ИСКУССТВЕННЫЕ ДИЭЛЕКТРИКИ, ОБРАЗОВАННЫЕ РЕШЕТКАМИ РЕЗОНАНСНЫХ РАССЕИВАЮЩИХ ТЕЛ

Г.А. Брызгалов, Н.А. Хижняк

Национальный научный центр «Харьковский физико-технический институт», Украина, 61108, Харьков, Академическая, 1 bryzgalov@kharkov.ua

Рассмотрена правильная пространственная решетка одинаковых сферических рассеивающих тел при условии $d << \lambda$ (d - постоянная решетки, λ - длина волны). В электродинамическом отношении она эквивалентна однородной среде с эффективными значениями диэлектрической и магнитной проницаемостей. $\mathcal{E}_{эф\phi}$ и $\mu_{э\phi\phi}$ искусственного диэлектрика выражаются через матрицы рассеяния электромагнитных волн на отдельных телах, закрепленных в узлах решетки, и через характеристики пространственной решетки. Сравнение расчетных и экспериментальных характеристик решеток показали, что наблюдаются резонансные частоты, соответствующие положительным и отрицательным значениям эффективной диэлектрической проницаемости. Исследованные структуры могут служить моделями естественных кристаллических диэлектриков при изучении их электродинамических свойств, а также моделями структур, образованных ядрами клеток живых тканей.

PACS numbers: 78.20.Ci, 41.20.Jb, 42.70.Qs, 73.20.Mf

Правильная пространственная решетка однотипных рассеивающих тел при условии d << λ (d постоянная решетки, λ - длина рассеиваемой волны) в электродинамическом отношении эквивалентна однородной среде с определенными значениями эффективных диэлектрической и магнитной проницаемостей (искусственный диэлектрик) [1]. Теория искусственных диэлектриков в частотной области построена еще в 50-е годы [2,3], хотя простейший пример кубической решетки сферических частиц в статическом приближении описан еще в XIX веке (формула Клаузиуса-Моссотти) [4]. Модель искусственного диэлектрика достаточно часто используется в различных теоретических построениях, хотя систематические сравнения расчетных и экспериментально измеренных значений эффективных диэлектрических проницаемостей проведены лишь для простейших решеток, образованных бесконечно тонкими, идеально проводящими дисками [5,6]. В последние годы модель искусственного диэлектрика используется при описании взаимодействия электромагнитных волн с живыми тканями, в биофизике, где живые клетки формируют упорядоченную пространственную структуру, а ядра этих клеток служат рассеивающими центрами с совершенно уникальными рассеивающими возможностями [8]. Анализу возможностей распространения электромагнитных волн в подобных структурах посвящена настоящая работа.

С физической точки зрения рассеяние электромагнитной волны материальными телами объема V, заданной геометрией и материальными константами ε и μ , описывается электрическим Π^{\Im} и магнитным Π^{M} потенциалами Герца. $\Pi^{\Im}(\mathbf{r}) = \mathbf{\hat{g}} \mathbf{E}_{0} \frac{e^{-i\mathbf{k}\mathbf{r}}}{\mathbf{r}}, \ \Pi^{M}(\mathbf{r}) = \mathbf{\hat{p}} \mathbf{H}_{0} \frac{e^{-i\mathbf{k}\mathbf{r}}}{\mathbf{r}},$ (1)

 $\mathbf{\Pi}^{\circ}(\mathbf{r}) = \mathbf{g} \mathbf{E}_0 - \mathbf{r}, \quad \mathbf{\Pi}^{\circ \circ}(\mathbf{r}) = \mathbf{p} \mathbf{H}_0 - \mathbf{r}, \quad (1)$ определяющими рассеянную сферическую волну

определяющими рассеянную сферическую волну (временная зависимость полей предполагается в

виде $e^{i\omega t}$). Здесь E_0 и H_0 - напряженности электрического и магнитного полей подающей волны, рассеиваемой рассматриваемым телом, расположенным в начале координат, \hat{g} и \hat{p} - матрицы рассеяния волны. Если рассеивающими телами являются диэлектрические шары радиуса a (ka << 1, 2π)

 $k = \frac{2\pi}{\lambda}$) с проницаемостями ϵ и μ , образующими

решетку в однородном пространстве с проницаемостями ε_1 и μ_1 , то тогда [2]

$$\hat{\mathbf{g}} = \mathbf{a}^3 \frac{\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_1}{\boldsymbol{\varepsilon} + 2\boldsymbol{\varepsilon}_1} \hat{\mathbf{I}}, \qquad \hat{\mathbf{p}} = \mathbf{a}^3 \frac{\boldsymbol{\mu} - \boldsymbol{\mu}_1}{\boldsymbol{\mu} + 2\boldsymbol{\mu}_1} \hat{\mathbf{I}}, \qquad (2)$$

где \hat{I} - единичный тензор. В этом частном случае матрицы рассеяния волн не зависят от частоты (квазистатическое приближение).

