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In the paper the quadrupole lens with a controlled sextupole component is considered. The results of magnetic field
modeling for various modes of operations of a lens are shown. The required field is realized with the help of the
special pole shape and by the additional excitation windings. The lens described is supposed to be used in the com-
pact cyclic accelerators, sources of synchrotron and X-ray radiation.
PACS numbers: 02.30.Dk, 02.30.Em

1  INTRODUCTION

There are many designs and operating installations,
in which the quadrupole lenses satisfy additional func-
tions. So, for example, in compact X-ray radiant syn-
chrotron (ISI-800 [1], N-100 [2]) it is planed to use
quadrupole lenses with a sextupole component. In the
process, the range of the sextupole component variation
for all modes of operations, as a rule, is either positive
or negative concerning the quadrupole component. Usu-
ally two methods of realization of a sextupole compo-
nent are used. One of them is optimization of a pole
shape, the second is location inside a lens and on yoke,
an additional current coils [3]. By fitting the coil cur-
rents it is possible to achieve a required sextupole com-
ponent. Combining an invariable part of a sextupole
component (by pole shape) with controllable one (by
currents) is probably essential to increase the sextupole
component magnitude.

2  MATHEMATICAL MODEL FOR
CALCULATION OF THE POLE SHAPE

For calculation of a quadrupole lens with a sextupole
component the following assumption is accepted:
•  the field on a pole does not exceed 1Т and therefore

it is possible to use an approximation µ=∞;
•  the pole shape is calculated without taking into ac-

count the edge fields and, therefore, lens can be de-
scribed in the terms of potential functions and with
usage of a complex plane.
As is known the complex potential of a quad-

rupole+sextupole field on a complex plane ω=x+iy
looks like:
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Constancy of the imaginary part of the complex po-
tential (the scalar potential) sets equipotential lines.
These lines can be obtained by a solution of equation (1)
relative to ω. This solution has 3 branches correspond-
ing to 3 poles with identical potentials:
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Expressions (2-4) are parametric representation of
the pole shape for a quadrupole lens with a sextupole
component. As a parameter in these expressions the ab-
scissa of a complex plane z = (t+is) is used. Having set
particular values s=const, it is possible to obtain the
shape of poles of a required multipole (see Fig. 1).
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Fig. 1. The pole shapes of the “ideal” quad-
rupole+sextupole lens. Measurements are in meters.

G2=20T/m, G3=35T/m2.

From reasons of a symmetry it is obvious, that the
multipole under consideration is symmetrical concern-
ing an axis 0X. Both quadrupole crosses are symmetri-
cal relative to an axis [Const, Y]. For us the practical
meaning has only the area (0, 0). Therefore for descrip-
tion of the qudrupole+sextupole installation we shall
terminate solutions (2) and (4) (see Fig. 2).

Expression (2) is formal maps a rectilinear band
0≤Im(z)≤H on a band, whose upper coast is formed by a
curve L1 (see Fig. 2), obtained with the help of expres-
sion (2) with a set value of a scalar potential
(s=Im(z)=H) on the upper coast of a band. The lower
coast of a band is formed by a curve S and ray [0, ∞].
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Fig. 2. The upper half of “ideal” multipole.

This can be obtained from expression (2) for a case
of a scalar potential equal to zero (s=Im(z)=0). Simi-
larly, expression (4) is the map of the rectilinear band
0≤Im(z)≤H on a band, whose upper coast is formed by a
curve L2 (see Fig. 2), obtained with the help of expres-
sion (4) with a set value of a scalar potential
(s=Im(z)=-H) on the upper coast of a band. The lower
coast of a band is formed by a curve S and ray [-∞, 0],
that is obtained from expression (4) for a case of a sca-
lar potential equal to zero (s=Im(z)=0). The value of a
scalar potential Н can be found from a relation

)(1 1 iHWR = , (5)
associating a point (0, iH) of a plane z with a point (Rx,
Ry; |Rx, Ry | = R1) of a plane ω. The value R2 can be
obtained from the expression:

)(2 3 iHWR = , (6)
In practical manufacturing a lens with given values

G2, G3 by formulas (2, 4) there are difficulties, con-
nected with that the pole can not have an infinite extent.
A problem where and how to break off a pole providing
the practical realization of a lens, we shall solve with
the help of the approach explained in operations [3, 4].
In frameworks of this approach the function being in-
verse to complex potential realizing the map of a recti-
linear band on a polar band is searched. This function
looks like:
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Where the function ν0(t) is an inclination of the
lower coast of a polar band (see Fig. 2); the function
νH(t) is an inclination of the upper coast of the polar
band (see Fig. 2).

