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The collisional particle dynamics in such a system is investigated using a spatially homogeneous nonlinear colli-
sion integral in the Landau–Fokker–Planck form, which is a model Boltzmann colision integral for arbitrary poten-
tials of interaction accompanied by little momentum transfer between particles in collisions It is shown that the prin-
cipal condition for the existence of steady-state nonequilibrium distributions is the presence of a particle or an energy
flux oriented in the proper manner in momentum space. A steady-state local distribution exists in side the momentum
interval between the energy source and sink and has the form of a gradually decreasing function. The results obtained
can be used to predict the behavior of semiconductors with an intrinsic or extrinsic conductivity under the action of
particle fluxes.

1. INTRODUCTION
Nonequilibrium states of various physical systems

are attracting increased interest in connection with the
development and wide use of high-power particle and
energy sources. In physical systems in which the inter-
actions between particles or waves can be described by
the kinetic equations for waves, quasi-particles, or parti-
cles, the problem of constructing steady-state nonequi-
librium distributions reduces to that of solving the ki-
netic equations. In this case, the local character of the
steady-state nonequilibrium distribution corresponds to
the convergence of the collision integral (at each point
in momentum space, the main contribution to the colli-
sion integral comes from collisions between particles
with close momenta). The existence of a steady-state
nonequilibrium distribution implies that there are parti-
cle source and sink in momentum space. The energy
(particle) source and sink can be provided by ion beams,
emission currents, fluxes of charged particles produced
in fusion or fission reactions, etc. The characteristic
feature of systems of charged particles interacting
through the Coulomb potential is that the interaction
cross section diverges in the limit of a small momentum
transferred in a collision. To describe a gas or a semi-
conductor plasma for which the Coulomb logarithm is
large (10–15), it is sufficient to expand the integrand in
powers of the small momentum transferred (the diffu-
sion approximation) and to represent the collision inte-
gral in the Landau or Fokker–Planck form [1,2]. The
Landau (Fokker–Planck) kinetic equation, which is an
essential element in various physical models, is widely
applied in plasma physics. Then the kinetic equations
mentioned above are presented and the formulation of
the problem is discussed in detail. The formation of a
steady-state nonequilibrium particle distribution func-
tion is investigated numerically for a wide range of pa-

rameters (different source and sink intensities, localiza-
tion of the source and sink in momentum space, etc.).
The calculated results are discussed, and it is shown that
the Landau collision integral provides a correct descrip-
tion of a nonequilibrium distribution function in a
plasma in which the main process is a small-angle scat-
tering with little momentum transfer between the parti-
cles. In report is to consider the features of the conduc-
tion and emission characteristics of semiconductors un-
der the action of intense particle fluxes. As was men-
tioned in [3] the formation of a nonequilibrium distribu-
tion of electrons and holes may give anomalously high
conductivity and emission. Based on an analysis of the
experimental results, Aseevskaya et al. [4] arrived at the
conclusion that the irradiation of semiconductors by α -
particles may substantially change their conduction
properties. Some experimental data on the emission cur-
rent from metals irradiated by lasers (in particular, its
dependence on the retarding potential) cannot be ex-
plained on the basis of equilibrium distribution functions
[5], but they were reasonably explicable in terms of the
mechanism for the formation of nonequilibrium distri-
butions [6,8-11]. In our opinion, all these circumstances
confirm the above general statement about the formation
of nonequilibrium distributions in the presence of exter-
nal pumping. In this context, the physical effect associ-
ated with such fundamental changes in the electron dis-
tribution function are discussed.