В общем случае тензоры диэлектрических и магнитных проницаемостей искусственной среды, образованной правильной решеткой тел, с матрицами рассеяния q_{ik} и p_{ik} равны [7]

$$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_{1} \left\{ \hat{\mathbf{l}} + \frac{4\pi}{\Omega} \hat{\mathbf{g}} \left(\mathbf{l} + \frac{1}{\Omega} \delta \hat{\mathbf{g}} \right)^{-1} \right\},$$

$$\boldsymbol{\mu} = \boldsymbol{\mu}_{1} \left\{ \hat{\mathbf{l}} + \frac{4\pi}{\Omega} \hat{\mathbf{p}} \left(\mathbf{l} + \frac{1}{\Omega} \delta \hat{\mathbf{p}} \right)^{-1} \right\},$$

$$(3)$$

где Ω - объем элементарной ячейки правильной решетки, образующей искусственный диэлектрик, δ - структурная матрица решетки.

В рассматриваемом квазистатическом приближении эффективные значения проницаемостей, образованных правильной решеткой сферических частиц, равны:

$$\varepsilon_{xx} = \varepsilon_{1} \left(1 + \frac{3C}{\frac{\varepsilon + 2\varepsilon_{1}}{\varepsilon - \varepsilon_{1}} - \delta_{xx}C} \right),$$

$$\varepsilon_{yy} = \varepsilon_{1} \left(1 + \frac{3C}{\frac{\varepsilon + 2\varepsilon_{1}}{\varepsilon - \varepsilon_{1}} - \delta_{yy}C} \right),$$

$$\varepsilon_{zz} = \varepsilon_{1} \left(1 + \frac{3C}{\frac{\varepsilon + 2\varepsilon_{1}}{\varepsilon - \varepsilon_{1}} - \delta_{zz}C} \right),$$
(4)

где $C = \frac{4\pi a^3}{3\Omega}$ - объемная концентрация частиц,

 δ_{ik} - нормированные элементы структурной матрицы решетки, например, $\delta_{xx} = -\frac{3}{4\pi} \delta_{11}$. Соответствующие матрицы для простейших решеток вычислены в работах [2], и равны:

– Ортогональная решетка. Элементарной ячейкой ортогональной решетки является прямоугольный параллелепипед, а сама решетка может быть описана с помощью двух параметров, например, $\beta = (d_2/d_1)$ и $\gamma = (d_3/d_1)$, где d_1d_2 и d_3 - постоянные решётки по осям X, У и Z соответственно. Окончательно находим

$$\begin{split} \delta_{xx} &= \frac{3}{4\pi} \Biggl\{ \Biggl(28 + \frac{20}{\beta^2} + \frac{20}{\gamma^2} - \frac{30}{\beta^4} - \frac{30}{\gamma^4} \Biggr) \arctan \frac{\beta\gamma}{\rho} + \\ &+ \frac{15\gamma}{\beta^2} \Biggl(\frac{1}{\beta^2} - 1 \Biggr) \ln \frac{\rho + \beta}{\rho - \beta} + \frac{15\beta}{\gamma^2} \Biggl(\frac{1}{\gamma^2} - 1 \Biggr) \ln \frac{\rho + \gamma}{\rho - \gamma} \Biggr\}, \\ \delta_{yy} &= \frac{3}{4\pi} \Biggl\{ \Biggl(28 - \frac{10}{\beta^2} - \frac{10}{\gamma^2} - 30 \frac{1 - \gamma^2}{\gamma^4} \beta^2 \Biggr) \arctan \frac{\gamma}{\beta\rho} + \\ &+ 30 \frac{(1 - \beta^2)}{\beta^4} \arctan \frac{\beta\gamma}{\rho} + 30 \frac{1 - \beta^2}{\beta^4} \gamma^2 \operatorname{arctg} \frac{\beta}{\gamma\rho} + (5) \\ &+ 15 \frac{1 - \gamma^2}{\gamma^4} \beta \ln \frac{\rho + \gamma}{\rho - \gamma} - 30 \frac{1 - \beta^2}{\beta^4} \gamma \ln \frac{\rho + \beta}{\rho - \beta} \Biggr\}, \end{split}$$

