МЕТОД АДАПТИВНОГО ТЕСТИРОВАНИЯ КАК СРЕДСТВО ДИАГНОСТИКИ СОСТОЯНИЙ НЕЛИНЕЙНЫХ СИСТЕМ РЕАЛЬНОГО ВРЕМЕНИ И ОСНОВА ХАОТИЧЕСКОЙ СВЯЗИ

И.И. Магда, А.В. Пащенко, И.Н. Шаповал

Институт Плазменной Электроники и Новых Методов Ускорения, ННТЦ «ХФТИ»

ул. Академическая, 1, 61108 Харьков, Украина, e-mail: imagda@online.kharkiv.com

В.Е. Новиков

НТЦ «Электрофизической обработки» НАНУ, а.я. 8812, Харьков 61002, Украина

Аннотация – Предложен вариант сверхширокополосной (СШП) радиосвязи на основе модуляции и восстановления медленного изменения фрактальных параметров хаотического сигнала с помощью метода адаптивного тестирования нелинейных систем.

1. Введение

Метод Адаптивного Тестирования (АТ) был создан и развивался как средство получения динамических параметров сложных электронных устройств, находящихся под воздействием сигналов короткой длительности [1]. Экспериментально изучались нелинейные отклики чувствительных приемноусилительных трактов на воздействие электромагнитных и микроволновых импульсов и исследовались методы диагностики нестационарных систем. Разработанные методы, алгоритмы и программы позволяют эффективно обрабатывать экспериментальные временные ряды и получать зависимость от времени для параметров, определяющих сложность и структуру экспериментальных последовательностей [2-3], а также характеризовать квазистационарные состояния систем и переходы между ними. Структура набора алгоритмов ATDP Suite [3], осуществляющих методы АТ изображена на Рис. 1

Рис. 1 Структура и связи алгоритмов составляющих основу набора программ ATDP Suite. Разделы 1, 2, и 3 соответствуют - подготовке данных, обра-

ботке данных и их анализу.

Основными частями программного комплекса, существенными как для определения областей стационарности временных рядов, так и для осуществления хаотической связи являются алгоритмы регуляризации временных рядов и алгоритмы определения информационной метрики. Эти алгоритмы представлены ниже.

2. Регуляризирующие свойства дробных производных.

Пусть x(t) - реальный процесс, который происходит в исследуемой физической системе. Этому физическому процессу соответствует второй процесс y(t) измеренный временной ряд, который отличается от x(t), поскольку наблюдения производятся с погрешностями.

Пусть динамическая система имеет размерность вложения de и описывается обыкновенным дифференциальным уравнением степени de. Оператором, приводящим к наибольшей неустойчивости в таком уравнении, является оператор старшей производной. Поэтому мы будем конструировать регуляризирующий оператор исходя из регуляризирующего оператора для оператора старшей производной. Рассмотрим для простоты уравнение D^{de}y = z Некорректно поставленная задача определения производной по временному ряду величины у обычно записывается в форме интегрального уравнения $y = D^{-de} z$. Можно показать, что регуляризирующий оператор для оператора D^{-de} имеет [2] форму дробного интегродифференциального оператора $R^{\alpha} = D^{d_{e}-\alpha}$ порядка $d_a - \alpha$.

Регуляризирующий оператор играет роль обратного оператора в уравнении динамической системы. Другими словами, в нашем случае член эволюционного уравнения со старшей производной должен быть

заменен на R^{*α*} (для получения устойчивого и единственного решения).

Однако порядок дифференциального уравнения

(оператора) может быть сохранен, если мы введем новые сглаженные переменные с использованием регуляризирующего оператора:

$$D^{d_e - \alpha} y = D^{d_e} z(t), \ z(t) = R^{\alpha}_f y(t), R^{\alpha}_f = D^{-\alpha}$$

Интегральный оператор сглаживания переменных R_f^{α} преобразует неустойчивое решение динамической системы в устойчивое наблюдаемое состояние.

Рис. 2 График функции Вейеритрасса с изменяющейся со временем размерностью от $D_f=1.33$ в начале ряда через $D_f=1.43$ в середине до $D_f=1.33$ в конце временного ряда.

