 MPa, p;, = —0.06 MPa).
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Isotherms for the diopside melt according to Eq. (10.6) for different values of the
reduced temperature § = 0.318, 0.6, 0.84, 1 are shown in Fig. 10.4, dashed green

and blue curves present binodal and spinodal curves, correspondingly.

1/3

Reduced pressure, I1

Q)

1 3 10 30
Reduced volume, ®

Fig. 10.4. van der Waals’s isotherms adopted for the description of the diopside melt
for different values of the reduced temperature ¢ = 0.318, 0.6, 0.84. First value,
6 = 0.318, corresponds to the temperature in the experiment [2], the last three curves
are placed just for reference.

One can see, that there are two classes of isotherms: for the first one (6 > 6,),
p > 0, and for the second class (f < 6), the pressure may be both positive and
negative. Only in this temperature range, melt can exist in a stretched state. The

parameter 6 is determined via the equation

Hl(wsp(98)7 es) =0, (10.7)

which yields theta 6 ~ 0.844 and T = T.0, ~ 3029 K. Let us note, that the
parameters 7, and 7; are rather formal here, because diopside melt can decompose

partially at high temperatures, but they are employed only for the definition of the
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equation of state, which is used in the physically realistic range of temperatures and

pressurcs.

10.3.2. Determination of the work of critical pore formation and of the

nucleation rate

In order to determine the work of critical pore formation, governing the
nucleation process, both the thermodynamic driving force for nucleation and the value
of the surface tension has to be known. For the surface tension we choose here an

equation of the form [13, 14]

1 1)’
0 (wg, win, 0) = O(0) (— -~ —) . 5=2 (10.8)

where w, is a specific volume of the gas in the pore, wy, is a specific volume of the

melt, the function ©(#) is defined via

4-0
1 1
0(f) = A (w o w(rigm)) . (10.9)

Here A = 0.0333 J/ m?, which corresponds to the experimental value of the specific
surface energy, o = 0.377 J/ m? [8].
Similarly to [13,14], the basic equations employed for the determination of the

work, AG, of formation of a pore of radius R in the generalized Gibbs approach read

Ag(r, wg, wn, 0)
kgT

6
11
—3 <— — —> r? 4 2 f (wg, Wi, O)1° (10.10)

Wm  We
iﬂ(wma 9) _ M(w@ 9)
We PcUc

f(wg, wm, 0) = (wg, 0) — I(wn, 0) + , (10.11)

where the driving force of pore formation, Ag, and the critical pore size, r, in
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dimensionless form are employed. In detail, the following notations have been used

AG 160 1

. Q= 0(6)3 10.12
Ql’ 1 3 p%kBHTC ( ) Y ( )
R

2
—, R,=-0(0). 10.13
R fo=-000) (10.13)

Ag

r

The dependencies of the scaling factors {2; and R, on temperature are shown in
Fig. 10.5. For the chosen temperature, 7' = 870°C, their values are equal to {2; =
14.665 and R, = 1.027 nm. These values are specified in the figure by dashed curves.
These parameters tend to zero at ' = 7., but this limiting case is far beyond the
physically interesting temperature interval between the glass transition temperature,
Ty, and melting point, T},,. So, the analysis can be performed similarly with similar

results also for other temperatures within the range 7, < 1" < T},.

30 ; 1.5
g  Im
(e») :
o :
w .
oo 1027nm _|
20 : : 1 &
— €= ===
G N
10 105 =
1;
0 |§V 5 ! 0
300 100 2000 3000

Temperature, 7, K

Fig. 10.5. Dependencies of the scaling factors, €2; (left) and R, (right), on
temperature.