2. STEADY-STATE NONEQUILIBRIUM
ELECTRON DISTRIBUTION WITH AN EN-

ERGY FLUX ALONG THE SPECTRUM
Universal steady-state nonequilibrium power-law

particle distribution functions f =Ap2s ( p is momentum)
that are exact solutions to kinetic equations with the
Boltzmann collision integral were first obtained from a
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symmetric approach by Kats et al. [7]. In the equilib-
rium situation, the fluxes of an energy or the particles in
momentum space are identically zero, because the inte-
grand with an equilibrium distribution vanishes at each
point p. However, for a nonequilibrium distribution
function, there is no need in conditions and only the
integral of the collision operator (rather than the opera-
tor itself) vanishes. The distribution function Ap2s corre-
sponds to a steady-state nonequilibrium situation with a
constant particle (or energy) flux in momentum space.
The collision integral for steady-state nonequilibrium
distributions satisfying the above conditions was calcu-
lated in a straightforward way in [3,8,9]. In those papers,
it was shown that the powers s of the local nonequilib-
rium particle distribution functions (for which the colli-
sion integral converges) lie within the intervals: -3/2 <s0
<–1, for I0 =const; –3/2 <s1 <–5/4, for I1 =const. The
powers 0 and 1 correspond to the fluxes I0 and I1 =const,
respectively. From these inequalities, we can see that, in
the case of Coulomb interaction, the collision integral
diverges, which corresponds to the well-known singu-
larity of W when the momentum transferred in collisions
is small. According to [3,8,9], the this divergence can be
eliminated by taking into account the Debye screening.
Thus, in [3,8,9], it was shown that, for the transition
probability corresponding to the screened Coulomb po-
tential and for particles with the momenta p< Da  ( Da is
the Debye momentum), taking into account the Debye
screening, on the one hand, eliminates the Coulomb di-
vergence and, on the other, does not change the power
of the steady-state nonequilibrium particle distribution
function with a constant energy flux in momentum
space. The power of the distribution function corre-
sponds to the asymptotic behavior of W respecting to the
Coulomb potential. Hence, in [3,8,9], it was shown that
particles with the momenta p< Da  obey a local (in the
sense of the convergence of the collision integral) power
distribution function, in which case the particle density
is determined by the flux intensity in momentum space.
The flux conservation is ensured by the source and sink,
whose positions should be consistent with the direction
of the flux. Hence, the electrons may obey a universal
nonequilibrium distribution even when the filling num-
bers are substantially (by one to two orders of magni-
tude) smaller than the equilibrium numbers. We have
considered the formation of steady-state nonequilibrium
distributions with sources and sinks localized in mo-
mentum space. Note, however, that it is often necessary
to deal with systems in which the source and/or sink are
nonlocalized; in particular, ionization by the wake field
is described by a nonlocal source in momentum (energy)
space.

3. NUMERICAL MODELING OF THE FOR-
MATION OF STEADY-STATE NONEQUI-

LIBRIUM PARTICLE DISTRIBUTIONS

In what follows, we will investigate a spatially ho-
mogeneous isotropic gas consisting of a single particle
species. The particles are assumed to interact through
the Coulomb potential. Our model is based on the
Boltzmann equation with the Landau collision integral
[12-14]. The first three tensor moments and the first four
scalar moments of the model collision integral are as-
sumed to coincide with those of the exact collision inte-
gral. The particle number and the energy are conserved,
and the H-theorem for the Boltzmann equation is satis-
fied. The equations with the model collision integral
provide a correct description of the system in the 20-
moment approximation of the Grad method. Finally, an
exact solution to the Landau equation for Maxwellian
molecules is the exact solution to the Boltzmann equa-
tion. Note that the preliminary dynamics of the particles
interacting by means of the Coulomb potential was pre-
viously studied using both the Landau kinetic equation
and the Fokker–Planck kinetic equation [15]. We intro-
duce dimensionless variables such that the velocity is
expressed in units of the thermal velocity VT =(3/2)1/2 vT

( Tv  = 
m

TkB2 ) and the time is measured in units of the

electron–electron relaxation time, which has in the case

of Coulomb interaction the form 
Λ

=
ln4

23

ne
mvT

eeτ . In

modeling the formation of a nonequilibrium distribution
on the basis of kinetic equations with the Landau and
Fokker–Planck modified collision integrals, respectively
in astrophysical applications are usually simulated using
kinetic equations with the Fokker–Planck collision inte-
gral: the particle and energy fluxes in momentum space
were taken into account by supplementing the right-hand
sides of the kinetic equations with the following terms
S+ and S-, which describe the energy (particle) source
and sink. The source and sink functions were modeled
by exponential functions localized in different intervals
in momentum space  ×∝ ±± IS  ))(exp( 2

1 ±−−× vvα
and by the localized function (Dirac delta function)

2/)( vvvIS ±±± −∝ δ  or

),(/)( 2 tvfvvvIS −±±± −∝ δ  (2)
When −+ = II , we deal with the energy flux from the

source toward the sink, and, when 
2

2

+

−
−+ =

v
vII , we deal

with an analogous particle flux. The direction of the
fluxes depends on the ratio of the velocities +v  and −v .
The initial distribution function was assumed to be ei-
ther a Maxwellian function or a delta function. The
simulations were carried out on the basis of completely
conservative implicit difference schemes [12 -14] for
which discrete analogues of the conservation laws are
satisfied and which make it possible to perform long-run
simulations without accumulating computational errors.
An infinite velocity interval was bounded from above by
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the highest possible velocities 10 TV  – 14 TV , at which
the distribution function was equal to a computer zero.
The initial distribution in the form of a delta function
was modeled by the function, which was zero over the
entire velocity range used in simulations, except for a
single velocity value (usually, v=1). Since the relaxation
problem is, in a sense, a test problem, we earlierly began
by considering the Cauchy problem for kinetic equations