Рис. 3. Траектория в фазовом пространстве для временного ряда с Рис. 2; (а) исходная траектория; (b) регуляризированная траектория

Регуляризирующий параметр должен, естественно, удовлетворять следующему условию: если размерность аттрактора не дробная, а целая, то регуляризирующий параметр должен быть равен нулю. Очевидно, что выбор $\alpha = \{d_f\}$ удовлетворяет этому условию. Здесь $\{z\}$ -дробная часть z, а d_f - любая размерностная характеристика степени хаотичности траектории и неустойчивости относительно возмущения начальных условий. Это могут быть ляпуновская размерность траектории, корреляционная размерность и др.

Продемонстрируем действие алгоритмов регуляризации на модельном нестационарном временном ряду (см. Рис. 2), представляющие собой функцию Вейерштрасса *W* с изменяющейся со временем корреляционной размерностью

$$W(D_{f}(t),t) = \sum_{n} b^{n(D_{f}(t)-2)} Cos(b^{n}t)$$

Ряд получен при изменении размерности от D_f =1.33 в начале ряда через D_f =1.43 в середине до D_f =1.33 в конце временного ряда. На Рис. 3. показана траектория в фазовом пространстве. На Рис. 3 (а) траектория в фазовом пространстве с помощью обычной процедуры Такенса, а на Рис. 3 (b) показана фазовая траектория, которая получена в результате дифференцирования временного ряда с помощью предварительного сглаживания с помощью дробного интегрального оператора. Видно, что процедура регуляризации позволяет выделить квазистационарные состояния. Для явного определения границ стационарности далее будет использована псевдометрика, введенная в работе [9].

3. Информационные расстояния и определение нестационарности временных рядов.

В работе [7], используя метод *n*-туплевого анализа Ципфа, была исследована статистическая структура бинарных последовательностей с короткими (экспоненциальными) марковскими и дальними корреляциями. Суть этого метода состоит в определении нормированной частоты появления $\omega(R)$ данного "слова" - бинарной комбинации длины *n* (*n*-тупля, пользуясь терминологией [7]) в зависимости от его ранга *R*. Ранг *R* определялся как номер слова в упорядоченном по убыванию частоты $\omega(R)$ множестве всех возможных слов длины *n* (их число $N = 2^n$), так что R = 1 соответствует наиболее встречаемому, R = 2 следующему по частоте и.т.д.

Было обнаружено, что в случае длиннокоррелированных последовательностей в широком диапазоне значений R (за исключением значений, близких к ираничным R=1 и $R=2^n$) гистограмма частоты $\omega(R)$ убывает с ростом ранга R приблизительно по степенному закону:

$$\omega(R) = A/(B+R)^{\xi}, \ \omega \sim R^{-\xi}, \tag{3}$$

где ξ получила название показателя Ципфа.

Показатель ζ может быть оценен из анализа экспериментальных данных как коэффициент наклона гистограммы Ципфа, (график $\omega = \omega(R)$ выполненной в двойном логарифмическом масштабе).

Была обнаружена простая, приблизительно линейная, зависимость между показателем, характеризующим дальние корреляции, и показателем Ципфа ξ [7].

На Рис. 4 изображена функция распределения Ципфа-Мандельброта для реализации значений тока на конце линии (см. Рис.3).

Важность использования этих распределений для нашего исследования состоит в том, что эти распределения очень устойчивы к шумам [8]. Параметры распределения Ципфа уверенно восстанавливаются при превышении амплитуды шума над уровнем сигнала в два раза. Кроме того, статистические распределения могут быть эффективно использованы в качестве основы для определения псевдометрики [9].

Расстояние между временными рядами $y_1(i)$ и $y_2(i)$ в настоящей работе определяется с помощью соотношения

$$d_{s} = \sum_{i} \left(h^{1/2}(\omega_{y_{1}}(i)) - h^{1/2}(\omega_{y_{2}}(i)) \right)^{2}, \qquad (4)$$

распределения

где $\omega_v(i)$ -функции

Ципфа-

Мандельброта временного ряда, а $h(x) = -x^q \ln_q(x)$.

Здесь использовано обобщение энтропии, предложенное Тсаллисом (см., например, [10]), которое содержит вместо логарифма его степенное обобщение:

$$\ln(x) \to \ln_q(x) = \frac{x^{1-q} - 1}{1-q} \tag{5}$$

с неким числовым параметром q. Заметим, что при $q \to 1$, $\ln_q(x)$ переходит в настоящий логарифм.

