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CHAOTIC DYNAMICS OF BEAM PARTICLE INTERACTING
WITH STANDING WAVE FIELD OF SHORT CAVITY
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Chaotic dynamics of nonrelativistic beam particles interacting with a standing wave field of a short cavity under
conditions closed to Cherenkov’s resonance was studied. The criterion of development of stochastic beam particle
movement instability in the standing wave field was obtained. It was shown that at small field amplitude being ex-
cited in the cavity with the beam dynamics of beam particles is not regular because of overlapping the parametric
resonanses. This causes appearance of back particles, i.e., the particles leaving the cavity across input end and re-
sults in decreasing the electron efficiency because of coherently emitting bunch distortion.
PACS numbers: 05.45.Pq, 52.50.Sw, 84.40.Az, 29.27.Bd

1  INTRODUCTION

The spectrum of oscillations excited by the beam
moving in a slow-wave cavity may be considered as
discrete if the linear increment ωγ ∆<< , where ω∆  is
the distance between natural cavity frequencies. In the
region where phase velocities closed to the beam veloc-
ity (Cherenkov’s resonance)1, kVo∆≈∆ω , oV  is the
initial beam velocity, Lk /π∝∆ . This means that for
the time of particle beam passing through the cavity

oVLT /=  the field amplitude does not change2:
πγ <<T  (“short” cavity of slow waves). Significant

increase of the field amplitude in the cavity may be
reached due to the effect of accumulation of the energy
lost by incoming, in-sequence, beam particles. The high
quality of the cavity is required.

The process of regular oscillation excitation in the
“short” slow-wave cavity by the magnetized electron
beam of a low density in the detuning region closed to
Cherenkov’s resonance qualitatively consists in the fol-
lowing. At first, the particles incoming into the cavity
transmit a low part of their kinetic energy to the field
and rapidly leave the latter. The field amplitude growths
with the increment γ . In time the part of beam particles
are trapped by the wave excited by the beam. The
trapped particles being in the accelerating phase rapidly
leave the cavity. The particle being in the moderated
phase gather in bunches which “live” for a long time in
the cavity, displacing along the phase of excited field
they transmit their kinetic energy to the field and leave
the cavity. The field growth is over when for the time of
flight through the cavity the bunches formed because of
interaction with the field can accomplish approximately
the half phase oscillation:

π≈Ω Tph , mEkeph /||2 =Ω .
Approximately fourth part of the phase oscillation

                                                          
1 In the case of the plasma layer kVo∆≈∆ω , where

Lk /π∝∆ , L  is the cavity length. In the case when the ca-

vity is filled with a dielectric: kVo∆≈∆ω , Lk /2πζ∝∆ ,

where 1<<ζ , aL /∝ζ , or La /∝ζ , a - radius.
2 For the cavity filled with a dielectric 1<<ζ : πζγ 2<<T .

corresponds to the maximum electron efficiency. These
observations allow to estimate the maximum amplitude
of the wave field excited in the cavity (exact theory see
in [1]: )||/(2

max LenmVE oπ∝ , where n is the mode
number. The maximum energy losses are reached at

)||4/(2
max LenmVE oπη ∝ .

The beam particles in the cavity move in the field of
two slow waves – straight one propagating along the
beam and back one propagating opposite to the beam.
Their dynamics is stochastic if the Cherenkov’s reso-
nances corresponding to interaction between straight
and opposite waves will be overlapped:

)||4/(2 neLmE nov πω= , where nω  is the frequency of
excited oscillations. It is easy seen that for n ~ 1 maxE
may be higher then ovE 3. In this case the beam particles
move not regularly. This leads, firstly, to appearance of
back particles which leave the cavity through the input
end (they may occur in the region of the phase space
with negative velocities, in particular they may be
trapped by the back wave), secondly, to decrease of the
efficiency of field interaction with the field of excited
oscillations, because of total or particular distortion of
coherently emitting bunches, thirdly, the amplitude of
the beam excited field is defined by the not regular
mechanism considered above, but by the chaotic dy-
namics of beam particles4. Chaotic dynamics does not
influence on characteristics of the system if the time of
split correlation is more then the time-of-flight.

The presented picture of the beam- cavity interaction
is qualitative. Below, in particular, it is shown that the
chaotic dynamics of beam particles is developed at
smaller field amplitudes due to existing parametric
resonances.

                                                          
3 In [2] it was shown, that at deviation of the initial velocity

oV  from the exact synchronism ( pho VV = ) maxE  increases
more than by one order of magnitude, see also [3, 4].
4 In particular, when the electromagnetic wave is excited by
the oscillator beam in the infinite space, with a rather high
beam density, and the amplitude of the field being excited is
so large that the cyclotron resonances are overlapped, than this
amplitude is settled at the level, which is defined by a criterion
of overlapping [5].
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2  EQUATIONS, CALCULATION

To consider the “short” cavity excitation the given
field approximation is sufficient [3, 4]. The equations of
beam particle movement in the field of standing cavity
wave (n=1) are as follows:

)/cos()/cos( 21 phph VV ξτµξτµξ +−−−=!! ,    (1)
where t1ωτ = , oVz /1ωξ = , phV/ξτ −=Φ ,