The Gibbs free energy surface for the metastable initial state has a typical saddle
shape at the critical point (see Fig 10.6). The saddle point position — supplying us

with the work of formation and the size of the critical pore — is determined by the set
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»

Saddle point,
AG,[kyT=153.8
R.=1.13 nm
p*= 682 kg/m’

Work of cluster formation, AG/k,T

Fig. 10.6. Dependence of work of bubble formation, AG/kgT, on the radius of the
bubble and the gas density in the bubble.

of equations

OAG(r, we, wn, 0)
or

0AG(r, we, wp, 0)
Owy

=0,

= 0. (10.14)

The dependencies of work of formation, size and gas density in the critical pore
on negative pressure are shown in Figs. 10.7,a-c. The red curves correspond to the
generalized Gibbs approach,while green curves refer to computations performed in the
framework of CNT [12,14,18]. Once the work of critical pore formation is known, the
following equation can be employed for the determination of the rate of nucleation,

J, of pores [19]

h 1 AG,
= Jy—-— — . 10.15
J J04l377 exp ( kBT> ( )

n(T) = 10~42™ 72505 [Pas] (10.16)
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Here h is Planck’s constant, [ ~ 2 - 107" m 10—, .
is the size parameter of the diffusing bui- 5 33: g % a)
lding molecules, which is equivalent to 5?103'%-%5 b -
£ . Ny £

the jump distance or the lattice parameter = 102:__E_A_G_C_/IEB_T_=_ 19.7 3 I
— parameters usually used in such kinetic § "ﬂ;"A'qcék'B'T':'S}LS """" |
analyses (see, e.g. [20,21]), and n(7T) is 10 O: TR TT——
the viscosity of the melt [20], for the heat- Pressure, MPa
treatment temperature 7' = 1143 K n = . : 5 b)
6.74 x 10° Pa s. ol i

Some uncertainty in the definition é : c
of the pre-exponential term, .Jy, will not g 132' _______________ AT
strongly affect the nucleation rate, the value o g: . . .
Jo = 10*! s7'm™3 has been used for the o= Pr;jffre, 1\_4613(20 00 o0
calculation [22]. In Fig. 10.9, dependencies ) T S
of the nucleation rates for generalized Gibbs . 103:"5"9*: e 2l
approach (red line) and CNT (green line) on %: 102-% é é
pressure for the same values of temperature E 10-‘“5 ;g Em
are shown. Utilizing Eq. (10.15), the followi- i . oom pc/w(gigh":(?ﬁl\;;-kg/m3 .
ng equation can be written then for the “TT0 T 20 a0 600 800

Pressure, MPa

number of pores nucleated in the stretched o
Fig. 10.7. a) Work of the critical

melt in a period of time, ¢, bubble formation, AG./kgT, as a
. function of negative pressure; b) Radi-

N(t) :/ J(t’)V(t’)dt’, (10.17) us of the critical bubble, R., as a

0 function of negative pressure; c) Gas

density in the critical bubble as a

where V' is the volume of the stretched melt. ) )
function of negative pressure.

Since the negative pressure p determines, to

a large extent, the thermodynamic barrier for nucleation (see Fig. 10.7a), its increase

with increasing thickness, H, of the crystalline layer leads to a strong increase of the
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nucleation rate with heat-treatment time, ¢, while V' weakly decreases.

—

S
S
(=]

—_

S
[S)
(=}

Spinodal

Nucleation rate, J, m 3¢71

=500 -600 =700 -800
Pressure, MPa

Fig. 10.8. Nucleation rate, J, as a function of negative pressure (red lines —
generalized Gibbs approach, green line — CNT).

As 1t was already noted, generally, only one pore appears in a stretched
melt since its fast growth eliminates the negative pressure and terminates further

nucleation. The first pore is formed at a time ¢ = t* defined by
N(t*) = 1. (10.18)

Here t* corresponds to the critical value of X* to be compared with the results as
detected in experiment
xro ezt (10.19)
a
where U = 0.672 pm/s is the growth rate of the crystalline layer [2].
To estimate the nucleation rate and then to perform the calculations by
Egs. (10.15)—(10.18), one needs to know the dependence of the negative pressure,
p, on the position of crystal-melt interface, X. As was noted in [2], at the beginning
the diopside crystals practically do not participate in the melt stretching, and only
at the moment of formation of continuous the diopside layer, it could stretch the

melt, and a switch to the wollastonite-like phase occurs (see Fig. 10.1). Therefore the
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thickness of the diopside crystal layer was considered as independent of the size of
the sample.

