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Stationary self-focusing of whistler waves, which propagate along magnetic field with frequencies below half

electron-cyclotron frequency is considered in the framework of two-dimensional generalized nonlinear Schroedinger
equation. It takes into account electrostatic wave component of whistler waves and nonlocal nonlinearity caused by
plasma heating during intense whistler wave propagation, which may be essential in laboratory plasma and in
ionospheric experiments. Necessary conditions for stationary nonlinear self-trapping in self-sustained waveguides
are found and their stability confirmed both analytically and numerically.
PACS: 52.35.Mw

1. INTRODUCTION
Whistler or helicon wave is one of the most

frequently observed waves in magnetized laboratory
plasmas, in the ionosphere and the magnetosphere of the
Earth and in the plasma of solids. In spite of intensive
investigations since the beginning of the last century the
nonlinear properties of the whistler waves are still not
well understood. As known, the stationary whistler
waveguide formation in density troughs has been
experimentally demonstrated in laboratory plasma both
below [1-3] and above [1,2] half electron cyclotron
wave frequency (ωc/2). In these experiments plasma
heating during intense wave propagation have caused
density troughs (wells) along wave beam propagation. It
is well known, that at ω=ωc/2 the sign of group
velocity, perpendicular to an external magnetic field
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00 = , changes. For both dispersive regimes (for ω

both below and above ωc/2) in linear approximation
wave beam spreads out due to diffraction [4]. One can
expect, however, that due to plasma density changing,
induced by intense HF wave, refractive index may vary
in such a way that to compensate linear wave
diffraction.

Conventional model of self-focusing of the wave
propagating in z-direction bases on nonlinear
Schrödinger equation (NSE):

0)|(|ˆˆ 2 =ΨΨ+Ψ+Ψ∂ NDi z , (1)
where only the lowest order dispersive (diffractive)
effect is taken into account: Ψ∆=Ψ ⊥DD̂  (here

2222 yx ∂∂+∂∂=∆⊥  is Laplacian operator), and
refractive index is supposed to depend on wave
intensity 2||Ψ  linearly ( 22 ||)|(|ˆ Ψ=Ψ BN ). The
problem is that such oversimplified model fails to
explain the experiments. Actually, in the case ω<ωc/2
(DB<0) thermal nonlinear effect increases beam
spreading, and in the case ω>ωc/2 (DB>0) self-focusing
is so strong that may give rise to wave beam collapse. It
was shown in [4] that taking into account the saturation
of nonlinearity and higher order dispersion
(polarization) effects one can explain formation of
stable whistler waveguids in both regimes. Other higher
order nonlinear effect, which may be even more
essential than saturation of nonlinearity [5,6], is the
nonlocal thermal wave response caused by thermal

conductivity. For not too high intensities, in the so-
called weak nonlocality limit, this effect can be
described by additional term of the form 2||Ψ∆⊥C  [7].
Nonlocal nonlinearity may be also very important to
describe two-dimensional (2d) Langmuir solitons [8]
and 2d upper-hybrid (UH) wave structures [9], 2d
structures in molecular lattices [10, 11] in atomic Bose-
condensate [12], and power optical beam propagation in
vapors accompanying atom diffusion [13]. For whistler
wave propagation with frequencies ω>ωc/2 a saturation
of nonlinearity [4, 14] or defocusing nonlocal nonlinear
effect [8,12] may arrest wave collapse. Therefore, each
of these supplementary effects, even taken separately,
let to explain a formation of coherent 2d structure.
However, below half electron frequency a formation of
stationary whistler waveguides in troughs may be
possible only due to competition of nonlinear effects
with higher-order dispersion. The same is true for
formation of UH 2d structures in anomalous dispersion
region ( 22 3 cpe ωω < ), which was shown in [9].

Here basic generalized NSE (GNSE) including
fourth order dispersive effects and nonlocal thermal
self-focusing effects for description of whistler wave
propagation is derived. It is demonstrated that there may
exist at least two soliton branches with the same number
of quanta, but different spatial scales. Their stability has
been analyzed both analytically and numerically against
small and finite perturbations. In the framework of our
model, we predict an existence of new type of whistler
wave beam stationary structures, which have curved
wave front (their phase varies nonlinearly in
perpendicular to beam propagation plane). In linear
approximation, such wave beams would either converge
or spread out.