)/(|| 1 ojj VmEe ωµ = , )/( 11 oph VkV ω= , oz VVv /= .
Assuming that the Cherenkov’s resonance condition is
not satisfied the solutions can be presented as

ξξτξ ~ˆ ++= ov , where ξ̂  is slow, ξ~  is fast. The per-
turbation theory gives:
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1 −Ω= phVa µ , )/( 2

21 +Ω= phVb µ ,

phpho VVv /)( ±=Ω ± , +− Ω+Ω= pkG pk , . Under the
resonance conditions 0, =pkG , ( ,0≠k  0≠p ) the

equation for ξ̂  becomes as a mathematical pendulum
equation, for half-width we obtain:

)/(2 ,, pkVW phpkpk +=Ξ . If 0=p , pho Vv = , then

)4/(2 21, phophok VJV µµ=Ξ . The distance between

resonances is 
pk
pk
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,δ . The reso-

nances are overlapped if >Ξ+Ξ ′′ pkpk ,,
pk
pk

,
, ′′δ . The results

solving (1) are presented as a Poincare section in
Fig. 1-6 ( 21 µµ = ). It is seen that at relatively small
field amplitude values the parametric resonances are
overlapped and large stochastic regions are arising.

At small field amplitudes when parametric reso-
nances are not overlapped the beam particles cannot
occur in the phase space where 0<v . They leave the
cavity through the output end. In the process of interac-
tion between the continuously injected beam and the
cavity field, its amplitude is growing that cause the
phase space area increasing where the particle dynamics
is not regular. In this case a part of particles which are
got this region increases. The beam particles being in
the phase space with nonregular dynamics can leave
cavity through the input end and get the phase space
area where 0<v . The stochastic instability is essential
if the correlation split time
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δτ  is more less then the

time of flight of beam particles through the cavity
T=π phV . Here the Cherenkov’s resonance is chosen as
a main one, the distance between the main resonance
and neighboring parametric resonances k', p' is chosen
as a resonance distance. When cτ  << T the beam parti-
cles “forget” about the initial phase, do not participate in
the coherently emitting bunches. Besides, the spread of

beam particle velocities increases (stochastic heating).
This results in decreasing of the efficiency of beam in-
teraction with the cavity field. In this case the large
group of particles must leave the cavity across the input
end. At cτ  ≈  T one should expect the appearance of
back particles. When cτ  ≈  T the field amplitudes corre-
spond to beginning of distortion of the bunches formed
due to interaction with the bunch wave, that leads to the
fast electron efficiency decreasing.

Fig. 1. n=1, phV =1.01, µ =0.1.

Fig. 2. n=1, phV =1.01, µ =0.14.

Fig. 3. n=1, phV =0.7, µ =0.067.

Fig. 4. n=1, phV =0.7, µ =0.1.

Fig. 5. n=1, phV =0.5, µ =0.05.
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Fig. 6. n=1, phV =0.5, µ =0.1.

Numerical simulation confirms this picture. Solution
(1) was made by the Dorman-Pierce method with step
choosing for 200 particles with identical initial veloci-
ties. The particles are uniformly placed along the phases
for different mode numbers n = {1, 2, 3, 4, 5}. The cal-
culation result is the electron efficiency as a function of
µ  (Fig. 7, n=1). The vertical lines in this figure point
out the field amplitudes when back particles are ap-
peared, digits point out phV . At phV =0.8 the maximal
electron efficiency value ~ 0.13 is reached at µ =0.198.
At µ  = 0.24 the back particles appear. At µ >0.27 the
electron efficiency becomes negative, i.e., the beam
particles in average are accelerated by the given cavity
field. The value µ =0.27 corresponds to the maximum
field amplitude which can exist in the cavity without
losses as a result of interaction with the beam.

Fig. 7. n=1. Electron efficiency versus field ampli-
tude.

In this case the dynamics of some group of particles
is nonregular, a large group of particles leave the cavity

through the input end. At phV =0.60 a maximal electron
efficiency of ~ 0.14 is reached at µ =0.277. The back
particles appear at µ =0.283. At µ >0.33 the electron
efficiency is negative. At phV =0.50 the maximal value
of electron efficiency is reached when µ =0.37. The
back particles appear at µ =0.373. The field amplitudes
at which the back particles appear can be estimated
from the condition Tc ≈τ , where cτ  is defined at
k' = p' = 1. In this case the following resonances are
overlapped: Cherenkov’s resonance for straight wave,
parametric resonance for which 0=v , Cherenkov’s
resonance on the back wave. These estimations coincide
with simulation results. The back particles, as in the
case of interaction with a primary mode, in interaction
with individual second, third and fourth modes, appear
at field amplitudes when Cherenkov’s and parametric
resonances are overlapped and nonlinear resonances for
straight and back waves are overlapped too. However,
in this case the Cherenkov’s resonances are overlapped
weakly, correlation split time due to Cherenkov’s reso-
nances overlapping exceeds the time of particle flight
through the cavity, while the correlation split time due
to overlapping the Cherenkov’s and parametric reso-
nances at k'=p'=1 approximately equals the time-of-
flight.
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