
UDK 533.9

ON THE SYNCHROTRON RADIATION OF ULTRARELATIVISTIC
ELECTRONS MOVING ALONG CURVED SPIRAL TRAJECTORY

Ya.M. Sobolev
Institute of Radio Astronomy, NAS of Ukraine, Kharkov, Ukraine

sobolev@ira.kharkov.ua
The synchrotron radiation of an ultrarelativistic charged particle moving along spiral trajectory winded on

curved magnetic force line is considered. The radiation pattern has new properties on a comparison with the radia-
tion in homogeneous magnetic field: there is a range of characteristic frequencies instead of one characteristic fre-
quency, the peaks of the radiation pattern correspond to periodically repeated directions in space, which position
depends on the frequency of radiation.

1. INTRODUCTION
The formulae for the synchrotron radiation mecha-

nism in a homogeneous magnetic field [1-3] are widely
applied in various branches of science and engineering
[4]. However, the formulae for synchrotron radiation in
straight magnetic field lines may be insufficient to de-
scribe radiation of ultrarelativistic electrons moving
along dipolar field lines in the magnetosphere of a pul-
sar [5]; or the radiation emitted by runaway electrons in
tokamaks [6]. It is necessary to take into account the
curvature of the magnetic force line [5, 6].

Since synchrotron radiation comes from a small
length along the trajectory, the curved magnetic field
lines are approximated by circular force lines and the
radiation from relativistic electrons moving with small
pitch angles along spiral trajectory is considered. The
radiation formulae have been calculated by various
methods in the papers [5 - 8]. In [5] the radiation was
called as synchrotron curvature. In [5, 7] the spectrum
and polarization characteristics of radiation was ob-
tained, in [6] the radiation spectrum was found. Expres-
sions for the spectrum obtained in the papers [5 - 7]
have various forms. The comparison of the formulae [5]
and [7] is carried out in [8]. The limit of an undulator
radiation, when the contribution to radiation occurs
from a lot of cyclotron rotations, has been considered in
[9, 10].

At the same time the spectral angular distribution of
synchrotron radiation emitted by ultrarelativistic
charged particles moving along curved spiral trajectory
is not investigated. In the present paper such spectral
angular distribution is studied and the comparison of
expressions for the radiation spectrum obtained in the
papers [6, 7] will be also carried out.

2. TRAJECTORY OF PARTICLE
Let us assume that magnetic force lines look like a

circle, and the magnitude of magnetic field is B0. Select
a system of Cartesian coordinates with (x, y)-axes in the
plane of magnetic field lines, and z-axis coinciding with
the axis of cylindrical magnetic surface. The magnetic
field vector can be expressed as

)cos(sin0 jiB ϕϕ −= B , (1)
where φ is the polar angle in (x, y)-plane, i,j are the ba-
sis vectors of Cartesian frame. The particle with the
Lorentz-factor 1)/1( 2/122 >>−= −cvγ  is moving along
magnetic force lines with the velocity close to speed of

light. The angular velocity Ω  corresponding this mo-
tion ( R/||v≡Ω , where ||v  is the velocity of the guiding
center along the magnetic line with curvature radius R)
is much less than the frequency of rotation around mag-
netic force line Bω , || Bω<<Ω . The radius of Larmor
circle Br  is much less than R , R<<Br .

Equations of motion of a charged particle in the
magnetic field (1) are integrated in quadratures. The
solution expresses through elliptic integrals of the 1-st
and 3-rd kind. The asymptotic expansion of the position
vector of trajectory, in which the terms proportional

1)/ 2
B <<R(r  are dropped, has the form [7, 8]
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where γω αα cmBe /0B = , 1/ B <<Ω= ωδ ,

B
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D /ωRΩ−=v  is the drift velocity, αe  and αm  is the
charge and mass of a particle of a sort α , i, j, k are the
basis vectors of the Cartesian frame.

In contrast to known expressions of drift theory, the
terms, which are proportional tBsin2 ωδ , is taken into
account. It is necessary to reduce evaluations in the
Cartesian frame to evaluations in the frame of natural
trihedral [7, 8].

The magnitude of particle velocity remains constant
and is given by expression
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The curvature radius of trajectory (2) is equal to
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where k is the curvature, the parameter
)/( 2

B
2
B Rrq Ω=ω  is equal to the ratio of the Larmor ve-

locity BBL || rω=v  to the magnitude of drift velocity.
Further we shall consider the case, for which the

projection of a particle velocity on magnetic lines is
close to speed of light, c→||v . Thus the Lorentz-factor
corresponding to motion along magnetic field lines,

1)/1( 2/122
|| >>−= −

|| cvγ .
If the magnitude of magnetic field depends on ra-

dial coordinate )(0 rBB → , the corresponding drift ve-

locity )/()2/1( B
2 Rg ω⊥= vv , (where ⊥v  is the velocity

transverse to magnetic field lines) is smaller than the



velocity of centrifugal drift )/()2/1( B
2
|| RD ωvv = .