For the computations of the evolving elastic fields, we considered a sample of
spherical size (see [1] for details). Fig. 10.9 (blue line) shows the results of these
calculations versus 7, = R,/R, for a radius of the sphere estimated as Ry = a/2
(here R, is the radius of the spherical sample and R, is radius of the amorphous core).

After approaching some critical value of pressure, p*, that corresponds to X™ i.e.

s Pore formation, X "= 0.935
= 1000 |-p*=986MPa~Y
N9
N >k
% p *: Zgﬁgg: Fomation of
A P continuous-solid
% 500 mantle
]
2
=
)
(]
Z

0.9 092 094 09 098 1
Reduced size of amorphous core, 1, =R, /R,

Fig. 10.9. Dependence of the negative pressure on reduced size of amorphous core.
Red line — dependence p(X) as it is needed for nucleation of a pore according to the
generalized Gibbs approach, green line — according to CNT, blue line — calculation of

p(X) [1].

formation of the pore, negative pressure drops rapidly. Taking into account Eq. (10.19)
one can rewrite the condition of pore formation Eq. (10.18) as N(X*) = 1.

A comparison between the predictions of the value of X* via CNT and
experiment shows that CNT overestimates the work of critical bubble formation
(see [2] for details), and, vice versa, the generalized Gibbs approach slightly
underestimates the work of critical bubble formation, that is a pore is created at a
lower value of negative pressure. In order to arrive at a satisfactory agreement of
experimental values of X* with theoretical predictions, for CNT we have to increase
the negative pressure by a factor 1.356 (green line in Fig. 10.7), and for generalized
Gibbs approach we have to reduce the negative pressure by a factor 0.939 (red line

in Fig. 10.7). Such reduction of the theoretically estimated pressure can be easily
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explained by the difference in the shapes of the samples studied theoretically [1] and

experimentally [2].
Fig. 10.10 shows the dependence of |
X on the volume of sample, circles show °%f
experimental data, the curve is calculated by i 092l
Egs. (10.15)—(10.19). The thickness of the
0.91 1

0 10 20 30 40 50 60 70

3 3

diopside crystal layer, X/, was used here
Volume, a°, mm

as a fit parameter, the best result is obtained
Fig. 10.10. Dependence of X* on

the volume of the sample. Circles
good agreement with the experimental data show experimental data, the curve is
[2]. calculated by Egs. (10.15)—(10.19).

for a value X/, = 27.1 pm, which is in

10.4. Summary of results and discussion

The generalized Gibbs approach leads to much smaller values of the work of
critical bubble formation (AG. = 56.8 kgT'), as compared to CNT, being nearly
identical to the value required to predict the experimental results quantitatively
exactly. The result obtained via CNT (AG. = 121.9 kgT, see Fig. 10.7a) is much
higher leading to a huge difference of the values of the steady-state nucleation
rates obtained via the two different methods (Fig. 10.7d). So, the generalized Gibbs
approach provides a more adequate description of the process of pore nucleation as
compared with the classical nucleation theory and allows one also in a quantitatively
correct way to interpret pore formation in the considered elastically stretched liquids
as cavitation-like processes caused by elastic stresses.

Note that our theoretical analysis was performed for spherical geometry, but
the experiments were performed on cubic samples. The difference in the shapes of
the samples studied theoretically and experimentally is expected to be origin for the

remaining quantitative deviation of theoretical and experimental results. In order to



A.S. Abyzov et al. / Journal of Non-Crystalline Solids 357 (2011) 34743479 358

verify this assumption, now we perform similar experiments for samples of different

shapes (spheres and thin plates) for a more precise comparison of the results.