$$\begin{split} \delta_{zz} &= \frac{3}{4\pi} \left\{ \left(28 - \frac{10}{\beta^2} - \frac{10}{\gamma^2} - 30 \frac{1 - \beta^2}{\beta^4} \gamma^2 \right) \arctan \frac{\beta}{\gamma \rho} + \frac{30(1 - \gamma^2)}{\gamma^4} \arctan \frac{\beta\gamma}{\rho} + 30 \frac{1 - \gamma^2}{\gamma^4} \beta^2 \arctan \frac{\gamma}{\beta \rho} + 15 \frac{1 - \beta^2}{\beta^4} \gamma \ln \frac{\rho + \beta}{\rho - \beta} - 30 \frac{1 - \gamma^2}{\gamma^4} \beta \ln \frac{\rho + \gamma}{\rho - \gamma} \right\}, \end{split}$$

где $\rho = \sqrt{1 + \beta^2 + \gamma^2}$. Если ортогональная решетка мало отличается от кубической, выражения для элементов матрицы **б** существенно упрощаются и тогда

$$\delta_{xx} = \frac{6}{\pi} \operatorname{arctg} \frac{\beta \gamma}{\rho} , \quad \delta_{yy} = \frac{6}{\pi} \operatorname{arctg} \frac{\gamma}{\beta \gamma} ,$$

$$\delta_{zz} = \frac{6}{\pi} \operatorname{arctg} \frac{\beta}{\gamma \rho} . \quad (6)$$

Из приведенных формул следует, что величина δ_{xx} симметрична относительно параметров β и γ , а δ_{zz} получается из δ_{yy} заменой местами β и γ .

– Тетрагональная решетка. Частным случаем рассмотренной ортогональной решетки является тетрагональная решетка (элементарной ячейкой является прямоугольный параллелепипед, у основания которого лежит квадрат). Для этой решетки соответствующие формулы находятся из (5), если положить $d_1 = d_3$ или $d_1 = d_2$. Если $d_1 = d_3$, то полагая $\gamma = 1$, находим:

$$\delta_{xx} = \delta_{zz} = \frac{3}{4\pi} \left\{ \left(18 + \frac{20}{\beta^2} - \frac{30}{\beta^4} \right) \arctan \frac{\beta\gamma}{\sqrt{2 + \beta^2}} + \frac{15 \frac{1 - \beta^2}{\beta^4} \ln \frac{\sqrt{2 + \beta^2} + \beta}{\sqrt{2 + \beta^2} - \beta} \right\},$$
(7)
$$\delta_{yy} = \frac{3}{4\pi} \left\{ \left(18 - \frac{10}{\beta^2} \right) \arctan \frac{1}{\beta \sqrt{2 + \beta^2}} + \frac{60 \frac{1 - \beta^2}{\beta^4} \arctan \frac{\beta}{\sqrt{2 + \beta^2}} - \frac{30 \frac{1 - \beta^2}{\beta^4} \ln \frac{\sqrt{2 + \beta^2} + \beta}{\sqrt{2 + \beta^2} - \beta} \right\}.$$

– Кубическая решетка. Решетка $\mathbf{d}_1 = \mathbf{d}_2 = \mathbf{d}_3$ соответствует высшей симметрии, и в этом случае

$$\delta_{xx} = \delta_{yy} = \delta_{zz} = 1, \qquad (8)$$

Известно также, что изотропный диэлектрик, образованный случайно распределенной в пространстве системой сферических частиц имеет проницаемость, определяемую формулой (3), в которой надо положить $\delta = -\frac{3}{4\pi}$ Î. Тогда анизотропия отсутствует и диэлектрик является изотропным

$$\varepsilon_{\rm m} = \varepsilon_{\rm l} \left(1 + \frac{3C}{\frac{\varepsilon + 2\varepsilon_{\rm l}}{\varepsilon - \varepsilon_{\rm l}} - C} \right). \tag{9}$$

Именно для изотропного искусственного диэлектрика справедлива формула Клаузиуса-Моссотти:

$$\frac{\varepsilon_{\rm m} - \varepsilon_{\rm l}}{\varepsilon_{\rm m} + 2\varepsilon_{\rm l}} = C \frac{\varepsilon - \varepsilon_{\rm l}}{\varepsilon + 2\varepsilon_{\rm l}} \,. \tag{10}$$