Therefore, we shall consider the constant magnetic field
approximation.

It is known that radiation of a relativistic charged
particle occurs from the small part of trajectory and
concentrates within the angle γ/1~  at apex of cone
along particle’s velocity [4, 11]. Thus, the instantaneous
angle γ/1~  of the radiation beam should be less than
the angle between the particle velocity and drift trajec-
tory. From this requirement, definition of Lorentz-factor
γ , and inequality 1>>||γ  follows that the limit of syn-
chrotron radiation takes place, if

2
||

2 >>γγ  (5)
Suppose that the inequality (5) is fulfilled.

3. SPECTRAL ANGULAR DISTRIBUTION
OF SYNCHROTRON RADIATION

The energy E  emitted by a charged particle in the
solid angle between ο  and οο d+ , and the interval of
frequencies between γ  and ωω d+  is given by [11]
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where the Fourier integral representation of an electrical
field is
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Here R0 is the distance up to the observer, n is the unit
vector pointing to the observer, c/v=ββββ , v is the veloc-
ity, r is the particle position vector (2).

To calculate integral (7), we use a frame of natural
trihedral at time 0t . Denote by v/)( 0tv=ττττ , )( 0tνννν ,

)( 0tb  the tangent, normal, and binorma, respectively.
By definition, the instant 0t  is found from requirement
that the vector n belongs to (τ, b)-plane, i. e., the
equation 0)( 0 =tnν  being satisfied

bτn χχ sincos += , 0)( 0 =tnν ,  (8)
where χ  is the angle between the vectors τ and n.

The polarization unit vectors πe , σe  on the plane
that is perpendicular to line of sight are

,νe =σ    ,cossin bτe χχπ −=      ],[ neσ .  (9)
Expanding the position vector r(t) into a Taylor se-

ries about )( 0tt − , and then substituting in (7), we ob-
tain [8]
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where σπ,=i , the top string is related to π- polariza-
tion, and ]/)(/ 000 cttcR nr−+[=Φ ω  is the constant
phase.

As shown in [8], it is possible to neglect the term
χsin3kvκ , and we have
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where γχψ = , 2/3)1)(/(21 2+)/(= ψωωη c ,

vkc
3)2/3( γω = , )(3/1 xK , )(3/2 xK  are the modified

Bessel functions.
Since the instantaneous curvature radius changes as

the particle moves from one to another trajectory points,
the synchrotron radiation mechanism in circular mag-
netic field differs from synchrotron radiation in straight
magnetic lines. Let us consider the radiation pattern.

As it is known, the radiation of an ultrarelativistic
charge is concentrated into a cone along the particle
velocity. When the charge drives along trajectory (2),
the instantaneous direction of the radiation beam
changes. As a result, the radiation will be concentrated
in the neighborhood of a surface (design it by S), which
generating lines coincide with the velocity vectors. The
intersection of the surface S with the unit sphere gives a
line L. Points at line L correspond to directions at differ-
ent instants of time 0t .

In the plane, which is perpendicular to the line L,
the form of radiation pattern is described by equations
(11), (12) with the curvature radius at time 0t  being
taken as the circle radius. For σ - polarization the ra-
diation has maximum in directions at the line L, 0=χ ;
the radiation in π - polarization has peaks for angles

γχ /1|| =  and tends to zero at line L, ( 0=χ ).
Let us consider the radiation pattern, assuming that

the direction of emission passes near to x-axis. Intro-
duce angular coordinates yθ  and zθ , where yθ  is the
angle between n and (x, z)-plane, and zθ  is the angle
between x-axis and the projection of the vector n onto
(x, z)-plane.

The projection of line L on (y, z)-plane in the case
of small angles 1<<yθ , 1<<zθ  is given by equations
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.      (13)

The form of the radiation pattern depends on the
relation between the velocity of centrifugal drift || Dv
and Larmor velocity, BL r|||| Β= ωv , |/| DLq vv≡ .

In case 1>>q  the radiation pattern resembles the
radiation cone (with the apex angle ||γ/1~  and angular
width γ/1~  for the cone wall) in straight magnetic
field. In the case 1<<q  we have the limit of curvature
radiation. In both cases 1>>q  and 1<<q , the curva-
ture radius does not depend on time 0t  so that the pro-
files of radiation pattern remain constant.