2. BASIC EQUATIONS
To describe intense whistler propagation along

magnetic field, taking into account their mixed
polarization and thermal nonlinear effects, we use the
GNSE in the form:

0||)()( 2 =Ψ∆+Ψ+Ψ∆∆++Ψ∂ ⊥⊥⊥ CBPDi z . (2)
It includes dispersive effects of the second, as well as of
the fourth order (terms proportional to D and P
respectively) and combination of cubic nonlinearity
with nonlocal nonlinearity (terms proportional to B and



C). (Derivation of the GNSE (2) see in the Sec. 5.)
Any localized wave packet envelope

),( zr!Ψ conserves the following finite integrals of
motion during its evolution in z direction: (i) number of
quanta (or “energy”):

∫ Ψ= rdN !2 (3)

(ii) momentum, (iii) angular momentum, which are
equal to zero for radially-symmetric solitons, and (iv)
Hamiltonian:
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For whistler wave with ω<ωc/2 propagating in density
troughs one should put D>0, P>0, B<0, C<0 (see Sec.
5). As was demonstrated in Ref. [9], the Hamiltonian
(4) is bounded functional at C ≤ 0), which guarantees an
existence of stable background soliton solution:

zierzr Λ=Ψ )(),( ψ!
, (5)

where Λ is the propagation constant or the nonlinear
shift of z-component of wave number. The function
describing soliton radial profile )(rψ  satisfies the
ordinary differential equation, which after rescaling
transformations DPr ρ= , PD 2λ=Λ ,

)|(|)()( 2 PBDUr ρψ =  may be rewritten as follows:

0|||| 222 =∆+−∆+∆+− UUUUUUU ρρρ σλ ,
(6)

where
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Below the two-parameter (with parameters λ and σ)
soliton family is investigated analytically and
numerically.

3. VARIATIONAL ANALYSIS
As known, solution of the GNSE (2) corresponds to the
extremum of the action functional: 02 =ℑ∫ dzrd !δ ,

where ℑ  is the Lagrangian density for Eq. (2). Taking
into account variation (with z) of the phase and of the
spatial scale of arbitrary wave packet we choose the
normalized trial function in the form:
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which satisfies the reduced variational problem with
Lagrangian

{ } HrdiL zz −Ψ∂Ψ−Ψ∂Ψ= ∫
!2**

2
, (8)

where H is the Hamiltonian (4) with the trial function
(7). Introducing the new longitudinal distance variable:

∫=
z

d
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one can obtain after Ritz optimization the set of

canonical equations describing evolution (with z) of
parameters of cylindrically symmetric localized wave
packet:
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where γµβ =  and Hamiltonian in variational approach
with the trial function (7) is:
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where we introduced the following integrals:

398.0tanh)(
0

22 == ∫
+∞

ξξξξ dfI d ,

642.0)]([
0

2 =∆= ∫
+∞

ξξξξµ dfI p ,

289.0tanh)(
0

42 == ∫
+∞

ξξξξβ dfI p ,

0678.0)(
2ln2

1

0

4 == ∫
+∞

ξξξ
π

dfI b ,

1.0)()(
2ln

1

0

22 =′= ∫
+∞

ξξξξ
π

dffI c ,

here radial profile is chosen to be ξξ cosh/1)( =f .
Obviously, the stationary soliton solution with
parameters 0µ  and 0β , which do not change with z,
corresponds to the stationary point of the Hamiltonian.
These 2d solitons correspond to a formation of the
stationary self-induced whistler waveguide. The trial
function (7) with 0≠γ  takes into account possible
phase front curvature of the ducted whistler wave beam.
Indeed, the set of equations
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has two types of the solutions: (i) the ordinary soliton
solution with zero phase curvature parameter 00 =β
and
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(ii) the soliton (wave beam) with curved phase front
(CPF) having parameters
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where ββµ pppdd IIIII 2)(~ −−= ,

ββµ pppp IIII 4)(~ 2−−= .
Below we consider mostly case D>0, P>0, B<0,

C<0, which corresponds to a stationary waveguide
formation.

It is important to find the stable solitons among a
manifold of obtained variational solutions. A soliton is
stable if it corresponds to extremum (minimum or
maximum) of the Hamiltonian (10). In this case any



deviation from the extremum point ),( 00 βµ  would lead
to change of the Hamiltonian, which is impossible
because of its conservation. Obviously, soliton, which
corresponds to a saddle point of the Hamiltonian, is
unstable.