- Гексагональная решетка. Выбор геометрии элементарной ячейки для гексагональной решетки не однозначен. В качестве элементарной ячейки, с одной стороны, можно выбрать правильную шестигранную призму, а с другой – четырехгранную призму, в основании которой находится ромб с острым углом при вершине, равным $\pi/3$. В первом случае элементарная ячейка имеет более высокую симметрию, поэтому расчеты элементов матрицы δ_{*ik*} выполнялись для шестигранной призмы. Если ось *z* направить по оси призмы, то тогда (d₁ - высота призмы, d - сторона правильного шестиугольника в основании призмы. $\beta = (d/d_1)$:

$$\begin{split} \delta_{xx} &= \delta_{yy} = \frac{9}{4\pi} \left\{ \left(9 + \frac{65}{2}\beta^2 - \frac{225}{2}\beta^4 \right) \times \right. \\ &\times \arctan \frac{1}{2\sqrt{3}\sqrt{\beta^2 + \frac{1}{4}}} + \\ &+ 15\sqrt{3}\beta^2 \left(\frac{5}{2}\beta^2 - 1 \right) \ln \left(\frac{1}{2\beta} + \sqrt{1 + \frac{1}{4\beta^2}} \right) \right\}, \end{split}$$
(11)
$$\delta_{zz} &= \frac{9}{4\pi} \left\{ \left(18 - 25\beta^2 \right) \arctan \left\{ \sqrt{3}\frac{\sqrt{4\beta^2 + 1} - 2}{3\sqrt{4\beta^2 + 1} + 2} \right\} + \\ &+ 90\beta^2 \left(\frac{5}{2}\beta^2 - 1 \right) \times \left[\arctan \frac{1}{\sqrt{3}\sqrt{4\beta^2 + 1}} + \right] + \\ &+ \frac{1}{\sqrt{3}} \ln \left(\frac{1 + \sqrt{4\beta^2 + 1}}{2\beta} \right) - \frac{1}{\sqrt{3\beta}} \ln \frac{\sqrt{4\beta^2 + 1} - \beta}{\sqrt{4\beta^2 + 1} + \beta} \right\}. \end{split}$$

Из этих соотношений следует, что при $\beta^2 = 2/5$ искусственный диэлектрик, образованный гексагональной решёткой сферических частиц представляет собой изотропный диэлектрик, проницаемость которого определяется соотношением (9).

2β

 $\sqrt{3}$

Моноклинная решётка. В общем случае элементарной ячейкой моноклинной решётки служит прямой параллелепипед, в основании которого лежит произвольный параллелограмм. Такая решётка может быть описана с помощью трёх параметров, например, двух отношений высоты параллелепипеда к сторонам параллелограмма и острого угла параллелограмма. В частном случае, в основании параллелепипеда лежит ромб с острым углом при вершине, равным 2ψ . При $\psi = \pi/4$ эта решётка переходит в рассмотренную выше тетрагональную решётку. Для описания такой решётки достаточно двух параметров, например, $\beta = d_1/d$, где d_1 – высота параллелепипеда, а d - сторона ромба и угол Ψ . Предположив, что моноклинная решётка мало отличается от кубической, т.е. β^2 близко к единице, а Ψ к π/4, тогда:

$$\begin{split} \delta_{xx} \left(\beta, \psi\right) &= \frac{3}{\pi} \sin 2\psi \left\{ tg \phi \times \right. \\ &\times \left(\arctan \frac{\beta tg \psi}{\rho_1} + \arctan \frac{\beta ctg \psi}{\rho_2} \right) + , \\ &+ \left(\ln \frac{\beta + \rho_1}{2 \cdot \sin \psi} - \ln \frac{\beta + \rho_2}{2 \cdot \cos \psi} \right) \right\} \\ &\quad \delta_{yy}(\beta, \psi) &= \delta_{xx} \left(\beta, \frac{\pi}{2} - \psi\right), \end{split}$$
(12)
$$\delta_{zz}(\beta, \psi) &= \frac{6}{\pi} \left(\arctan \frac{\rho_1}{\beta tg \psi} - \arctan \frac{\beta ctg \psi}{\rho_2} \right), \\ \text{где } \rho_1 &= \sqrt{4 \sin^2 \psi + \beta^2}, \rho_2 = \sqrt{4 \cos^2 \psi + \beta^2}. \end{split}$$

Этими соотношениями можно описывать изменение диэлектрической и магнитной проницаемостей искусственного диэлектрика, образованного кубической решёткой сферических частиц, при деформации самой решётки. Например, если кубическая элементарная ячейка в результате деформации сжимается в прямой параллелепипед с основанием в виде ромба, то возникает анизотропия, превращающая изотропный диэлектрик в двухосный кристалл.