Новая формула для q-энтропии выглядит так:

$$S_{q} = -\sum_{i} p_{i}^{q} \ln_{q}(p_{i}) = \frac{1 - \sum_{i} p_{i}^{q}}{q - 1}.$$
 (6)

Свойством *q*-энтропии, существенным для использования в диагностике, является то, что в то время, как обычная энтропия (при условии ее максимума) приводит к равновесной функции распределения, условие максимума *q*-энтропии приводит к степенному распределению Тсаллиса, подобного распределению Ципфа-Мандельброта.

На Рис. 4 (а) показан отклик приемноусилительного тракта с рабочей частотой 3 ГГц на импульсное электромагнитное воздействие длительностью в 1 наносекунду.

На Рис. 4. (b) показана поверхность представляющая эволюцию во времени функции распределения значений временного ряда. Уже из этого рисунка видны три области с принципиально разным характером функции распределения.

На Рис. 4 (с) показана динамика информационного расстояния временного ряда до тестовой последовательности с размерностью D_f =1.96.

По этому графику видно существование трех различных квазистационарных состояний при эволюции системы более четко.

Рис. 4 Пример применения алгоритмов ATDP Suite для определения областей стационарности в экспериментальном временном ряду. (а) отклик ПУТ на электромагнитный импульс; (b) эволюция функции распределения временного ряда;(c) эволюция информационного расстояния временного ряда от стационарного ряда

4. Хаотическая связь на основе АТ технологии

Высокая эффективность разработанных алгоритмов восстановления динамики параметров электрического сигнала позволяет использовать методы адаптивного тестирования для осуществления хаотической СШП радиосвязи, интенсивно разрабатываемой в последнее время [4].

Предлагается вариант СШП радиосвязи (Рис. 1), в которой информационный сигнал (ИС) модулирует фрактальную размерность хаотической несущей. Модулированный хаотический сигнал излучается широкополосной антенной. В приемнике сигнал, принятый антенной, обрабатывается с помощью АТ-технологии, сравнивается с тестовым сигналом и выделяется временная зависимость размерности сигнала, а, следовательно, и переданная информация. Наиболее важными характеристиками нелинейной системы являются параметры различных статистических распределений фазовых траекторий, а также расстояния между фазовыми траекториями системы и тестовыми фазовыми траекториями [3].

Рис. 5. Схема канала хаотической связи

В качестве устройства, генерирующего хаотический сигнал в предлагаемой системе СШП радиосвязи, может быть использована линия задержки с нелинейными элементами на концах [5]. Предположим, что вблизи рабочей области их вольт-амперная характеристика линейна $g(u) = \alpha u + \beta$. Динамика последовательности значений токов на конце линии i_k определяется линейными отображениями. Каждое значение k соответствует одному из N отображений вида

$$i_{k+1} = \frac{\alpha z - 1}{\alpha z + 1} i_k + 2 \frac{\alpha E + \beta}{\alpha z + 1}, \qquad (1)$$

где $z = \sqrt{L/C}$ импеданс линии, динамика которой представляется как СИФ (система итерируемых функций) [6] с фрактальными характеристиками, зависящими от параметров линии.

Все отображения имеют одинаковые якобианы $J = \frac{\alpha z - 1}{\alpha z + 1} < 1$ (для подпоследовательности, представляющей заданный бит) и смещения $b_k = 2 \frac{(\alpha E_k + \beta)}{(\alpha z + 1)}$. Фрактальная размерность определяется простым соотношением

$$D_f = \ln(N) / |\ln(J)| . \tag{2}$$

На Рис. 3 показаны реализация, полученная в линии при модуляции D_f от $D_f = 1.35$ до $D_f = 1.45$ в соответствии с исходными битами ИС, показанными на Рис. 2(а).