Fig. 1. Logarithm of the steady-state nonequilibrium
distribution function normalized to its value at v =0 vs.
squared velocity. The computations were carried out for

the initial Maxwellian distribution function and the
source function with I =10-16, −v =5, and +v =6. The

solid and dashed curves were calculated from the Fok-
ker–Planck equation at the times t1=5 and t2=100, re-

spectively

Fig. 2. Steady-state (equilibrium) distribution functions
calculated for reversed positions of the source and sink
( +v =5, −v =7) from the Fokker–Planck equation and

from the Landau equation

with the initial distribution function. The corresponding
simulations were carried out [15] for kinetic equations
with the Landau and Fokker–Planck collision integrals.

Now, we proceed to a discussion of the results obtained
from simulations of the formation of steady-state non-
equilibrium distributions in the presence of energy or
particle fluxes in momentum space. The right-hand sides
of kinetic equations were supplemented with the source
and sink terms +S  and −S . First, we consider the results
obtained for the case in which the source and sink were
consistent with the direction of the collision-related flux
in momentum space. Note that an analytic solution of
the kinetic equations with a localized source and sink
yields a correct flux direction, namely, the flux is di-
rected downward along the velocity axis. From Fig. 1,
we can see that, in the presence of an energy flux in
momentum space, the initial particle distribution in the
interval between the source and sink relaxes to a Kol-
mogorov steady-state nonequilibrium distribution, while
the dis tribution function outside this interval is in ther-
modynamic equilibrium. Recall that the positions of the
source

 Fig. 3. Distribution function calculated from the Fok-
ker–Planck equation with the source and sink functions

])(exp[ 2
1 ±±± −−∝ vvIS α for 1α  =100, −v =4, and

+v =7. The dashed and solid curves refers to the times
t=25 and 100, respectively

Fig. 4. Distribution function calculated from the Fok-
ker–Planck equation with the source and sink functions

])(exp[ 2
1 ±±± −−∝ vvIS α for 1α =10, −v =3 and

+v =5. The dashed and solid curves refers to the times t
= 25 and 100, respectively
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and sink should be consistent with the flux direction in
momentum space. In order to convince ourselves that
this condition is very important, we interchanged the
source and sink in energy space and per-formed the cor-
responding simulations. The results calculated for re-
versed positions of the source and sink are illustrated in
Fig. 2, which shows the logarithm of the distribution
function versus the square of the dimensionless velocity.
In this case, a change in the flux intensity by several
orders of magnitude produces no change in the equilib-
rium particle distribution. Figure 3 was calculated for
the source and sink terms described by the exponential
functions of velocity. The source S+ is localized in a
“narrow” interval of energies corresponding to seven
thermal velocity es, and the sink S_ is localized in the
energy interval corresponding to four thermal veloci-
ties.The lengths of the intervals in which the source and
sink are localized is controlled by the coefficient 1α . in
the exponential functions. In the case at hand, the coef-
ficient is equal to 100; this very large value ensures a
strong localization of the source and sink.

In order to investigate how the electron distribution
function depends on the extent to which the source and
sink are localized in energy space, we carried out a se-
ries of computations with a smaller (10 instead of 100)
value of the above coefficient in the exponential func-
tions. A comparison between the results presented in
Figs. 3 and 4 shows that the character of the steady-state
nonequilibrium distribution in the main region between
the source and sink is independent of theextent to which
they are localized, thereby providing evidence of the
local (universal) character of this solution to the kinetic
equation.

