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The some results of theoretic and experimental investigations about excitation high number harmonics by non-

relativistic oscillators are represented in this report. Were shown that in media, which has even small periodic het-
erogeneity of dielectric permeability or potential, non-relativistic oscillators can radiate as relativistic particles. They
can efficiency radiate high number harmonics.  The theory as one particle radiation as selfconsistent nonlinear the-
ory radiation of oscillator ensemble was created. The experimental results confirm the main results of theory. In
particularly, there was exited ultraviolet radiation in experiment, when on a crystal intense ten-centimetric radiation
was acting.
PACS: 52.35.Mw

1. INTRODUCTION
The expression for radiation capacities of charge

particles, which are moving in media with dielectric
permeability cos( )0 q rε ε κ= + ⋅ ⋅! ! along the trajec-

tory sin( )0 0r V t r t= + Ω ⋅
!! !  was found in previous

investigations [2-4]. It necessary to mark, that the radia-
tion of relativistic particles in periodic inhomogeneous
were studied by many authors ( see, for example [5-9]
and quoted literatures there). This radiation is interest-
ing because using it open new opportunity to excite
short wave radiation λ γ~ /d 2  with high efficiency.
Such opportunity arises due Doppler effect. Such radia-
tion is already used in counters of the charged particles.
Moreover, it is supposed that this radiation can be useful
as sources of intense x-ray radiation [9].

2. RADIATION OF ONE CHARGED
PARTICLE

Below we shall be interested only radiation of the
non-relativistic particles β << 1. The radiation features
of such particles, as it seems to us, are bigger interest
for using this radiation as sources of the intense short
wave radiation. It is necessary to say, that non-
relativistic particles radiate “long wave” radiation. The
wavelength λ of such radiation is large than  the period
heterogeneity of the media d , where the radiation take

place ( )λ β~ /d .
Let’s consider oscillator, which is rest ( V0 0= ).

Let’s assume, that vectors κ!  and 0r
!

 are parallel to z
axis (

! !κ || ||r z0 ). In this case, such expression for ca-
pacities of radiation was received in the work [2]:
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It is useful to compare this expression with expres-
sion for capacities of a oscillator radiation in homoge-
neous media (in vacuum) (see, for example, [1]):
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Let's formulate more significant oscillator radiation
characteristics in heterogeneous media and compare
them to the same characteristics of radiation in homoge-
neous environment.

Spectrum. In a fig. 1 is submitted the dependence of

function 
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at m =1000 ( )β γ= = = −01 1005 10 5. . , q . The function
G n m( , ) determines dependence of radiation capacity of
oscillator from number of the harmonic. It is visible,
that the radiation capacity grows with growth of har-
monic number. The radiation maximum is at the har-
monic number n m~ = 1000 .  It is significant, that,
as it follow from the equation (2), it is necessary to have
energy of oscillator γ > 500 in vacuum for receiving
such radiation intensity on this harmonic.  Thus, the
small dielectric permeability perturbation of media
( q = −10 5 ), where radiation take place, can result in
qualitative change of the radiation spectrum of the such
oscillator. The radiation spectrum of such oscillator be-
comes similar to a radiation spectrum of relativistic os-
cillator in homogeneous media.

The directivity diagram. As it follow from equa-
tion (1), the directivity radiation diagrams of non-
relativistic  oscillator for all harmonics are coincide with
directivity diagram of a dipole. It necessary to mark,
that a directivity diagram of a relativistic oscillator is
nestles on a oscillator trajectory for high number har-
monic.

Polarization. The analyze radiation field structure
of a non-relativistic oscillator in periodic inhomogene-
ous media show, that polarization of this radiation is not
differ from the radiation polarization of a oscillator in
homogeneous media.  It is useful take in mind, that en-
ergy of the oscillator must be more than the energy of
radiated quantum ( E mv= >2 2/ "ω), when analyze
of radiation take place.
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Fig.1. Efficiency of oscillator radiation

on high number harmonics

Radiation in periodic potential. Below we will be
interested with radiation of oscillators in crystals. In a
crystal there is a periodicity not only in dielectric per-
meability, but also periodicity of a crystal lattice poten-
tial. One more mechanism of radiation in this case is
possible which is very similar on described above and in
works [2-4]. We shall briefly describe this mechanism.
Let charged particle goes in external periodic in time an
electric field ( )E t E t( ) cos= ⋅ ⋅Ω  and in a field of

periodic in space potential. ( )U U g z= + ⋅ ⋅0 cos κ .
For simplicity we shall consider, that the movement

occurs only along an z  axis. Let's consider, that of in-
tensity of these fields are small enough, so it is possible
to consider movement of a particle in these fields as
non-relativistic. Besides we shall consider that
E g>> ⋅ κ . In this case it is possible to present func-
tion, which describes displacement of a particle along
an z  axis, as the following line:
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where J j2 1+ - Bessel function  - ( )2 1j + - order ,

( )A eE m c≡ =/ ( )Ω β ,  ( )B eg mc≡ κ / Ω .
Using the formula (3), it is easy to find radiation in-

tensity of the charged particle. We are interested with
radiation of high number harmonics. For high numbers
( j >>1) the amplitudes of the Furies component of the
line (3) quickly decrease with growth number.

