ПЛАЗМЕННЫЙ УСКОРИТЕЛЬ С АНОДНЫМ СЛОЕМ ДЛЯ ОБРАБОТКИ ПОВЕРХНОСТИ МАТЕРИАЛОВ

А.А. Гончаров, А.Н. Добровольский, С.Н. Павлов, И.М. Проценко, Е.Г. Костин Институт физики Национальной Академии наук Украины, г.Киев, Украина, dobr@iop.kiev.ua

Современные технологии магнетронного напыления технологических и декоративных покрытий сегодня широко используются во всем мире. Наряду с использованием вакуумно-дуговых методов обработки они позволяют отказаться от экологически вредных химических методов получения слоев с заданными параметрами. Для получения качественных покрытий необходима предварительная очистка и активация поверхности непосредственно перед напылением. Наиболее логичным решением представляется использование для этих целей плазменных источников близкого к магнетронам типа. Представляемая статья посвящена рассмотрению возможности работы в едином технологическом цикле с магнетроном различных модификаций плазменного ускорителя с анодным слоем. Представленные результаты демонстрируют высокую эффективность таких устройств и возможность создания технологических линий по непрерывной обработке поверхностей с различной геометрией. Скорости травления по меди (больше 1 нм/с) не уступают лучшим известным данным для источников кауфмановского типа. Диапазон рабочих давлений (до 1,2-3*10⁻³ мм рт.ст.) позволяет их размещать в общей камере с магнетроном.

1. ВСТУПЛЕНИЕ

В современном мире всё большее значение pecypcoэнергосберегающие приобретают И экологически чистые технологии. К их числу с полным правом можно отнести технологии плазменной модификации материалов. Наиболее отработанными технологии можно считать магнетронной и плазменно-дуговой обработки. Они позволяют отказаться от экологически вредных химических методов получения покрытий с заданными параметрами. Однако для получения ожидаемых результатов большое значение имеет чистота обрабатываемой поверхности.

Для построения полностью плазменной технологии необходимы метолы эффективной очистки и активации обрабатываемой поверхности непосредственно перед напылением. Известно, что в этих целях можно использовать различные виды газового разряда и тот же магнетрон. Однако скорость обработки газовым разрядом невысока, и обрабатывается весь объем рабочей камеры, что часто очень не желательно. Переполюсовка магнетронного разряда вообще возможна только в случае проводящей мишени. Эти проблемы отсутствуют в случае использования для этих целей ионных источников типа Кауфмановского. Но получение с их помощью однородных пучков с большими линейными размерами задача очень не простая, и их обслуживание сопряжено со значительными затратами. Из литературы известно, что плазменный поток тоже модифицирует поверхность, и в случае применения перед нанесением покрытия улучшает адгезию, прочность, электрические и химические свойства получаемых покрытий.

Уже давно разработаны источники, способные

давать сформированный плазменный поток и обладающие хорошим потенциалом масштабируемости. Они достаточно простые по конструкции и в эксплуатации. Наибольшей простотой конструкции отличаются одноступенчатые плазменные ускорители с анодным слоем, УАС-ы. Исходя из всего этого, логично было изучить возможности их применения установках плазменного в напыления функциональных покрытий в качестве источников плазмы для очистки и активации поверхности обрабатываемых материалов.

Исследованию ускорителей с замкнутым дрейфом электронов посвящена обширная литература [1]. Однако за свою полувековую историю развития эти ускорители использовались преимущественно как ракетные двигатели. Поэтому большая часть исследований была направлена на достижение максимально возможной скорости плазменного потока и газовой экономичности ускорителя в условиях космических аппаратов.

В технологических применениях ускорителя на место выдвигаются – однородность первое обработки материала, отсутствие в системе накальных элементов, простота обслуживания и легкость интеграции с существующими технологическими процессами. Это, в свою очередь, привело к необходимости пересмотра ряда положений, используемых при проектировании ускорителей. Эти изменения должны привести к появлению новых режимов работы и не могут не отразиться на динамике горения разряда.

Результатам изучения режимов работы и динамики горения разряда в этих условиях и посвящена эта статья.

2. УСЛОВИЯ ЭКСПЕРИМЕНТА

Мы спроектировали, изготовили и испытали несколько модификаций УАС-ов с разрядным каналом нескольких геометрий. [2,3] Основной интерес для технологических применений представляет случай эллиптического канала известного в зарубежной литературе как "racetrack". Дальше для удобства будем его называть – "стадион" (рис.1). В направлении длинной оси его можно легко "растягивать" до нескольких метров без потери функциональности. Вторым практически интересным вариантом является УАС в торообразной геометрии с конвергирующим ионноплазменным потоком, направленным нормально к оси тора. Внешне прибор напоминает бублик через которого пропускается обрабатываемая лырку деталь. Ускорительный канал расположен на внутренней стороне поверхности тора. Так как ионно-плазменный поток сходится к центру отверстия, одновременно, происходит фокусировка баллистическая потока на обрабатываемой поверхности (рис.2). В тоже время, характеристики и особенности горения разряда во всех случаях практически совпадают со случаем классического кольцевого УАС-а (рис.3). Это говорит о возможности создания устройств очистки такого типа с почти любой геометрией.