Рассмотрим дисперсионные свойства искусственного диэлектрика, образованного правильной решёткой сферических частиц, когда дисперсия обусловлена зависимостью коэффициентов рассеяния от частоты. В этом случае величины ε_p и μ_p , характеризующие рассеяние электромагнитных волн на сферических частицах, являются функциями частоты, и могут принимать любые, сколь угодно большие положительные и отрицательные значения. Это значит, что в искусственных диэлектриках, образованных правильными решётками сферических частиц в приближении k₁a <<1 и k₁d <<1, и в случаях, когда сами частицы изготовлены из диэлектриков с высокой диэлектрической проницаемостью, возможны резонансные частоты, при которых диэлектрические проницаемости обращаются в бесконечность. Эти частоты находятся из следующих трансцендентных уравнений:

$$\frac{\varepsilon_{p}(\omega) + 2\varepsilon_{1}}{\varepsilon_{p}(\omega) - \varepsilon_{1}} = \delta_{ii}C.$$
 (13)

Они зависят от концентрации частиц С и оказываются разными для ортогональной решётки по всем трём направлениям распространения волны. Физическая природа этих резонансов идентична рассмотренным резонансам одиночной диэлектрической сферы [7]. Так как величины ε_p всегда имеют малую мнимую добавку, то на самом деле при резонансных частотах происходит увеличение эффективных значений диэлектрической проницаемости искусственного диэлектрика, а сами эти величины остаются конечными.

Рис.1. Эффективные диэлектрические проницаемости $\varepsilon_{\rm p}$ однородного диэлектрического шара в свободном пространстве и в кубической структуре искусственного диэлектрика: пунктирная кривая для одиночного шара с $\varepsilon_2 = 93$, диаметром 10 мм; сплошная кривая для структуры с C = 0,0327

Структурные эффекты проявляются в дисперсионных свойствах искусственных диэлектриков довольно своеобразно. Если пренебречь радиационным излучением и считать величину $\boldsymbol{\epsilon}_{p}$ действительной, то резонансными частотами будем называть частоты, при которых $\mathcal{E}_{p} \rightarrow \infty$. На рис.1 представлена частотная зависимость эффективной диэлектрической проницаемости искусственного диэлектрика, образованного кубической решёткой сферических частиц и одиночной сферы в свободном пространстве. В расчёте полагается, что сферы изготовлены из однородного и изотропного диэлектрика с $\varepsilon = 93$, радиусом a = 5 мм. Постоянная решётки d = 20 мм. Потерями энергии в сфере на тепло и излучение пренебрегаем. Мы видим смещение резонансов решётки в сторону более низких частот, чем для одиночной сферы. Происходит разделение резонанса на области, где эффективная диэлектрическая проницаемость принимает положительные и отрицательные значения. Эти области являются результатами преимущественного взаимодействия втекающих и вытекающих мод одиночных сфер [7].

Экспериментально исследовались пространственные структуры из $6 \times 6 \times 6$ сферических элементов. Источником возбуждения являлся штыревой вибратор, возбуждающий отдельную сферу на поверхности решётки. С противоположной стороны решётки размещался зонд съёма сигнала.

Диэлектрические сферы диаметром $10 \pm 0,01$ мм отобраны по резонансной частоте TE_{101} – вида колебаний, равной $3075 \pm 2,5$ МГц. Для кубической решётки с d = 20 мм были определены резонансные полосы пропускания, соответствующие возбуждению в одиночной сфере колебаний TE_{101} , TM_{101} и TE_{201} . Резонансные пары частот в каждой из полос пропускания соответственно равны: (3008 и 3028 МГц), (4330 и 4380 МГц) и (6182 и 6263 МГц).