The exception is addend,  in which the argument of
Bessel function is equal to number of Bessel function:

( )κ c A j= +2 1 Ω . Taking into account only this
component, we shall receive the formula (2) for capac-
ity of radiation, in which it is necessary to put
r B c J mm0

2= ⋅ ⋅ ⋅Ω ( ) / ω , ( )m j m= + = ⋅2 1 , ω Ω.
Being limited in the formula (2) by dipole approxima-
tion, we shall receive the following expression for ra-
diation capacity:
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Thus, we see, that conditions for maximum radiation
in this case completely coincides with a condition of
oscillator radiation in periodically non-uniform dielec-
tric, i.e. both in that and in the other case the maximum
of radiation corresponds to the same frequency. When

( ) ( )eg mc qA/ 2 2>  the role of periodic potential on
radiation will be more significant.

Quantum consideration. The significant informa-
tion about radiation features of  the charged particles in
periodic potential can be received at use quantum elec-
trodynamics methods. Using a perturbation method, it is
easy to receive the following expression for radiation
capacity of the charged particle:
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n2 = ε  -dielectric permeability of media, n −  its pa-
rameter of refraction, ∆

! ! ! !
k k k ki f= − − λ

If particle goes in potential with weak periodic het-
erogeneity, its wave function is possible to present as:

( ), expi i m i
m

i k m rκ Ψ = Ψ + ⋅ ⋅ ∑
! ! !

. ( 6)

where , ,0
m

i m igΨ ⋅ Ψ#
From (6) it is visible, that the wave function has ad-

dends, which can be identified with particles, which
speed are large than speed of a real particle. Such ad-
dends can be identified with fast virtual particles. In
themselves they do not exist. Analogy to virtual waves
in periodically non-uniform media is looked through.
Only in the latter case we were interested with slow
virtual waves. For a case of particles we will be inter-
ested with fast virtual particles. Substituting wave func-
tion (6) in the formula (5), it is possible to receive the
following expression for radiation capacity of the
charged particle, which goes in periodic potential:
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where  2 /( )iv eω κ= ⋅ ⋅! !  when i fv v>> ;

/( )iv eω κ= ⋅! ! when  i fv v# ; ie - unit vector directed

along vector iv! .
If in periodic potential goes oscillator, we receive

the formula, which coincides with the formula (4).

3. RADIATION OF THE OSCILLATOR
FLOW

At a research of the elementary mechanism of the
radiation of the charged oscillator, which moves in a
periodically inhomogeneous medium the possibility of
the radiation high number harmonics by nonrelativistic
oscillator was shown. In order the such a radiation to be
effective the following condition must be satisfied:

, / 2od r ndβλ π≈ ≈ , here λ  is the wave length of

the radiation, d  - period of a heterogeneity, r0  is the
amplitude of a oscillator displacement  from a position
of an equilibrium, β = <<v c/ ,1  v  - velocity of the
oscillator, n  is the number of radiated harmonic. In
present section we study self-consistence process of the
excitation of electromagnetic radiation by an ensemble
of charged oscillators both analytical and numerical
methods. The dispersion equation and the increments
for excited waves are obtained. The analytical results
are confirmed by computer simulation.

 Basic equations.  We consider excitation of an
electromagnetic wave by an ensemble of oscillators in a
periodically inhomogeneous medium which is described
by a dielectric permeability:

1 2 cos , 1q z qε κ= + << . (8)
Most completely process of interaction of the

charged particles with excited fields is described by
self-consistent model, which consists of Maxwell equa-
tions for fields and motion equations for particles in
these fields.
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where
! !
D E= ⋅ε , Ω − oscillation frequency of oscil-

lators, F0  - amplitude of a force which acts on oscilla-
tors. Oscillations of oscillators happen along axes Z.

At a research of the elementary mechanism of a ra-
diation of an oscillator in a periodically inhomogeneous
medium was shown that the radiation of an oscillator is
mainly directed across its motion. Therefore we shall
search for a solution for the raised wave as! !

