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WHISTLER WAVE EMISSION BY A MODULATED ELECTRON BEAM
ON A METAL-PLASMA BOUNDARY
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The transition radiation of a thin modulated electron beam injected from a conducting plane into a plasma along
an arbitrary magnetic field normal to that plane is calculated. The radiation field is formed as a result of the interfer-
ence of three waves with different wave vectors. The radiation pattern is mainly determined by one of those waves,
depending on the parameters of the model.

1. INTRODUCTION
One of the possible ways for interpreting the results

of active beam-plasma experiments in the ionosphere is
the laboratory simulation of the observed effects. The
excitation of waves by modulated electron beams in-
jected in space plasmas belongs to such effects (see, for
example, [1]). In the laboratory experiment [2], whis-
tlers excited by a modulated electron beam injected
from an electron gun through a metal surface into a
magnetoplasma were observed. It was shown that in
some cases this excitation occurs via a transition radia-
tion mechanism. The transverse length of the formation
zone of the transition radiation was calculated in [3] for
conditions typical of the experiment [2]. It has been
shown that this length is considerably less than the di-
mensions of the injector. It means that the model of a
radially restricted beam injected from a conductive
plane is valid for the calculation of this type of radio-
emission. This model was studied in the whistler ap-
proximation (ω<<ωc<<ωp) in [4]. This report presents
the results of the transition radiation calculations ob-
tained with the same model but for arbitrary parameters.

2. MODEL DESCRIPTION
A sharp metal-plasma boundary is treated. The

plasma is considered to be cold and the ambient mag-
netic field is directed along the z-axis. A thin modulated
electron beam is injected from the metal plane parallel
to the magnetic field, forming the current density wave:
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(where ω is the modulation frequency and v0 is the
electron beam velocity). The current density (1) is con-
sidered to be given. The permittivity tensor of the cold
magnetoactive plasma has the following form:
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where ωp is the electron plasma frequency and ωc is the
electron cyclotron frequency.

The problem is solved in two stages. At first the

transition radiation of electromagnetic waves by a radi-
ally unbounded modulated electron beam forming the
current density (3)
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is examined. At the second stage, the current (1) is ex-
panded into plane partial waves (3). The contributions
of the separated partial waves are added to find out the
transition radiation of the modulated electron beam (1).

3. TRANSITION RADIATION OF THE
PLANE CURRENT WAVE

It is convenient to use the vector-potential instead of
the field components of the emitted electromagnetic
wave by imposing the calibration condition ϕ=0. From
the Maxwell's equations one can obtain the wave equa-
tion for the vector-potential corresponding to the current
density wave (3) taking into account the permittivity
tensor (2). Using the vector-potential in the form
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one obtains the relation for the wave as :
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Hence the normalized components of the vector –po-
tential amplitude Am (Ax,Ay,Az) can be presented as:
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where =0 is the dispersion relation for eigenmodes of
the cold magnetized plasma.

On the metal-plasma boundary the tangential com-
ponent of the electric field vanishes 0=τE

!
, and then
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!

,
Hence it results in

0=Σ± , (6)
where
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Ordinary and extraordinary electromagnetic waves
propagating away from the metal plane should also be
taken into account besides the current wave. Conse-
quently the boundary conditions on the metal-plasma
border can be written as:
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where the index 1 refers to the ordinary wave, the index
2 to the extraordinary wave, and the index B to the cur-
rent wave.

The amplitudes of the electromagnetic waves ex-
cited by the radially unbounded modulated electron
beam have the form:

( )( )[ ]

( ) 





∆−

−−−





−

−=
⊥⊥

β
β

αεε
β

1

1

2,1//
2

1,2//
2

2,1//

22
2,1//

2
2,12

2
1,2//

2,1

nnn

nnn
Az

,

β
1

// =Bn . (8)

The transformation coefficient of the current wave
into the electromagnetic waves, determined as the ratio
of the denominate longitudinal component of the vector-
potential and the amplitude of the current density wave,
is specified by the formula:
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4. TRANSITION RADIATION OF THE THIN
MODULATED ELECTRON BEAM

After expanding the current (1) into plane partial
waves (3) and taking into account (9), one can obtain
the expressions for the radiation field components (in
cylindrical coordinates):
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where J0 and J1 are the Bessel functions of the zeroth
and the first order, respectively. Then the components of
that field in spherical coordinates can be written as:

θθ sincos 2,12,12,1 rzR AAA += ,
θθθ cossin 2,12,12,1 rz AAA +−= ,

2,12,1 ϕϕ AA = ,           (11)
where  is the azimuthal angle, the angle between the
magnetic field and the direction of observation.