Рис.1. УАС в геометрии тора

Рис.2. УАС в геометрии стадиона

Эксперименты выполнялись разных на установках. Основная часть результатов получена установке, описанной [2]. Ширина на в ускорительного канала для всех устройств составляет 1 см. Магнитные системы собраны на основе постоянных магнитов. Принудительная компенсация пространственного заряда получаемого потока в большей части экспериментов отсутствует. Катод ускорителя обычно заземлен, а напряжение величиной до 2,5 кВ прикладывается к аноду. Рабочий газ – аргон. Газ подается прямо в камеру. Диэлектрическая (обычно - стекло) или проводящая мишень находится на расстоянии ~ 7 см от ускорителя.

Ранее [2,3] было установлено, что в технологических установках, где устройства будут использоваться в паре с магнетронными распылительными системами, оправдано подавать газ не через анод или катод ускорителя, а прямо в объем рабочей камеры. При этом двукратно возрастает скорость очистки для киловольтных напряжений на разряде с одновременным смещением рабочих давлений в область 10⁻³ мм рт. ст.

Для проверки скоростей очистки, измеренных методом восстановления э.д.с. фотодиода, было выполнено прямое измерение глубины вытравленного канала. Образец травился в течение

Рис.3. УАС в коаксиальной геометрии с установленной подставкой для образцов

~ 2 ч и затем измерялась глубина образовавшегося канала стандартным микрометром.

Анод расположен в нарастающем магнитном поле под полюсными наконечниками. Величина магнитного поля в месте расположения анода порядка 50% от максимальной в канале. Такая схема расположения анода отвечает рекомендациям по уменьшению влияния неустойчивостей различного типа на работу ускорителя и увеличивает скорости очистки. Соотношение глубины канала к его ширине близко к ¹/₂.

3. РЕЗУЛЬТАТЫ

Применение полого анода в технологических целях не представляется оправданным [3]. В этом случае поток имеет кроссовер. Края зоны травления сильно "расплываются", хотя его скорость на оси канала возрастает. В то же время, интегральная скорость в пересчете на площадь канала травления скорее падает.

В случае обычного плоского анода, под каналом ускорителя на образце видна зона, повторяющая форму канала шириной ~5...7 мм в пределах которой

Рис.4. Поверхность меди в центре канала травления. Белая метка – 10 мкм

Рис.5. Поверхность меди до обработки

скорость травления практически одинакова. За её пределами скорость очистки резко падает. Профиль очистки оказывается близок к П-образному.

Полученные на растровом электронном микроскопе снимки поверхности меди до и после обработки показано на рис.4-6.

Все снимки сделаны в одном разрешении под углом 60° к поверхности образца. На них видны типичные фигуры ионного травления. В местах вкраплений или по граням кристаллических зерен образуются выступающие острова. На краю пучка (см. рис.5) образуется квазирегулярная структура таких выступов с учётом направления падения ионов потока. При малых временах травления шероховатость поверхности растет с последующим

Рис. 6. Поверхность меди на краю канала травления

образованием собственно канала травления. На экране растрового микроскопа рельеф поверхности, обработанной с малой временной выдержкой до 1...5 минут в зависимости от материала, увидеть нельзя, но четко видна обработанная область. Те же результаты дает измерение шероховатости поверхности и атомная микроскопия поверхности [4]. Высота рельефа в этом случае порядка 1~10 нм.

Все варианты устройства очистки обеспечивают высокую скорость травления поверхности меди от 1 нм/с и выше в узком диапазоне давлений[3].

При переходе давления в область выше 1,2*10-3 мм рт. ст. резко возрастает скорость напыления материала катода вне основного канала очистки. Начинается интенсивное распыление щечек канала ускорителя, и скорость осаждения распыленного материала катода превышает скорость распыления материала образующейся пленки ионами потока. Падение скорости очистки обусловлено ростом потенциала обрабатываемой диэлектрической мишени почти до уровня прикладываемого к разрядному промежутку разрядного напряжения. Кроме того, с ростом давления в пространстве перед вокруг ускорителя могут зажигаться и дополнительные несамостоятельные разряды. Подробно такое поведение системы обсуждается в [3,5]. В тоже время улучшение откачки полостей в магнитной системе за анодом ускорителя позволяет несколько продвинуться в область низких давлений. Рис.7 показывает пример типичных вольт-амперных

Рис. 7. Примеры ВАХ УАС-а в геометрии тора

характеристик (ВАХ) источника в геометрии тора с улучшенной откачкой и подавлением внешних дополнительных разрядов и без него. Видно, что подавление всех дополнительных разрядов улучшает электро-технические характеристики устройства. За счет улучшения электрической прочности разрядного промежутка удается получить больший разрядный ток при том же давлении и соответственно большую скорость указанных травления. Выше значений по напряжению разряд становится неустойчивым и может переходить в дуговую фазу.