It is convenient to investigate soliton properties at
fixed parameter PBCD=σ . Results of the variational
analysis may be summarized as follows:
1. 301.0~~ ==< cdbpc IIIIσσ  (see Fig. 1 a). If
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In this case solitons with CPF are always unstable.
2. crc σσσ <<  (see Fig. 1 b). The N-dependence of

parameter 2µ  for ordinary solitons and for solitons
with CPF changes dramatically. As before, ordinary
solitons are stable at crNN > . Furthermore, a pair
of stable solitons with CPF (corresponding to
parameter values 0ββ ±= ) appears at

crNNN <<0 , where bd BIIDN ~20 = .
3. ocr σσσ <<  (see Fig. 1.c.) Ordinary solitons

become unstable. Stable soliton branch corresponds
to solitons with CPF.

4. oσσ >  (see Fig. 1.d) This case is similar to the
previous one, but the branch of unstable ordinary
solitons appears for 22

∞> µµ .
As was demonstrated in Ref. [4] for the cubic-

quintic (CQ) media and in Ref. [9] for media with
nonlocal nonlinearity, soliton profile has pronounced
oscillating tails if DP>0. The variational analysis, which
takes into account oscillations of soliton profile as well
as radial variation of the soliton phase, has been
performed in Ref. [9] using trial function of the form:
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where )(0 xJ  is the Bessel function of zero order.
Soliton solution gives an extremum to Hamiltonian at
fixed number of quanta. It was demonstrated, that
oscillating nature of soliton is crucial for right
description of solitons especially nearby the threshold
value of number of quanta for soliton existence, where
the scale of the oscillations 1−κ  becomes of the order
of DP 2  when 02

1 →µ , so that the third variational
parameter 13 µκµ =  tends to infinity.  Note that, the
variational analysis with the trial function (7), predicts
an existence of a soliton branch with nonlinear spatial
scale of order of BC . This gives rise to the view,

that in the case under consideration coexist two
branches of the solitons with the same number of quanta
but different spatial scales.

Fig. 1. Variational parameter 2µ vs numbers of quanta
N. Solid curves represent ordinary solitons, dashed

curves – solitons with CPF. “US” indicates unstable
branch, “S” corresponds to the stable solitons
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This prediction has been confirmed by means of more
general analysis with trial function (12) having three
variational parameters, which confirmed, that in our
problem, where there are two different spatial scales of
oscilations constructed from coefficients: “linear”

DP  and “nonlinear” BC . The results of the
analysis are presented in Fig. 2.

Stability of all obtained solutions have been verified
by means of computer solution of nonstationary GNSE
(2) with the initial condition of the form of perturbed
soliton solution. Extensive series of simulations
confirmed stability of the ordinary solitons and solitons
with CPF even with respect to significan perturbations.

4. EXACT SOLUTION OF GNSE WITH
CUBIC-QUINTIC AND NONLOCAL

NONLINEARITY
It is remarkable, that for whistlers with frequency

ω=ωc/2 the second-order dispersive term vanishes
(coefficient D is equal to zero). Therefore, the fourth-
order dispersive term is crucial in this case. If such
whistler wave beam propagates in CQ nonlinear media
with nonlocal nonlinearity a novel soliton-like solution
of Eq. (1), the so-called algebraic soliton, exists if

2422 ||||||)|(|ˆ Ψ∆+Ψ+Ψ=Ψ ⊥CKBN ), 2ˆ
⊥∆= PD

and P>0, B<0, K>0, C<0. In contrast with common
solitons, which decay at infinity exponentially, this
algebraic exact solution has asymptotic behavior of the
form 2)//()( arhr →ψ . It can be straightforwardly
verified that stationary solution (5) with radial profile

2)/(1
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+
=ψ , (13)

is an exact solution of the GNSE if D=0, ,0=λ  and

32 =PKC . In this case amplitude at the soliton center
and characteristic soliton width are defined as follows:

KBh /||3= , ||38 BCa = .

Note, that algebraic soliton has zero nonlinear frequency
shift and appears exceptionally under combined
influence of fourth-order dispersive term, CQ an
nonlocal nonlinearities.
Direct numerical simulation of the evolution (along axis
of propagation) of nonstationary GNSE with an initial
profile of the form of algebraic soliton (13) has shown
that such wave packet is unstable with respect to
collapse. Wave packet envelope contracts, amplitude
increases monotonically with z. Note, that the sign of
the coefficient C is opposite here (PC<0) in comparison
with the case considered in Sec. 2 and Sec. 3. This
situation corresponds to a strong focusing effect on
sufficiently intense wave packet. However, the stability
of the algebraic soliton with respect to small
perturbations and possibility of its collapse needs more
thorough investigation. This problem will be the subject of
our future investigation.