For the calculation of the integrals (10) the method
of the stationary phase is applied. As a result:
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where ( ) ( )θ−ΘΘ=± jjiij nS cos ,             (13)
and where the values j correspond to the stationary
phase points. In fact  is the propagation angle of the
electromagnetic wave.

From (12) one can see that the radiation field is



formed as an interference of several waves with differ-
ent wave vectors.

5. STATIONARY PHASE POINTS
To find out the stationary phase points it is necessary

to solve the equation:
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b
Fig. 1: a - S+ versus the propagation angle of the

electromagnetic wave for H=60G, np=1.4 1011cm-3,
fm=50MHz, b – azimuthal angle versus the propa-
gation angle of the electromagnetic wave for the

same parameters. Stationary phase points are indi-
cated

where n1,2 are the roots of the dispersion relation (5).
The equation (15) cannot be solved analytically and
therefore numerical methods are used.

The dependence S(Θ) is shown on the Fig.1,a. The
extrem p1, p2 and p3 correspond to the stationary phase
points. The point p1 has an analogue for electromag-
netic waves in vacuum, the points p2 and p3 are specific
for magnetoactive plasma. They appear due to the sharp
increase of the wave number near the angle Θ corre-
sponding to the resonance cone.

The values of the stationary phase points versus the
azimuthal angle for the observation point have been
calculated numerically. They are shown on the Fig.1,b
that plots the angle of observation as a function of the
propagation angle. Figs.2,a-b illustrate the influence of
the magnetic field H and the modulation frequency on
the stationary phase points’ values.

a
 

b
Fig. 2. Number of stationary points versus the mag-
netic field H (in Gauss) for np = 1.2 1011cm-3, fm=50
МHz (a) and versus the modulation frequency

ω=2πfm (in rad/s) for Н=60G, np = 1.2 1011cm-3 (b)
A subsequent calculation shows that the point p3

corresponding to the largest curvature gives the main
contribution to the radio-emission. But this point does
not exist for all possible values of the model parameters
(see Fig.2). In particular it disappears when the usual
conditions for whistler approximation

pc ωωω <<<< . (16)
are satisfied.

6. RADIATION PATTERN FOR DIFFERENT
PARAMETERS OF THE MODEL

The radiation pattern (i.e. the angular dependence of
the radial component of the Pointing vector) is shown
on the Figs.3,a-b. Fig.3,a shows this dependence for the
case when the conditions (16) are satisfied and the point
p3 disappears. The shape of the radiation pattern for this
case conforms to the results obtained in [4].

Fig.3,b is plotted for parameters corresponding to
the experimental conditions [2]. For this case the point
p3 gives the main contribution to radioemission.
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b
Fig.3 Angular dependence of the radial component

of the Pointing vector (in arbitrary units): a –
H=300G, np =3.5 1012cm-3, fm=50MHz; b –

H=60G, np =1.2 1011cm-3, fm=100MHz

Fig. 4. Maximum energy flow density (in arbitrary
units) versus the plasma density (in cm-3) for

H=60G, fm=100MHz
The dependence of the maximum energy flow density
versus the plasma density for that case is shown on the
Fig.4. One can see that the increase of the plasma den-
sity results in the decrease of the transition radiation
intensity.

The Fig.5 [2], shows the variation of the intensity of
the transition radiation harmonics as a function of time,
that is, as a function of the decreasing plasma density
(the appearance of upper harmonics is caused by the
anharmonicity of the modulation beam current). One
can see that the intensity of the harmonics radiation
(particularly for the second and the third harmonics)
increases (to some degree). These results qualitatively
conform to our calculations (Fig.4).

7. CONCLUSION
The transition radiation of a thin modulated electron

beam injected from a conducting plane into a plasma
along an arbitrary magnetic field normal to that plane is
calculated. The radiation field is formed as a result of
the interference of three waves with different wave
vectors. The radiation pattern is mainly determined by
one of those waves (it depends on the parameters of the
model).

Fig. 5. a –Variation of the plasma density np (in
cm-3) as a function of the time; amplitudes of the
whistler waves (in arbitrary units) as function of
time for H=60G, fm=50MHz (b), 2 fm =100MHz

(c), 3 fm=150MHz (d)
For the case of the whistler approximation, the ob-

tained results coincide with our previous calculations
[4]. The calculated dependence of the radiation intensity
versus the plasma density qualitatively agrees with the
experimental data [2].

In order to perform a precise comparison of the cal-
culation results and the experimental data it is necessary
to take into account the finite radius of the electron
beam, to calculate the radiation in the near-field region
and to examine the case of the beam injection at some
angle to the magnetic field (this case corresponds to the
conditions of the experiment [5]).
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