Согласно предлагаемой схеме (рис.1) электрические сигналы, вырабатываемые в линии-генераторе хаотического сигнала, модулируются ИС, передаются на широкополосную антенну и излучаются. В качестве модели передающей СШП антенны использован электрический диполь. Для этой антенны поле в волновой зоне можно просто выразить через ток *i*(*t*)

(b) Рис.6 Бинарная информационная последовательность bⁿ; (а)начальная, (b)

Полученные с помощью этого соотношения значения поля обрабатывались с целью восстановления динамики управляющего параметра хаотического сигнала в линии передатчика. Для этого использовалось понятие локального (по времени) расстояния от принятого ИС с модуляцией статистических свойств до тестового стационарного хаотического сигнала. Локальное расстояние для последовательности, соответствующей принятому модулированному хаотическому сигналу (Рис.3), вычислялось с помощью процедуры, описанной в[3].

Рис. 8. Распределение Ципфа Мандельброта для хаотической последовательности (вверху) и модулированной хаотической последовательности (внизу).

Этот метод использует достаточно широкое временное окно, длительность которого, однако, должен быть существенно меньше длительности участка квазистационарности в модулированной последовательности. Период стационарности в наших численных экспериментах выбирался порядка 600-1000 Δ , где Δ = 0.1 нс - время задержки сигнала в линии, а длительность временного окна порядка 300 Δ. На Рис. 2 показана временная зависимость расстояния между стационарным и нестационарным (состояниями системы демодулятора) сигналами, возбужденными в приемнике. При этом уровень помех в радиоканале, задаваемого в виде гауссовского шума, вдвое превышал уровень полезного сигнала. Видно, что динамика «информационного» расстояния, восстановленного демодулятором приемника, хорошо соответствует исходному ИС, обусловливая высокую помехозащищенность и скрытность радиоканала.

5. Заключение

Предложен вариант СШП связи на основе восстановления динамики хаотического сигнала методами адаптивного тестирования, использующего псевдометрику статистических распределений временных рядов. Продемонстрирована устойчивость такой связи в условиях помех высокого уровня.

6. Список литературы

1 Магда И.И., В.И. Чумаков, Н.П. Гадецкий, К.А.

Кравцов, Ю.В. Прокопенко, Г.В. Скачек, Ю.В. Ткач, AMEREM'96, Альбукерке, США, 1996, р. 79.

- 2 Магда И.И., Пащенко А.В., Шаповал И.М., Новиков В.Е., Структура программного комплекса АТDP Suite для адативного тестирования состояний электронных систем, Труды 12-й Межд. Конф. КрыМиКо'2002, Севастополь, Украина, 2002.
- 3 Магда И.И., Пащенко А.В., Шаповал И.М., Новиков В.Е., Применение програмного комплекса АТDP SUITE для тестирования и классификации состояний электронных систем, Труды 12-й Межд. Конф. КрыМиКо'2002, Севастополь, Украина, 2002.
- 4 Кислов В.В., Беляев Р.В., Калинин В.И., Колесов В.В., Широкополосные системы связи с применением хаотического кодирования, Труды 12-й Межд. Конф. КрыМиКо'2002, Севастополь, Украина, 2002., с 237
- 5 *Magda I.I. et al.*, Iterated Function System as a Model of Chaos Excitation in the Electronic System with Transmission Line, The 2003 IEEE International Symposium on Electromagnetic Compatibility, Istanbul, Turkey, 2003.
- 6 Болотов В.Н., Новиков В.Е., Структура программного комплекса ATDP Suite для адаптивного тестирования состояний электронных систем, Труды 12-й Межд. Конф. КрыМиКо'2002, Севастополь, Украина, 2002.
- 7 Denisov S. Phys. Lett. A 235, p. 447 (1997).
- 8 Tang X.Z., Tracy E.R., Reggie B, Reconstruction of chaotic signals using symbolic data, Phys. Letters, A 190, No 8, p. 393-398 (1994).
- 9 Болотов В.Н., Денисов С.В., Новиков В.Е., Проблемы классификации аттракторов и псевдометрика, Труды 7-й Межд. Конф. КрыМиКо'97, Севастополь, Украина, 1997, с. 252
- 10 *Tsallis C.*, Nonextensive statistics, Brazilian Journal of Physics, vol. 29, p. 1-35 (1999).
- 11 *Immoreev I.I., Sinyavin A.N.*, Radiation of UWB signals, Труды 12-й Межд. Конф. КрыМиКо'2002, Севастополь, Украина, 2002.