E A t z ikx= Re ( , ) exp( ) . (10)
It is known, that in periodic inhomogeneous medi-

ums it is possible to search for a solution as expansion
on spatial harmonics of  a heterogeneity, therefore we
can write (10) as! !

E E t ikx il zl
l

= +∑Re ( ) exp( )χ . (11)

Let's study temporal evolution of an electromagnetic
field (4) with distinct from of zero by components
E E Hx z y, , . Substituting expressions for fields (4) in

the system (2) and averaging over spatial phase of per-
turbation we receive the following set of equations for
fields and oscillators:
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The integration on the right-hand sides of equations

for fields is over the initial values of the oscillator coor-
dinates. The set of equations (12) are written in dimen-
sionless variables:
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where m e,  - mass and charge of an electron, nb – den-
sity of oscillators.

The analysis of linearized set of equations. The
dispersion equation.  Let's research the set of equations
(12) on a stability in linear approximation on fields. For
this purpose we shall present a dependence of fields
from time proportional to exp( )−i tω  and shall neglect
by terms of second order of perturbation. Also we shall
consider non relativistic oscillators and we shall leave
only main wave E0  (own wave of the system) and the
wave E1  which corresponds to the first order of a dif-
fraction, i.e. we shall choose the field in following form



0

1

Re exp( )

Re exp( )

E E ikx i t

E ikx i z i t

ω

κ ω

= − +

+ + −

! !

!

Fulfilling necessary transformations we receive the
system of linear algebraic equation for amplitudes of
fields. To have non-zero solution the determinant of this
system must be equal to zero. It is dispersion equation.
It is tremendous large.  That is why we shall represent
this equation in most interesting case when the condi-
tions kκ >> , β <<1, ω ωb kc<< ≈  are satisfied. It
is natural, that the maximum increment of instability is
reached in the case when frequencies of excited waves
lie near to the resonance frequencies, therefore we can
leave in infinite sums only one resonance term
ω ≈ nΩ . The magnitude of this term depends on Bes-
sel function of order n. At large numbers n Bessel func-
tion fast decreases and has maximal value only then,
when its argument is equal to its number, in this case
Bessel function has asymptotic dependence

J n nn ( ) ( )≈ − 1
3 . Therefore we assume that condition

n = µ  (i.e. n cκβΩ = ) is satisfied also. In this case
dispersion equation takes form
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In Fig.2 the dispersion curves of the considered sys-
tem, obtained from the equation (13), are presented
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In the region of intersection of branches of electro-

magnetic oscillations (point C) the dispersing equation
(13) has the complex roots. To determine them we re-
write (13) as

( )( )( ) ( )ω ω ω ω ω ω ω ω2
0
2

1 2
2 2 2− − − = −q nΩ ; (14)

ω ω ω ω ω ω0
2 2 2
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.

Assuming that
ω ω δ ω ω δ ω= + = <<0 0 1, , b nJ  we obtain from
(11) the following increment of instability:

Im , ,δ ωω ω ω ω ω= = + = +
q

J k c n Jb n b b n2 0 0
2 2 2

0Ω . (15)

Thus the self-consistent set of equations (12) has un-
stable solution with an increment (15).

The set of equations (12) were studied by numeri-
cally. The numerical results are in good agreements
with analytical ones.

4. THE SDUDING OF GENERATION
HARMONICS MECHANIZM IN

EXPERIMENT
A.N Antonov, O.F. Kovpik and E.A. Kornilov exe-

cuted the experimental researches. First of all, the
mechanism of harmonics excitation was investigated in
a microwave range. In this series of experiments the
plasma electrons, which oscillate in a field of an exter-
nal electromagnetic, were as oscillator ensemble. The
artificial lattice was as periodic inhomogeneous media.
The excitation of the third harmonic of a falling wave
frequency was studied in experiment. The frequency of
this wave was 2.7 Gh. As a whole, the results of the
carried out experimental researches are in the good
qualitative consent with the theory. The excitation of
electromagnetic wave on the third harmonic (8,1 Gh)
was observed only at simultaneous presence of plasma
and lattice, shipped in it. If the lattice left, the radiation
on harmonics was absent. If the plasma left, the radia-
tion also was absent. Moreover, the plasma could be
deleted from a lattice on various distances. Thus there is
some critical distance (~2mm), since which the signal
on harmonics vanishes. The polarization of radiation on
character corresponds to dipole radiation. It is in the
consent with the theory. The directivity diagram of ra-
diation also is in the consent with the theory: the inten-
sity of radiation in a direction that is perpendicular to
lattice considerably surpasses radiation intensity in a
direction that is parallel to a surface of a lattice.