And it is possible to show that to implement a re-
quired field (1) in the 1-st quadrant of a lens (see
Fig. 2), it is necessary, that the requirements were ful-
filled:
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For the second quadrant these requirements look
like:
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Using the realizable pole which is not extending to
infinity, the equalities (8, 9) can be realized only ap-
proximately in the area of a point (0, 0). In a real lens
the inclination of a pole shape (νH(t)) is set as follows:
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Such representation of the inclination of the pole
shapes describes the pole with rectilinear outside incli-
nations and inside curvilinear segment between points
а1, а2. Thus, having selected coefficients qi so that the
function inverse to complex potential ω(z) (7) be coin-
cided with similar functions W1(z) (2) and W2 (z) (4) in
the corresponding quadrant, with a necessary exactitude
it is possible to realize a quadrupole lens with a set
sextupole component.

3  CALCULATION OF THE LENS

For calculation of the lens following parameters (for
ISI-800 [2]) are required:
Quadrupole gradient G2 20Т/m.
Sextupole gradient G3 0÷70Т/m2.
Aperture radius 0.035м.
Effective length 0.3м.

Fig. 3. The cross-section of the upper half of lens.

Portion of a sextupole gradient formed by the pole
shape, will be defined by the magnitude 35Т/m2. The
pole shape, defined coordinates of points of segments
[а1, а2 and b1, b2] (see Fig. 3), was obtained by the
method explained in the previous item for 2 quadrants.
The outside inclination are selected identical and are
equal to 14°. Compatibility of current windings S1, S2
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(see. Fig. 3) allows to realize a sextupole gradient in the
area ±40 Т/m2. The winding S1, located near to the pole
gives the contribution to the lens field of shown in
Fig. 4, curve S1.

The winding S2 gives the contribution to the lens
field shown in Fig. 4, curve S2. From the figure it is
senn, that the dipole component of coils has different
signs, while the sextupole component has some signs.
Switching in appropriate way these coils raise the sex-
tupole component of the field in lens (see Fig. 4, curve
S2+S1).
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Fig. 4. Making sextupole component in a quad-
rupole lens.

The quality of a lens field is defined first of all by
the value of the octopole component. In Table 1 listed
are the values of the basic nonlinearities of the field
(B= ∑

=2i

i
i zG ) at various values of sextupole component.

In table1 the currents exciting the winding Q, S1 and S2
(see Fig. 2) are listed also.

Table 1.
Parameter G3.=0 Т/m2 G3.=35 Т/m2 G3.=70 Т/m2

G2, T/m 20 20 20
G4, T/m3 -110 -48 36
G5, T/m4 -24·104 0.24·104 50·104

G6, T/m5 -101·106 1.4·106 2.6·106

Cur. .Q,A 10000 10000 10000
Cur. S1,A 500 0 -500
Cur. S2,A 423 0 -423
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G2 2009.10299 ±0.35383
G3 -1.63657 ±0.58977
G4 -1.11316 ±0.17201
G5 -24.61144 ±--
G6 -101.44575 ±--
G7 106.69305 ±2.8863
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Fig. 5. Distribution of the gradient in lens in a mode of
compensated sextupole component.

Fig. 5 shows the distribution of a gradient in a
working area for a mode, when the sextupole compo-
nent of fields is equal to zero.

In Table 2 the basic parameters of a lens are given.

Таble 2. Parameters of quadrupole lens with sextupole
component

Parameter Value
Range of modification of the quadrupole
gradient Gmin÷Gmax T/m

0÷20

Range of modification of the sextupole
gradient G3min÷G3max T/m2

0÷70

Working area mm×mm ±20×±9
Aperture radius, mm 35
The maximum power of the basic mag-
netizing coil, kw

6.5

4 parallel branches of cooling
Overheating the water in the basic
winding, °C

11

Current of the basic winding, А 600
Voltage drop, V. 11
Mass of the lens, kg 35+550

4  CONCLUSION

The lens with calculated parameters completely
meets the requirements following from dynamics of
particles in the installation ISI-800. The application of a
quadrupole lens with a controllable sextupole compo-
nent will allow to reduce the requirements to correcting
devices of cyclic accelerators.
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