10.5. Conclusions

The switch of surface crystallization of diopside melts from diopside crystals to
a wollastonite-like crystalline phase and pore formation in the glass-forming diopside
melt can be qualitatively and quantitatively described as the result of elastic stresses
caused by crystallization. In contrast to CNT, the generalized Gibbs approach has
shown to be capable of giving not only a qualitative but even a quantitatively correct
interpretation of this process. In this way, phase switch and pore formation due to
crystallization is a general phenomenon which has to be taken properly into account
in any processes like sintering, fabrication of glass-ceramic materials involving partial

crystallization of glass powders.
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10.6. BucnoBku 10 po3ainay 10

Pesynbpratu mociigkeHb, MPEACTABICHUX Yy JAHOMY PO3/iii, OIyOJiKOBaHO
B ctarTi [10] (Jlomarox A. Cmumcok myOmikaiiii 3q00yBada 3a TEMOIO AUCEpTallii).
[IpoBeneHo TeopeTWYHUI aHai3 MPOIECY 3apO/PKCHHS TOpHU y MajuxX 3pa3Kax
MIEPEOX0JI0KEHOT AIOTICUAHOI PIIMHK Y MPOIECi KPUCTali3allii MOBEpXHEBOIO MIapy
3pazka. Yepes HEBIANOBIAHICTh TYCTHHM KPHUCTAIIYHOI Ta piakoi (a3 3pocTaHHsS
KPUCTAIIYHOTIO 1Iapy Ha MOBEPXHI 3pa3Ka MPU3BOJUTH JI0 PIBHOMIPHOIO pO3TATYBaHHS
1HKAICyJIbOBAHOI PIAMHM 1, MOAIOHO 0 KaBiTallli B IPOCTUX PIAMHAX, 10 3aPOKCHHS
omuiei mopu. Cepell OCHOBHHMX PE3YJbTaTiB y SKOCTI BHCHOBKIB MO)XHA BHJILTUTH
HACTYTIHI:

e OO6uucinena podora ¢GopMyBaHHS MTOPH KPUTUIHOTO PO3MIPY B 3aJIEKHOCTI
BiJl HETaTUBHOTO THCKY Ta Yac OYiKyBaHHS IMEPIIOTO KPUTUYHOTO 3apojka (TIOpH) B

MpoI1IeCl 3pOCTaHHS KPUCTAIIIYHOTO I1apy Ha TOBEPXHI 3pa3kKa.

e [lokazano, mo y3aragbHeHHH miaxia ['166ca mpuBOIUTE 10 KIJIBKICHO IMpa-
BUJILHOTO OIKCY MPOILIECY 3aPOIKEHHS TIOPH Y MEPEOXOIOMKEHOT TIOTICUIHOI PITUHU
1 T0O3BOJIUB TMOSICHUTH MOXO/KE€HHSI BHYTPILIHBOTPAHYIISPHIX Mip, 110 YTBOPIOKOTHCS

MIPU CHIKaHHI KePaMIKHU.
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BUCHOBKHA

VY nuceprartiiiHiii poOoTi MoOyaOBaHAa HOBa Teopls HyKI€alli, y3aeanbHeHuu
memoo [i66ca, sika, Ha BIIMIHY BiJl KJIaCHYHOI Teopii HyKJjearlii, Ja€ MOXIUBICTh
aHaJi3y MpoIecy yTBOPEHHS HOBOI (a3 He TUIbKU MOoOMM3y OiHOAami, aje TaKoX Y
HeCTaOUIbHOMY TTOYAaTKOBOMY CTaH1 MOOIU3y kiaacuunoi cninodani. OCHOBHI pe3yib-
TaTH JUCEPTALIHOI poOOTH cPOPMYIHOBAHI B HACTYITHUX MTyHKTaX.

1. Tloka3zaHo, mo HykJjeamis, TOOTO mepiia craais (GopMyBaHHS KIAcTEpiB
HOBOT1 (Da3u, MOYMHAIOYM 3 METACTAOUTbHUX IMOYaTKOBUX CTaHIB BUSBIISE BIACTUBOCTI,
1[0 HaraaylooTh CIHIHOAQJIBHUN poO3Maj, Xo4ya HAsBHICTh aKTHUBalliiHOro Oap’epa

BIZIPI3HSE MPOIIEC HyKJIeallii BiJl KJIACHYHOTO CIIHOAJIBLHOTO PO3MAy.