Fig. 5. Steady-state distribution function calculated
from the Landau equation with = 2 for the source and

sink func-tions in the form of δ  − functions at different
flux intensities I1=0.01 and I2=0.001 ( −v =4, +v =5)

Fig. 6. Steady-state distribution function calculated
from the Landau equation for the source and sink func-

tions in the form of δ - functions at I = 0.01, −v =4,
and +v  = 6. Curve 1 and 2 correspond to a constant

energy flux (dN = 0) and a constant particle flux (dE =
0), respectively

Figure 5 shows how the distribution function de-
pends on velocity for different flux intensities. We es-
tablished that, when the intensities of the source (I+) and
sink ( −I ) are both low, a universal nonequilibrium dis-

tribution forms in the velocity range +v . The reasons
for this are twofold: first, with increasing velocity, the
cross section for Coulomb scattering decreases (in pro-
portion to ~v-3) and, second, diffusion due to Coulomb
collisions always gives rise to energy and particle fluxes
toward the region of the main (“background”) equilib-
rium distribution function. As a result, the higher the
intensities of the source and sink, the lower the relative
intensity of the particle flux toward the back-ground
plasma and, accordingly, the larger the region in which a
universal nonequilibrium particle distribution forms
between the source and sink. It should be noted that, as
the flux becomes more intense, the values of a nonequi-
librium distribution function increase. This is because
the nonequilibrium distribution function is proportional
to the flux intensity. These values illustrate the results of
a detailed study of the dependence of the solution on the
flux intensity in momentum space, which was varied
over a wide range. The initial source and sink functions
were taken to be functions with −v =4, +v =8,and dE=0.
Now, we consider the formation of a nonequilibrium
particle distribution in the case of a constant particle

( 2

2

−

+
−+ =

v
vII , dE =0) or energy (dN =0, −+ = II ) flux.

In order to simplify comparisons of the results ob-
tained, it is convenient to normalize the distribution
function to its value at zero, as is done in all figures pre-
sented in this paper, and, in particular, in Fig. 6, from
which we can see the formation of gradually decreasing
distribution functions with close powers s in the cases of
a particle and an energy flux. The larger the power, the
shorter the interval over which the distribution function
is nonequilibrium. These calculated results agree quali-
tatively with the above analytic predictions.

4. MECHANISM FOR THE FORMATION OF
THE ELECTRON DISTRIBUTION FUNC-

TION IN THE INTERACTION OF INTENSE
PARTICLE FLUXES WITH A SOLID-STATE

PLASMA
In this section, we focus on the distinctive features of

the conduction and emission characteristics of a semi-
conductor plasma that is affected by intense particle
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fluxes. Note: the values of the distribution function are
seen to increase with increasing intensity I: at low inten-
sities (to 0.1), the values of the distribution function
increase in proportion to I because of the large contri-
bution of the interaction of nonequilibrium particles
(i.e., the particles from the interval between the source
and sink) with the background particles, whose distribu-
tion is thermodynamically equilibrium; at moderate in-
tensities (from 0.1 to 20), the distribution function is of
a universal nature over the entire interval between the
source and sink and is proportional to the square root of
the intensity I, in agreement with theory and at higher
intensities, the distribution function is no longer propor-
tional to the square root of the intensity because it enters
into the sink function.

As an example, we consider a solid-state plasma that
is affected by a flux of fast ions (with speeds higher than
those of atomic electrons). A typical situation in a single
ion track can be described as follows. Let the energy of
a helium ion be . iε  =5 MeV, the excitation potential be

.φ  = 100 eV, and the ion mean free path in the target
material be mfpR = 10-3 cm. The number of electrons
produced during ionization processes along the path of a
helium ion is about 104 –105. The radius of the ioniza-
tion track of an ion is comparable with the mean free
path of the electrons produced ( eR = 10-6 cm). The

electron density in an ionization track is enn =1019 –1020

cm-3, the equilibrium electron density being en  = 1022

cm-3. Hence, in this case (see [8,9,16]), the time of the
electron energy relaxation due to electron–electron col-
lisions is substantially shorter than that due to electron–
phonon collisions. A comparison of the characteristic
ionization time with the relaxation times shows that, in
our case, the electron distribution function is quasi-
steady and is governed primarily by electron–electron
collisions. Consequently, this function can be deter-
mined from the condition for the Boltzmann (Landau–
Fokker–Planck) collision integral to vanish. The
earlierly carried out study [8,9,16] and the numerical
modeling analysis show that, in a semiconductor
plasmas, the power-law distribution function
corresponding to a constant energy or particle flux in
momentum space can exist in the energy range

FF EEE >− )( . This distribution is formed by both
collisions with electrons in the energy range