Рис.2.Амплитудно-частотная характеристика искусственного диэлектрика кубической структуры, в узлах которой размещены сферы диаметром

10 мм, с ε = 93. Параметры решётки
 d = 20 мм – кривая 1 и d = 15 мм – кривая 2. Модуль коэффициента отражения Г от одиночной сферы в волноводе – кривая 3

На рис. 2 приведены амплитудно-частотные характеристики первой полосы пропускания кубической структуры искусственного диэлектрика с параметрами решётки d = 20 мм и d = 15 мм. Полоса пропускания решётки сдвинута в область низких частот относительно резонансной частоты одиночной сферы. Более плотная концентрация диэлектрика приводит к большему снижению частоты. Наблюдаемое расщепление полосы на две основные частоты, соответствует положительному и отрицательному значениям эффективной диэлектрической проницаемости. Для ортогональной решётки, когда $d_1 = d_2 = 20$ мм, а $d_3 = 15$ мм, анизотропный диэлектрик характеризуется двумя значениями диэлектрической проницаемости $\varepsilon_{\parallel} = \varepsilon_{zz}$ и $\varepsilon_{\perp} = \varepsilon_{xx} = \varepsilon_{yy}$, т.е. рассматриваемый диэлектрик представляет собой одноосный кристалл.

Рис. 3. Амплитудно-частотные характеристики искусственного диэлектрика с ортогональной решёткой, измеренные в плоскости, где $d_1 = d_2 = 20$ мм – 1, и в плоскости, где $d_3 = 15$ мм – 2

На рис. 3 приведены измеренные вдоль координат X и Z полосы пропускания. Поскольку $\epsilon_{\parallel} > \epsilon_{\perp}$, то резонансные частоты решётки, измеренные в направлении координаты z (кривая 2), более низкочастотны, чем резонансы, измеренные в направлении координаты x (кривая 1). Так как в сферических частицах существуют резонансы электрического и магнитного типов, то когда частицы изготовлены из немагнитных материалов, на высоких частотах наряду с электрической анизотропией возникает магнитная анизотропия и тензор магнитных проницаемостей отличен от единичного. Поэтому искусственный анизотропный диэлектрик характеризуется не тремя, а шестью разными резонансными частотами. Различие обусловлено анизотропной пространственной решёткой. Это частотное разделение наблюдается в области отрицательных значений $\epsilon_{3\phi\phi}$, два малых пика справа от основного. Для кубической решётки эти пики проявляются слабо, и являются следствием неидентичности отдельных сфер и ошибки в положении сфер в узлах решётки. Для полосы пропускания в области положительных $\mathcal{E}_{ э \phi \phi}$, это разделение частот не определяется, вследствие размытости резонанса.

Показано, что пространственные решётки в узлах которых размещены сферические диэлектрические рассеиватели имеют положительные и отрицательные значения эффективной диэлектрической проницаемости, что приводит к разделению полосы пропускания. В зависимости от геометрических размеров решётки изменяются её дисперсионные свойства и наблюдается анизотропия диэлектрической проницаемости.

Проведенные исследования показали, что можно на моделях проводить изучение электродинамических свойств природных кристаллических структур и создавать новые искусственные диэлектрики. Этот же физический механизм позволяет понять взаимодействие внешних и внутренних электромагнитных полей СВЧ и КВЧ диапазонов с живыми тканями. Клетки живых организмов образуют упорядоченную структуру, а клеточные ядра можно рассматривать как рассеивающие центры, размещённые в узлах пространственной решётки.

ЛИТЕРАТУРА

- 1. Л. Левин. *Теория волноводов*. М: Радио и связь, 1981, с.311.
- Н.А.Хижняк. Искусственные анизотропные диэлектрики. // ЖТФ, 1957, т.27, №9, с.2006-2038.
- Я.Б. Файнберг, Н.А.Хижняк. Искусственно анизотропные среды. // ЖТФ, 1959, т.25, №5, с.711-720.
- 4. М.В. Волькенштейн. *Молекулярная оптика*. М: Гостехиздат, 1951, с.744.
- В.Б. Казанский, Л.Н. Литвиненко, Р.В Шапиро, В.П. Шестопалов. Теоретическое и экспериментальное исследование свойств искусственных металлодиэлектриков. // ЖТФ, 1970, т.40, №3, с.631-641.
- А.Ю. Борисов, Г.Г. Бубнов, Р.В. Шапиро. Исследование дисперсии анизотропных искусственных диэлектриков. // Изв. вузов. Радиофизика, 1979, т.22, №8, с.1002-1011.
- Н.А. Хижняк. Интегральные уравнения макроскопической электродинамики. Киев: Наукова думка, 1986, с.280.
- Г.А. Брызгалов, Н.А. Хижняк. Тонкая структура резонанса электромагнитных волн в диэлектрической сфере. // Радиофизика и электроника, 2002, т.7, Спец. вып., с.178-182.