5. APPLICATION TO THE PROBLEM
OF WHISTLER WAVE SELF-FOCUSING
In linear approximation whistler wave propagation along

an external magnetic field can be described by the set of

equations for parallel component of electric and magnetic
fields:
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where electric and magnetic fields are assumed to be of the
form zikti zeyxE +− ω),(

!
, zikti zeyxB +− ω),(
!

,
and
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are the components of dielectric tensor in cold plasma
approximation. For a plane wave with 0=⊥k  the set (14),
(15) gives two independent dispersion relations:
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though in the frequency region of whistler waves
Cepi ωωω <<  only the left hand polarized wave [with

negative sign in the left hand side of (16)] describes plane
whistler wave with dispersion

222zpekc+ωω

. (17)

The other “wave” has 

0<zk

. Excluding 

zB

 from the set
(15), (16) we obtain one partial differential equation for the
parallel component of the electric field 

zE

:
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One can verify that the coefficient before 

zE⊥∆

vanishes for ω=ωc/2. Evidently, the term proportional
to 

zE⊥∆

, becomes of great importance at 

2cωω

.
At the same time, the role of nonlinear effects also
increases. The main nonlinear effect is connected with a
variation of electron density, which in its turn causes a
variation in refractive index, under intense wave
propagation. In many plasmas such as in Earth
ionosphere or in laboratory plasma, where intense
whistler waves exist, the main nonlinear effect is the
thermal effect: plasma density decreases during plasma
heating. As was shown experimentally [1], density
perturbation δn/n in steady-state regime is proportional
to δT/T = θ with opposite sign: δn/n=-γ θ where
coefficient γ is of order 1. In local approximation
electron temperature grows with electric field intensity
as [16]

()+ 1122pEEνθ
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 is a part of energy, which electron has
lost (in average) during one collision. In the first order
of nonlinearity Eq. (18) is reduced to

( )pEEθ

. (19)
At the same time the nonlocal nonlinear effect
connected with thermal conductivity may be of
importance, especially for rather thin wave beams. Then
equation (19) takes the form [6]

()peEED∆⊥⊥θτθ

where 

⊥D

 is the thermal diffusitivity across the external

magnetic field, 

eceemTDτω66.4⊥

 according to
[15]. In weakly nonlocal limit the last equation is
reduced to

)51( peEEr ⊥∆+θ

,
where re is electron Larmor radius. This approach is
justified because the wave beam radius is much larger
then re.

To restore the equation for a temporal evolution of
the wave in a plane, perpendicular to direction of
propagation one need to put 

nlti ωωω +∂∂→0

 into
the last term of equation for 

zE

 and express 

nlω

through δn:
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.
In such a way we obtain Eq. (1) with
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.
For a problem of stationary wave self-focusing one
should replace 

t∂∂

 by 

z∂∂

. In dispersion region
under consideration we have D>0, P>0, B<0, C<0.
Cubic nonlinear term acts as defocusing for large-scale
structures (where the fourth order dispersion term is not
essential) but as focusing for small-scale structures. The
action of nonlocal term is opposite. It follows form the
viraial relation obtained in [9] for evolution of effective
wave packet width. Due to these features there may
coexist two stable soliton branches describing large and
small-scale soliton shapes in perpendicular plane. Our
consideration explains experimentally observed
stationary self-focusing of whistler waves in density
troughs in normal dispersive region (ω<ωc/2) which is
possible only if forth order dispersion effect and higher
order nonlinear effect (nonlocal thermal conductivity in
the case under consideration) are taken into account
simultaneously.

In summary, an existance of stable self-induced
whistler waveguides with depressed density in normal
dispersive regime (ω<ωc/2) is theoretically explained.
In the framework of the model, based on the fourth
order GNSE with cubic and nonlocal nonlinearity by
means of generalized variational analysis it is
demonstrated, that two different soliton branches with
the same number of quanta but different spatial scales
coexist. For nonlinear media with significant
nonlocality (

σ≥

1) a novel coherent structure is
predicted – a stationary wave beam with curved wave

front, which phase changes nonlinearly in the plane
perpendicular to propagation direction. However, the
intensity of this structure remains constant along wave
beam propagation.
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