Excitation of harmonics under acting of electro-
magnetic radiation on a crystal. If as periodic struc-
ture to use a crystal, it is possible to expect to excite
optical, UV and X-ray radiation in the same experi-
mental conditions. For check of such opportunity, the
same experimental installation was slightly changed.
Namely, the resonator was as a load of a high-frequency
path (waveguide). The crystal plates of semi-conductor
were located in the resonator. The electronic multiplier
fixed the optic radiation from the resonator. The photo -
multiplier with the converter (UV into optic) for regis-
tration UV. The main result of the carried out experi-
ments consists that in all cases the radiation was ob-
served. The origin of this radiation is possible to explain
by the mechanism, investigated by us. As an example
on Fig. 3 the characteristic results of experiments are
represented. The oscillogram of a high-frequency pulse
in the resonator on frequency 2,7 Gh and registered ra-
diation from a crystal ( λ ~ 10 5− sm ) in this figure are
represented. The strength of electric field was 20
kV/sm.  Excitation of radiation on a million harmonics
thus was observed.

5. DISCUSSION OF RESULTS AND
CONCLUSIONS

The main interest represents the results of experi-
mental researches. Therefore, we shall below discuss



these results. The results of the carried out experiments,
as a whole, are in the good agreement with our repre-
sentations about the mechanism of high numbers har-
monics radiation by non-relativistic oscillators. In many
cases there is a good enough quantitative consent of the
theory with experiment. It is necessary to note that the
results of experiments in a centimetric range are com-
plete enough for unequivocal interpretation. The char-
acteristics of radiation in this range are clear practically
in all details. As to a ultra-violet range ( λ ~ 10 5− sm ) -
situation less clear.

Fig.3. The microwave signal amplitude (the
upper ray) and the radiation signal from the

crystal (the lower ray)

Unfortunately, we have no sufficient experimental
opportunities for more detailed research of this range.
Now it is not clear, what role play electrons, taking
place near to a surface of a crystal and in its volume.Not
clearly also the ratio of the contributions in radiation
periodicity of potential and periodicity of dielectric
permeability.

Within the framework of the carried out experi-
ments, the displacement formed by an external field
oscillation should exceed 10 104 5−  of atom distances
in a crystal. In this case essential role on dynamics of
electrons, which are moving in volume of a crystal
should be played collisions. The collisions, certainly,
will prevent to coherent radiation. If the laser radiation
will be use as a wave that forming oscillators, than the
necessary displacement of electrons will be only some
hundreds atom distances. The role of collisions in this
case will be essential smaller. Besides the crystal can be
cooled. It is possible to expect, that during formation of
radiation, the crystal will not essentially heated.

Now, we don’t know other mechanisms (except for
researched by us) which could result in radiation, ob-
servable by us. Really, such radiation could be caused
by discharge. We specially create conditions, in which
the discharge is absent. Such radiation could arise as a
result of excitation any admixture centers in the semi-
conductor. However relaxation of the admixture centers
carries absolutely other character. It is necessary to no-
tice that when the conditions for existence discharge on
a surface of a crystal were created, the intensity of ra-

diation, observable by us, considerably grew. It is pos-
sible to explain it both radiation of plasma, and that fact,
that the number of the electrons near to a surface of a
crystal, in these conditions, was considerably increased.
Last fact can result in essential increase of efficiency of
the radiation mechanism, considered by us.  However,
these facts require the further study.

It is necessary to note that the formula (4) for radia-
tion capacity was received in the assumption, that the
field of spatially periodic potential is less than a field of
an external wave. In many cases it not so. However, as
show our preliminary investigation, and in that case,
when the return inequality is executed, the spectrum of
radiation of the charged particle will have a maximum
on the same frequency ω κ≈ v . Thus, general feature
of the radiation mechanism in periodic media and in
periodic potentials is that fact that the particle during
quanta radiation can get or give a part of a pulse to peri-
odic structure. It is possible, apparently, to consider that
for electrons placed near to a crystal surface fairly to use
inequalities, which we used for derivation of the equa-
tion (4). For the electrons inside crystal the crystal field
considerably exceeds field of an external wave. The
special interest represents collective process of radia-
tion. In a centimetric range of lengths of waves we,
certainly, observed collective radiation. In optical and
ultra-violet ranges we only hope on an opportunity of
such radiation. The available experimental results do not
give us opportunities to make any conclusion in this
occasion.

The authors thank Stepanov K.N., Fineberg Ya.B.
and  Yakovenko V.M. for useful discussions of results.
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