2. ITloka3aHo, 1110 YTBOpeHHS (pa3 y HeCTaOUTbHUX MOYATKOBUX CTaHaX MOOJINU3Y
KJIACUYHOI CniHo0ai MOXKE TIPOTIKATU Yepe3 akmusayiunutl 6ap’ep, He3BaKalOIu Ha
TE, 10 y IbOMY BUNAJKY 3Hau€HHS poOoTH (POpMYBaHHS KPUTHYHOTO KJacTepa, IIo

BIJIMOB1/Ia€ CiJUTOBOI TOYIll TEPMOAMHAMIYHOTO IMOTEHIIIATY, TOPIBHIOE HYJIIO;.

3. HocnimkeHa cemepoceHHa HyKleayisi Ha TUIAHAPHIM TBEpIid MOBEPXHI y
MOJIei OTHOKOMITOHEHTHOT piauHU BaH Jep Baambca. [lokazano, 110 KOHTAKTHHMA
KyT 3MOUYyBaHHs 1 KaraJiTUUYHUU (akTop (pakrop 3MEHIICHHS POOOTH YTBOPEHHS
KJlacTepa HOBOi (pa3u KPUTHUYHOIO PO3MIPYy Ha TBEPIOI MOBEPXHI) TeTEPOTreHHOT
HyKJIeallil CTalTh 3aJIeKHUMH Bl CTYHEHS METacTaOlLIbHOCTI (MEePEOXOIOKEHHS
a0o0 meperpiBaHHsl) pIAMHUA. Y BHUMNAAKYy YTBOPEHHS KpamneibKku B TEpeHaCHUEHIN
napi Ha rigpodoOHiit TOBEpXHI Ta YyTBOPEHHS Oyab0aIIOK y piAnHI HA TiApOodITbHINA
MOBEPXHI €(eKT TeTepOreHHOCTI He3HaYHUH. B albrepHaTUBHUX BUIIAJIKaX KOHJICH-
cauii Kpamnelibku Ha TiApoQUIbHINA MOBEPXHI Ta YTBOpPEHHS OynbOaIlloK y piiMHI Ha
riipodoOHIi MOBEPXHI KOHMAKMHUL KYMA 3MOYYEAHHs 3MEHUIY€EThCA, KaTaJllTHYHA
AKTUBHICTh MOBEPXHI 30UIBIIYETHCS, 1, TAKUM UYHUHOM, HYKJIEAI[isl IMOCHIIIOETHCS.

DaKTUYHO, Y I[bOMY BUTIAJKY ICHYBAaHHS TBEPJOI MOBEPXHI MPU3BOAUTH J0 3HAYHOTO
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3MIIIICHHS CITIHOAAJII JI0 MCHIIHUX 3HAYCHb MEPECHUYCHHS IMOPIBHSAHO 3 TOMOTECHHOIO
HYyKJIealli€ro, TOOTO TeTeporeHHa CIHOAalb HAOIMKaeThCsl 10 O1HOMAMI, a obnacms

MemacmaobinbHOCMI 38)HCYEMbCS 3a PAXYHOK po3uupents obiacmi HecmadilbHOCMA.

4. Bmepie JDoCHiKeHa eemepocenHa HyKleayiss Ha TUIAHApHIM TBEpAid Io-
BEPXHI Yy MOl peryaspHoro OiHapHoOro po3uuHy. [lokazano, MO y BUNAAKY
YTBOPEHHSI KJIACTEPIB HOBOI (pa3y HA MOBEPXHI 3 HU3bKOIO 3MOYYBAHICTIO (KOHTAKTHUN
KkyT Outbiie 90°) karamiTUYHA aKTUBHICTH TBEPJIOI MOBEPXHI Maja. B ajnprepHaTHB-
HOMY BHIMAJIKy BHCOKOi 3MOUyBaHOCTI (KOHTakTHHM KyT MeHiie 90°) i1HTEHCUBHICTh
HyKJIeallil 3Ha4HO MOCHJIIOETHCS TBEPIOI MOBEPXHEI. TakuM YUHOM, Y I[bOMY
BUIIAJIKY, SIK 1 y P1JIMHI BaH Jiep Baanbca, rereporeHHa criHojaib HAOIMKAETCS 10
01HOZaI, @ 00JACTh METACTaOUIBHOCTI 3BY)KYETHCS 3a PAXyHOK PO3LIMPEHHS 00JacTl

HECTAaOUTBHOCTI.