In case 1~q  the spectral angular distribution of
radiation has specific features as compared with the
synchrotron radiation mechanism in homogeneous



magnetic field. For 1~q  the drift velocity is approxi-
mately equal to Larmor velocity BD r|||| Β≅ ωv

)2/( ||≅ γc  so that the curvature radius varies with time

0t . There appears the range of characteristic frequencies

from |q−1|Ω∼ 3γω  up to )( q+1Ω∼ 3γω  instead of

one characteristic frequency ( Ω∼ 3qγω  for an emission

in straight magnetic field lines, or Ω∼ 3γω  for a cur-
vature radiation).

In Fig.1 the radiation patterns (for σ -+π -
polarization) at frequencies corresponding to minimal
(Fig.1a) and maximum (Fig.1,b) curvature radius of
trajectory (2) at 2,1=q , 15=γδ , πωπ ≤≤− 0tB  are
represented. The picture is periodically repeated with
time along yθ -axis, Fig.2,a. If the frequency of radia-
tion corresponds to the maximum characteristic fre-
quency )1(8338,0 qc +=/ωω , the radiation pattern has
peaks for directions corresponding to trajectory points
with minimal curvature radius, ny πδθ 2= ,

...,1,0 ±=n ; δθ )1( qz +−= . Denote these directions
by A. At higher frequencies, the radiation is more con-
centrated in the neighborhood of directions A.

At the minimal characteristic frequency
|1|8338,0 qc −=/ωω , Fig. 1,b, the peaks of the radia-

tion pattern correspond to the trajectory points with
maximal curvature radius, ny πδπδθ 2+−= ,

...,1,0 ±=n ; δθ )1( qz +−= , Fig. 2,b. For lower fre-
quencies the radiation is even more concentrated in the
neighborhoods of these points. When the direction of
light biases to A, the section of radiation pattern be-
comes two-humped because of increasing the relative
contribution of π -polarization component in the total
(π - + σ -) radiation beam, Fig. 1,b.

Fig. 1 Radiation pattern at the given frequencyω :
a) ω  is equal to the maximal characteristic frequency;

b) ω  equals minimal characteristic frequency;
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Thus the form of radiation pattern depends on the
frequency of radiation while the particle moves along
trajectory (2).

Polarization properties of radiation are described by
equations (9), (10). The ort σe  coincides with the tan-
gent to line L, Fig. 2, πe  is perpendicular to σe  and n.
For the directions at line L the radiation has linear po-
larization ( 0≠σE , 0=πE ). The sense of elliptical po-
larization coincides with the sense of particle rotation
around n.

    

Fig.2. The width of radiation pattern. (solid line) is
the contour at level of one half of maximal value; (+),(-)

denote the sense of elliptical polarization



In the case of exact equality 1=q  the trajectory (2)
has points at which the curvature becomes equal to zero.
At these point equation (10) is failed. In [8] it was found
that the approximation (10) is correct, if

2/1
B ))/(|(||1| Ω>− γωq  

2/1)/( γγ||= . The case 1=q
needs a special study. This will be the object of another
paper.

4. RADIATION SPECTRUM
To find the radiation power per unit frequency, we

shall integrate equations (11), (12) over the radiation
angle and then divide it by the time interval of radiation.
Let µ  and χ  be angular coordinates. The variable µ
describes directions that correspond to segments of line
L. The angle χ  corresponds to arcs of the great circle,
which is perpendicular to line L.

v|vv /|/ 0dtdd
••

== rµ 0dtkv= , and the element of
solid angle has the form

0dtkdddd vχµχο == .            (14)
Dividing (11), (12) by |2 Bωπ |/  and integrating

over a solid angle, we obtain
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where cy ωω/= , 22)/)(3/2()( vkcekW 42= γα . The ex-
pression after the first integral sign in (15) can be inter-
preted as a spectral power of radiation for a charged
particle moving in a circular orbit with the instantaneous
radius )(1

C tkr −= .
Let us derive formula (15) without using expression

(14). At first we integrate over solid angle in (6).

4.1. SCHWINGER’S FORMULA

Substituting (7) in equation (6), we obtain
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where )( ii trr = , )( iii tββββββββ = , 2,1=i .
Integrating by parts the second term in (16), then

integrating in οd , and introducing the vari-
able 12 tt −=τ , we obtain (see also [12])
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From expression (17) follows the expression for a
spectral power at the time t
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It is the formula (I.37) obtained by Schwinger in [3]. He
considered the rate at which the electron does work on

the radiation field. Equation (18) is the starter formula
in [6]. Let us now show that (15) is also followed from
equation. (18). Using the Frenet formulae, we obtain
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Substituting equations (19), (20) into (18), we re-
duce expression (18) to
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where )(tkk = .

After introducing in (21) the new integration vari-
able vkx τγ=  and employing the formula from [3],
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we obtain expression (15).