Проблему компенсации плавающего потенциала мишени можно решить добавлением в схему очистки накальных эмиттеров. Но это сразу ухудшит технологические возможности системы. В [5] было показано, что при горении одного из дополнительных разрядов над лицевой поверхностью ускорителя, потенциал мишени ниже, чем при подавленных всех внешних разрядах. Это говорит возможности использования 0 дополнительного любого типа разряда лпя компенсирующих наработки электронов R пространстве транспортировки пучка.

Наиболее простым решением представляется добавление В промежутке между лицевой поверхностью ускорителя и мишенью конструкции полого катода [6]. Большой типа размер катода обеспечивает поверхности такого ему нормальный тепловой режим даже без принудительного охлаждения и позволяет ожидать генерации нужного количества электронов. Эксперимент подтверждает работоспособность такого решения с катодом простейшей конструкции. В нашем эксперименте потенциал падает не до нуля (рис.8). Скорее всего, это вызвано наличием магнитного поля сложной геометрии над лицевой поверхностью ускорителя [5] и неоптимальностью использованной конструкции катода. Кроме того, компенсатор не должен мешать эффективной обработке изделия. В нашем случае катод имел форму тора с прямоугольным сечением без внутренней поверхности. Анодом разряда служил сам ионный поток.

Известно, что на работу ускорителей оказывают влияние также и динамические свойства разряда.

Рисунок 8. Плавающий потенциал мишени с компенсатором типа полого катода

Мы получили осциллограммы тока разряда и потенциала мишени в разных режимах работы

ускорителя. В области давлений ниже $5*10^{-4}$ мм рт. ст. разряд горит почти без модуляции. В диапазоне выше $3*10^{-3}$ мм рт. ст. становится очень нестабильным и может переходить в дуговую форму.

В рабочем диапазоне давлений ток разряда очень сильно модулирован. Моменты максимума тока совпадают с минимумами потенциала мишени, т. е. очистка максимально эффективна. Большую часть времени ток разряда сильно ограничен. Характерные времена длительности выбросов тока порядка 5*10⁻⁹ с с периодичностью их следования около 10-8 с. Возможно это связано с запиранием тока электронов собственным объемным зарядом или наоборот с нехваткой электронов учитывая отсутствие компенсатора. Создание условий, уменьшающих модуляцию тока разряда, позволит существенно поднять значения скорости травления поверхности.

4. ЗАКЛЮЧЕНИЕ

Таким образом, повышение скорости очистки обрабатываемых поверхностей для устройств типа УАС-а с самостоятельным разрядом и повышение их рабочих давлений возможно путём использования дополнительных внешних разрядов с холодным катодом для генерации электронов в области транспортировки ионно-плазменного потока к мишени и стабилизации тока разряда.

Работа выполнена при частичной поддержке НТЦУ проект №1596.

ЛИТЕРАТУРА

- Ионные инжекторы и плазменные ускорители. / Под. ред. А.И. Морозова и Н.Н. Семашко, М: «Энергоиздат», 1990.
- A.A. Goncharov, A.M. Dobrovol's'kii, O.A. Panchenko, S.N. Pavlov, I.M. Protsenko. Technological accelerator with closed electron drift for surface treatment // *Problems of Atomic Science and Technology*, Series: Plasma Physics (6), 2000, #6, pp. 160-162.
- A.N. Dobrovol's'kii, A.A. Goncharov, S.N. Pavlov, O.A. Panchenko, I.M. Protsenko. Modernized technological accelerator with anode layer for ion cleaning // Problems of Atomic Science and Technology. Series: Plasma Physics (7), 2002. #4. p.176-178.
- Oleg Yaroshchuk, Ruslan Kravchuk and Andriy Dobrovolskyy, Liou Qiu and Oleg D. Lavrentovich Two Modes of LC Parallel Alignment on the Plasma Treated Substrates // SID 03 DIGEST. 2003. SID 2003, 18-23 May, Baltimore, USA.
- 5.S.N. Pavlov, A.A. Goncharov, A.N. Dobrovolsky, I.M. Protsenko. Peculiarities of self-sustained discharge in closed electron drift accelerator based on permanent magnets // Problems of Atomic Science and Technology. Series: Plasma Physics (8), 2002. #5. p.133-135.
- Б.И. Журавлев, В.А. Никитинский, А.С. Захаров Источник ионов на основе разряда в скрещенных полях // Приб. и техн. эксперим. 1977, #4, с.204.