5. PosmnsnyTOo edextu cemepocennoi Hykneayii Ha KOHIUHIiL nopu y MOAEII
OJHOKOMITOHEHTHOI piIMHH BaH JAep Baanbca Ta y Momeni peryaspHoro OiHapHOTO
po3uuny. [lokazano, MO KOHTAKTHUM KyT Ta KaTaTITHYHUN (aKTOp I HyKjIearlii Ha
nedexTHI MOBEPXHI 3alie)KaTh BiJ CTYNMEHS MeTacTaOlLIbHOCTI (ITepeoXOJIOKEHHS,
neperpiBaHHsl a00 MepecudYeHHs po3uuHy). Y pasi YTBOPEHHsI KJjacTepiB HOBOI (a3u
Ha riapodUIbHIA MOBEPXHI KOHIYHOT MOPH IBUJKICTh HYKJI€alli 3HAYHO 3011bIIYETHCS
B IMOPIBHSHHI 3 BUMAJKOM IUTaHApHINA noBepxHi. HasBHICTH nedekTy Ha riapouibHIi
MOBEPXHI MPU3BOJUTH /10 3HAUHOTO 3CYBY CIIHOJAJ — 31 3MEHILIEHHSIM KyTa KOHYycCa
IIOpH TETEPOTCHHA CIIIHOAAIb HAOIMKAEThCs A0 OiHOmami, 1 o0iacTh MeracTadisib-
HOCTI 3BYXKYEThCS 332 PaXyHOK pO3IIUPEHHs oOynacti HectabuibHOCTI. [lokazano, 110
ICHY€ epanuyHull Kym KOHyca nopu, MEHII SKoro (popMyBaHHS HOBOI (a3 MPOXOAUTH

6e30ap’epHo.

6. TeopeTHuHO MOCHIHKEHO MpoIeC 3aKUMAHHS PIAKOI PTYTi Yy IMITYJbCHHX
JoKepeslax HeUTPOHIB, IO MPAIOI0Th Ha peakilii ckoitoBaHHs (Spallation Neutron
Source), npu ancopOyBaHHI NPOTOHHOIO ITyyka; OoO4HClieHa poOoTa (hopMyBaHHS

KPUTUYIHUX KJIAacTepiB (MIKpOOYIbOAIIOK Mapy PTYTi) Ta MIBUIAKICTH 1X 3apOIKEHHS.
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Ilokazano, 110 WBUAKICTH TOMOTEHHOTO 3apOJKEHHS YK€ HU3bKa IPU PO3IVISHYTUX
YMOBax IpOLIECY HaBiThb MICHs aAcopOlii AEKUIbKOX IMIYJIbCIB MPOTOHIB, TOMY

WMOBIPHICTh KaBITalIMHUX MPOLIECIB HE3HAUHA.