4.2. GENERALIZATION OF RADIATION
SPECTRUM

To integrate with respect to 0|| tBω  in (15), we in-

troduce the variable 0
2 cos21 tqqz Bω++=  and change

the order of integration. Then [8]
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4 Ω= βγα

c
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C 3
2  is the total power emitted by a

charged particle moving with velocity ||v  along a cir-
cular orbit of radius R, Cy ωω /C = .

Thus, the universal function of synchrotron radia-
tion for a relativistic electron moving in circular orbit
[2, 3, 12]

f y y dxK x
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             (23)

is replaced by expression (22) for a relativistic electron
moving along the spiral trajectory in circular magnetic
field. In [6], the radiation spectrum, which form is dif-
ferent from (22), was obtained from the Schwinger for-
mula (18). As it has shown above, spectrum (22) also
follows from (18). The radiation spectrum obtained in
[6] is given in Appendix. Thus (22) and the corre-



sponding formula in [6] are two different representa-
tions of the radiation spectrum.

Integrating in (22) with respect to frequency, we
obtain the total emitted power

( )21
3
2 q

c
eP +Ω= 22

||
4

2

βγα .              (24)

The same form has the expression for power losses of a
relativistic electron moving along the circular trajectory

of effective radius 21/ qR + .
Equation (22) at 1<<q  и 1>>q  reduces to for-

mulae of the curvature radiation and synchrotron radia-
tion for spiral trajectory in straight magnetic field, re-
spectively. In these cases, the first integral in (22) is
smaller than the second one. The most essential differ-
ence from the case of synchrotron radiation in straight
magnetic field arises, if 1~q , and then the second inte-
gral in (22) is larger than the first.

Fig.3. Universal functions of synchrotron radia-
tion: (solid line) is the spectrum (23); (dotted line) the

spectrum in straight magnetic field lines; (dot-and-dash
line) the curvature radiation spectrum; (dashed line)

synchrotron radiation for an electron having the circu-

lar trajectory with effective radius 21/ qR +

Let us compare exact expressions for spectrum (22)
and total energy losses (24) with approximate expres-
sions (usually used at interpretation of experimental
data), in which formula (23) is used. In Fig. 3 we com-
pare different radiation mechanisms when 1~q . a) The
curvature of magnetic force lines is not taken into ac-
count, and the formula for synchrotron radiation of an
electron moving with the pitch angle crBBP /sin ωψ =  in
straight magnetic field is used. In this case

][= 3
PBcy ψωγω sin||)2/3(/  and the spectrum is de-

scribed by the first integral with the lower limit of inte-
gration qyc /  in (22), (dotted line in Fig.3). The total

emitted power is proportional to 2q . b) We neglect
pitch angles and consider the curvature radiation for an
electron moving along the circular magnetic line with
curvature radius R. This spectrum is described by the
first integral, which has the lower limit of integration

cy , in (22). The spectrum of curvature radiation is
plotted by the dot-and-dash curve. The total power
losses is described by the first term in (24). c) As it was
already mentioned above, the total power loss for parti-
cles in curved magnetic field (24) coincides with the
power loss of a relativistic electron having circular tra-

jectory of radius 21/ qR +  (dashed line in Fig.2).
Considering the graphs such as represented in Fig.3

at various values of parameter q, we find that the differ-
ences between spectrum (22) and the spectrum of syn-
chrotron radiation in straight magnetic field are essential
if q belongs to the interval, 52,0 << q . Thus when

1~q , it is necessary to use formula (22). The derived
formulae, strictly speaking, are obtained when condition
[8] 2/1

B ))/(|(||1| Ω>− γωq 2/1)/( γγ||=  is taken place.
These conditions can be fulfilled both in astrophysical,
and in laboratory plasma.

APPENDIX

Averaging (21) over time |2 BT ωπ |/=  and by
taking expansion

∑
∞

∞−

= )(intsin zJee n
tiz ,

where )(zJ n  are Bessel functions, we obtain

∫ ==
π

ωπ
ω

ω

2

0

)(
2

||
d

tdPtd
d
dP B







×





+Ω+−= ∫

∞ 222

2
0

2
2

)1(
2

1 qde τγ
τ
τ

πγ
ωα
v

       ( ) −





+Ω+Ω×

222

2

32
2

0 1
12

1
2

sin)
12

( qqJ τγ
γ
ωττω

  ∫
∞

222 ×′Ω−
0

3
0 )( yqxJqd τγ

τ
τ

            .)1(
12

1cos 2







2
−





+Ω+

2
×

222

2
πτγ

γ
ωτ q

Replacing the variable of integration /2Ω= τγx  and

introducing )2/3( Ω)/(= 3γωy , we obtain expression
(14) from the paper [6].
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