FF EEE >− )(  and collisions with background
(equilibrium) electrons. As was shown above, the
nonequilibrium electron distribution is close to a
universal distribution if the intensity of the flux pro-
duced by the source and sink in momentum space is
sufficiently high. For such ratios of the electron densi-
ties, the source and sink are sufficiently intense for the
nonequilibrium distribution function to form. Let us now
consider the mechanisms by which a fast ion loses its

energy in a solid-state plasma. Note that, under condi-
tions typical of the ion beam – driven inertial confine-
ment fusion, the ion energy loss is independent of the
ion density in the beam. Taking into account this cir-
cumstance, we can calculate the energy lost by an ion
from the Bethe–Bloch formula. According to [17], the
energy of a fast nonrelativistic particle is transferred to a
medium by the following two mechanisms. A fraction of
the particle energy is expended on the excitation of col-
lective oscillations associated with wake charge density
waves, and the remaining fraction is transferred to indi-
vidual electrons, with a subsequent ionization of the
medium [17,18]. The former fraction corresponds to the
macroscopic energy loss in long-range collisions with
little momentum transfer, and the latter fraction corre-
sponds to collisions with large momentum transferred.
The fraction of the particle energy that is lost through
the excitation of collective oscillations is relatively large
[18]. A fast particle passing through the medium pro-
duces slow electrons by two equiprobable mechanisms:
by avalanche ionization and by ionization through the
excitation of plasma oscillations. The main features of
the electron production through ionization by plasma
oscillations are associated with long time and spatial
scales of the wake charge density waves. Because of the
long time scale of the waves, the secondary ionization
inside the beam proceeds for a long time after the pas-
sage of a beam particle. A substantial number of slow
electrons are liberated in cascade ionization caused by a
high-energy secondary electron. Since the mean free
path of such an electron in a medium is long, most of the
slow electrons are produced in cascade ionization along
its path. As a result, ionization by the wake field is the
dominant process affecting the distribution of liberated
electrons near the axis of the particle track, whereas
cascade ionization is responsible for the distribution of
liberated electrons at distances from the track axis that
are on the order of the electron mean free path. Since a
charged particle ionizes the medium by its self-field only
during its passage and since the wake charge density
waves play the role of a linear source of secondary elec-
trons for a long time after the passage of the ionizing
particle, the ionization dynamics is governed completely
by the secondary electrons. As was mentioned above,
despite the short time required for an ion to pass along
the track, the characteristic time of the avalanche ioni-
zation by wake charge density waves is fairly long
(about 10-13 s). Let us analyze some physical conse-
quences of such a fundamental change of the electron
distribution function. From the expression for a density
of the electron emission current we can see [3,8,9,11]
that, in a plasma with a nonequilibrium electron distri-
bution, the electron emission current density is anoma-
lously high, because, in the inertial interval, the distri-
bution function decreases very gradually. The conduc-
tion characteristics of the medium are governed by the
density of the current carriers, so that, in a semiconduc-
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tor plasma with a nonequilibrium electron distribution,
this density is very high, in contrast to the case of an
exponentially decreasing equilibrium distribution func-
tion. That is why, under the action of intense fluxes of
fast particles, the emission and conduction properties of
a semiconductor plasma can become anomalous. Note
that such anomalies have already been observed in some
experiments (see, e.g., [4,5,11]).

5. CONCLUSION
In conclusion, we summarize the results obtained

from numerical modeling of the formation of steady-
state nonequilibrium distribution functions. For a distri-
bution function computed from the have established the
following:

(i) In the interval between the source and sink lo-
cated at certain positions in momentum space, the parti-
cles interacting through the Coulomb potential relax to a
steady-state nonequilibrium distribution. Moreover,
above certain source and sink intensities, the distribution
function over almost the entire interval between the
source and sink is of a universal nature; i.e., it obeys the
same power law.

(ii) The functional dependence of the steady-state
nonequilibrium electron distribution is sensitive nether
to the extent to which the source and sink are localized
in momentum space nor to the length of the inertial in-
terval (i.e., the interval between the source and sink). It
is, however, necessary that the positions of the source
and sink be consistent with the direction of the energy
flux in momentum space. Recall that the flux direction is
determined by the nature of the interaction between par-
ticles and is entirely independent of the source and sink
structures. In other words, the particles relax to univer-
sal local distribution functions.

(iii) For the source and sink intensities in the interval
0.001 ≤  I ≤ 0.1, the distribution function computed
from the Fokker–Planck equation is proportional to the
intensity; as the intensity increases from 1 to 10, the
values of the distribution function increase only by a
factor of 3. The fundamental change in the electron dis-
tribution function under nonequilibrium conditions leads
to an anomalous enhancement of the conduction and
emission characteristics of the medium. The results ob-
tained in our investigations can be used to predict the
behavior of semiconductors with an intrinsic or extrinsic
conductivity in the fluxes of fast particles, as well as in
intense electromagnetic radiation.

This work was supported in part by the STCU on
project #1862.
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