7. IlpoBeneHO TEOPETHUUHUI aHaJi3 MPOIECY 3apOKEHHS TMOPU Yy MaJMX
3pa3kax MepeoXO0KEHOT AIONCUAHOI PIIMHMA Yy TPOIECI KpHUCTati3allii moBEepXHe-
BOro mapy 3paska. OOuuciieHa poboTa (HOpMyBaHHS MOPU KPUTUYHOTO PO3MIPY B
3aJIeKHOCTI BiJ] HETAaTUBHOTO TUCKY Ta Yac O4iKYBaHHS MEPIIOTO KPUTHUHOTO 3apOJIKa
(mopu) B mpoIieci 3poCTaHHsI KPUCTATIYHOTO IIapy Ha MOBEPXHI 3pa3ka. AHaI3 I[bOTO
IpolLecy 3 TOUKH 30py KJIACMYHOT Teopii HyKJIeallli a€ sIKICHO MPaBWJIbHUN Pe3yibTar,
OJTHAK KUIbKICHO TEOPETWYHI OLIHKM Ta EKCIIePUMEHTAJbHI JaHl BiJIPI3HSIIOTHCS.
[Tokazano, o y3zacanvrenuti nioxio 1i6b6ca npuzeooums 00 KLIbKICHO NPABUIbHOZO
onucy TPOLECY 3apOPKEHHS TOPH Y TEePEOXOJIOKEHOT MIONCHUAHOI PIAUHH, IO
JI03BOJISIE TIOSICHUTH TOXO/DKEHHSI BHYTPINTHBOTPAHYISIPHIX TP, IO YTBOPIOIOTHCA

IIPH CITIKaHHI KepaMiKH.

Takum YmHOM, yCi TMMOCTaBJICHI 3aBIaHHS BHUKOHAHI, 1 MeTa JIUCEpTaIiiHOI
poOOTH TOCSITHYTA.

Pesynbrati 1OCHIAKEHb JOMOBHIOIOTH 1 PO3LIMPIOIOTh HAsIBHI YSBJIEHHS PO
MexaH13MH (Ha30BUX MEPEXO/IiB MepIIoro poay. BoHu BU3HAYaIOTh KIHETUKY MPOIIECIB
CaMOCTPYKTYPYBaHHSI PEYOBHMHHU BlJ HAHOPO3MIPHHUX [0 TaJIAKTUYHUX PO3MIPIB 13
IIMPOKUM CIEKTPOM 3aCTOCYyBaHb SK y (yHIAMEHTAIbHHUX, TaK 1 B TPUKIATHUAX
nociipkeHHsx ((i3uka, acTpoHOMIs, Ximis, O10J0TisI, METEOpOJIOTis, MEIUIIMHA,
Mareplajo3HaBCTBO) Ta TEXHOJOTI — KOHJEHCAIlls Ta KUIIHHS, Cerperamis y TBepIux
Ta PIIAKUX po3uMHax, abo Kpucrami3amis Ta IaBieHHs. JlociiKeHHs, MPOBeIeHI
B JMCepTaIllii, € aKTyalbHUMH Ta MaioTh K (pyHIaMEHTaNbHE, TaK 1 TPUKIIATHE

3HAYCHHA.
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IHonsiku

Ha 3akiHueHHs XO4y BHUCJIOBHUTH MOJSKY MOEMY HAyKOBOMY KOHCYJIBTaHTY,
JOKTOPY (pi3MKO-MaTeMaTHYHUX Hayk, npodecopy, akagemiky HAH VYkpainu Omne-
kcanapy CrenanoBuuy bakaro 3a 1yke CTUMYIIOIOUY MIATPUMKY, JOMOMOrY B poOOTI
HaJl JUCEepTali€l0, OOroBOpPEHHs MPOOJIEeM Cyd4acHOI TeOopeTU4yHOl (Hi3uKH, Teopii
HyKJ1earlii Ta ¢i3uKu TBEpOoro TiJa.

Tako BHCIIOBIIIOIO TMOASKY CBOIM ITOCTIMHHMM CITIBABTOpaM, ﬁopHy [Imenb-
nepy (Jirn W. P. Schmelzer, Germany), Jleoniny Mukonaitopuay JlaBuaoBy Ta
Bonogumupy MuxaitnoBuuy @okKiHy 3a IUIJIHY CHIBOPALO, Y4acTh B MOCTAaHOBIII
HayKOBHX Mpo0sieM Ta 0OTOBOPEHHI PE3YJIbTaTIB.

S mupo BASYHMIA BCIM CIIBPOOITHHKAM [HCTUTYTY TeOpeTHYHOT (Pi3UKH iMe-

Hi O. [. Axie3epa 3a yHIKalIbHY TBOpUY aTrMocdepy.
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